12n
0482
(K12n
0482
)
A knot diagram
1
Linearized knot diagam
3 5 10 7 2 12 1 3 4 9 6 4
Solving Sequence
3,10 4,5
2 6 1 9 11 8 7 12
c
3
c
2
c
5
c
1
c
9
c
10
c
8
c
7
c
12
c
4
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hb + u, 135u
10
671u
9
+ ··· + 493a + 107,
u
11
2u
10
+ 3u
9
4u
8
+ 8u
7
11u
6
+ 12u
5
11u
4
+ 5u
3
3u
2
1i
I
u
2
= h1.98818 × 10
32
u
37
+ 5.18591 × 10
31
u
36
+ ··· + 3.87572 × 10
32
b 1.54819 × 10
32
,
4.74622 × 10
33
u
37
+ 1.04073 × 10
33
u
36
+ ··· + 3.87572 × 10
32
a 3.08284 × 10
33
, u
38
+ u
37
+ ··· + 11u + 1i
I
u
3
= hb + u, 3u
4
+ 3u
3
2u
2
+ a + 5u 2, u
5
u
4
+ u
3
2u
2
+ u 1i
I
u
4
= hb + u, a + 2u + 2, u
2
+ u + 1i
I
u
5
= h−u
13
2u
12
3u
11
8u
10
7u
9
16u
8
10u
7
21u
6
13u
5
18u
4
9u
3
11u
2
+ b 3u 2,
3u
13
u
12
+ 10u
11
+ 19u
9
+ 2u
8
+ 22u
7
+ 8u
6
+ 19u
5
+ 5u
4
+ 12u
3
+ 3u
2
+ a + 2u,
u
14
+ 4u
12
+ u
11
+ 9u
10
+ 3u
9
+ 13u
8
+ 6u
7
+ 14u
6
+ 6u
5
+ 11u
4
+ 4u
3
+ 5u
2
+ u + 1i
* 5 irreducible components of dim
C
= 0, with total 70 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb + u, 135u
10
671u
9
+ · · · + 493a + 107, u
11
2u
10
+ · · · 3u
2
1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
5
=
0.273834u
10
+ 1.36105u
9
+ ··· + 3.25761u 0.217039
u
a
2
=
0.813387u
10
+ 1.76876u
9
+ ··· + 0.217039u + 1.27383
u
2
a
6
=
0.415822u
10
+ 1.36308u
9
+ ··· + 1.98377u + 0.596349
u
3
u
a
1
=
0.813387u
10
+ 1.76876u
9
+ ··· + 0.217039u + 1.27383
u
2
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
3
u
3
+ u
a
7
=
0.0263692u
10
0.271805u
9
+ ··· 3.30629u + 1.00609
0.0953347u
10
0.444219u
9
+ ··· + 0.969574u 0.131846
a
12
=
1.09533u
10
+ 2.44422u
9
+ ··· + 1.03043u + 1.13185
0.150101u
10
+ 0.316430u
9
+ ··· + 0.281947u 0.111562
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1818
493
u
10
2167
493
u
9
+
2637
493
u
8
3733
493
u
7
+
10857
493
u
6
10419
493
u
5
+
8712
493
u
4
7389
493
u
3
+
2214
493
u
2
3255
493
u
301
493
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
11
+ 2u
10
+ ··· 6u 1
c
2
, c
3
, c
5
c
9
u
11
2u
10
+ 3u
9
4u
8
+ 8u
7
11u
6
+ 12u
5
11u
4
+ 5u
3
3u
2
1
c
4
, c
6
, c
11
u
11
u
10
u
9
+ u
8
+ 5u
7
3u
6
4u
5
+ u
4
+ 3u
3
u
2
+ 3u 1
c
7
u
11
+ u
10
+ ··· 51u 17
c
8
u
11
4u
10
+ ··· 16u 1
c
12
u
11
+ 8u
10
+ ··· 320u 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
11
+ 14y
10
+ ··· 26y 1
c
2
, c
3
, c
5
c
9
y
11
+ 2y
10
+ ··· 6y 1
c
4
, c
6
, c
11
y
11
3y
10
+ ··· + 7y 1
c
7
y
11
15y
10
+ ··· 425y 289
c
8
y
11
+ 20y
10
+ ··· + 92y 1
c
12
y
11
22y
10
+ ··· 10240y 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.069055 + 1.000350I
a = 0.981312 0.304041I
b = 0.069055 1.000350I
5.87879 + 3.62795I 10.28819 4.50965I
u = 0.069055 1.000350I
a = 0.981312 + 0.304041I
b = 0.069055 + 1.000350I
5.87879 3.62795I 10.28819 + 4.50965I
u = 0.457197 + 0.753480I
a = 0.883878 0.436496I
b = 0.457197 0.753480I
0.73694 + 2.00002I 2.64478 3.99897I
u = 0.457197 0.753480I
a = 0.883878 + 0.436496I
b = 0.457197 + 0.753480I
0.73694 2.00002I 2.64478 + 3.99897I
u = 1.21408
a = 0.899878
b = 1.21408
2.41788 20.6200
u = 1.06044 + 0.99031I
a = 1.37322 0.35892I
b = 1.06044 0.99031I
10.12310 + 0.00215I 1.32048 + 0.53124I
u = 1.06044 0.99031I
a = 1.37322 + 0.35892I
b = 1.06044 + 0.99031I
10.12310 0.00215I 1.32048 0.53124I
u = 0.92863 + 1.13891I
a = 1.51448 0.57303I
b = 0.92863 1.13891I
8.9020 15.0293I 0.32227 + 7.97448I
u = 0.92863 1.13891I
a = 1.51448 + 0.57303I
b = 0.92863 + 1.13891I
8.9020 + 15.0293I 0.32227 7.97448I
u = 0.265103 + 0.402117I
a = 1.28876 + 2.59793I
b = 0.265103 0.402117I
1.93271 + 1.18056I 1.16495 2.63475I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.265103 0.402117I
a = 1.28876 2.59793I
b = 0.265103 + 0.402117I
1.93271 1.18056I 1.16495 + 2.63475I
6
II.
I
u
2
= h1.99 × 10
32
u
37
+ 5.19 × 10
31
u
36
+ · · · + 3.88 × 10
32
b 1.55 × 10
32
, 4.75 ×
10
33
u
37
+1.04×10
33
u
36
+· · ·+3.88×10
32
a3.08×10
33
, u
38
+u
37
+· · ·+11u+1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
5
=
12.2460u
37
2.68526u
36
+ ··· + 1.99894u + 7.95423
0.512982u
37
0.133805u
36
+ ··· + 0.536992u + 0.399459
a
2
=
7.74425u
37
+ 4.31734u
36
+ ··· + 215.566u + 26.2164
0.565194u
37
+ 2.66371u
36
+ ··· + 55.8911u + 6.22476
a
6
=
11.1078u
37
6.54371u
36
+ ··· 143.314u 12.5852
3.29534u
37
+ 2.38055u
36
+ ··· + 112.115u + 12.6582
a
1
=
8.30944u
37
+ 6.98105u
36
+ ··· + 271.458u + 32.4411
0.565194u
37
+ 2.66371u
36
+ ··· + 55.8911u + 6.22476
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
3
u
3
+ u
a
7
=
2.38323u
37
+ 1.44709u
36
+ ··· + 51.2510u + 3.28992
1.45749u
37
+ 1.85739u
36
+ ··· + 1.74398u 1.81804
a
12
=
7.40661u
37
+ 4.29257u
36
+ ··· + 209.264u + 24.8880
1.35180u
37
+ 1.74929u
36
+ ··· + 35.3462u + 4.43912
(ii) Obstruction class = 1
(iii) Cusp Shapes = 25.3622u
37
+ 20.1574u
36
+ ··· + 887.101u + 105.896
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
38
+ 7u
37
+ ··· 3u + 1
c
2
, c
3
, c
5
c
9
u
38
+ u
37
+ ··· + 11u + 1
c
4
, c
6
, c
11
u
38
+ u
37
+ ··· 13u + 1
c
7
u
38
+ 6u
37
+ ··· + 279558u + 34943
c
8
u
38
+ 2u
37
+ ··· + 31225u + 84625
c
12
(u
19
4u
18
+ ··· + 182u 103)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
38
+ 47y
37
+ ··· + 41y + 1
c
2
, c
3
, c
5
c
9
y
38
+ 7y
37
+ ··· 3y + 1
c
4
, c
6
, c
11
y
38
7y
37
+ ··· 27y + 1
c
7
y
38
54y
37
+ ··· + 19424324302y + 1221013249
c
8
y
38
+ 90y
37
+ ··· + 115039950625y + 7161390625
c
12
(y
19
18y
18
+ ··· 49070y 10609)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.004590 + 0.172131I
a = 0.883738 0.151424I
b = 1.004590 + 0.172131I
2.25367 8.32597 + 0.I
u = 1.004590 0.172131I
a = 0.883738 + 0.151424I
b = 1.004590 0.172131I
2.25367 8.32597 + 0.I
u = 0.769998 + 0.586991I
a = 1.117170 + 0.263942I
b = 0.49939 + 1.38926I
1.95090 5.96839I 0.62541 + 10.55313I
u = 0.769998 0.586991I
a = 1.117170 0.263942I
b = 0.49939 1.38926I
1.95090 + 5.96839I 0.62541 10.55313I
u = 0.250368 + 0.928587I
a = 0.922332 + 0.890681I
b = 0.516346 + 1.055000I
3.76429 + 1.96233I 6.97090 0.90766I
u = 0.250368 0.928587I
a = 0.922332 0.890681I
b = 0.516346 1.055000I
3.76429 1.96233I 6.97090 + 0.90766I
u = 0.685299 + 0.877713I
a = 0.431131 + 0.017894I
b = 0.221102 0.581236I
0.80155 + 2.69495I 4.30397 0.26494I
u = 0.685299 0.877713I
a = 0.431131 0.017894I
b = 0.221102 + 0.581236I
0.80155 2.69495I 4.30397 + 0.26494I
u = 0.151590 + 0.840331I
a = 1.15667 + 1.14014I
b = 0.319310 + 0.249382I
1.87491 + 1.48071I 3.81413 3.72384I
u = 0.151590 0.840331I
a = 1.15667 1.14014I
b = 0.319310 0.249382I
1.87491 1.48071I 3.81413 + 3.72384I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.479231 + 1.064790I
a = 1.79535 0.55808I
b = 0.350575 0.499346I
3.82831 4.84634I 7.70612 + 6.88664I
u = 0.479231 1.064790I
a = 1.79535 + 0.55808I
b = 0.350575 + 0.499346I
3.82831 + 4.84634I 7.70612 6.88664I
u = 0.908346 + 0.735932I
a = 0.339798 0.249688I
b = 0.400909 + 0.103737I
1.01937 + 3.04219I 4.58994 7.02078I
u = 0.908346 0.735932I
a = 0.339798 + 0.249688I
b = 0.400909 0.103737I
1.01937 3.04219I 4.58994 + 7.02078I
u = 0.516346 + 1.055000I
a = 0.088440 + 1.046130I
b = 0.250368 + 0.928587I
3.76429 1.96233I 6.97090 + 0.90766I
u = 0.516346 1.055000I
a = 0.088440 1.046130I
b = 0.250368 0.928587I
3.76429 + 1.96233I 6.97090 0.90766I
u = 1.044560 + 0.842557I
a = 0.811923 0.654907I
b = 1.044560 + 0.842557I
10.6548 0
u = 1.044560 0.842557I
a = 0.811923 + 0.654907I
b = 1.044560 0.842557I
10.6548 0
u = 0.976290 + 0.949251I
a = 1.63572 + 0.33244I
b = 0.887628 + 1.095510I
9.80034 + 7.08036I 0. 4.76593I
u = 0.976290 0.949251I
a = 1.63572 0.33244I
b = 0.887628 1.095510I
9.80034 7.08036I 0. + 4.76593I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.221102 + 0.581236I
a = 0.427232 0.643816I
b = 0.685299 0.877713I
0.80155 + 2.69495I 4.30397 0.26494I
u = 0.221102 0.581236I
a = 0.427232 + 0.643816I
b = 0.685299 + 0.877713I
0.80155 2.69495I 4.30397 + 0.26494I
u = 0.950416 + 1.005200I
a = 0.568027 0.600769I
b = 0.950416 + 1.005200I
9.62378 0
u = 0.950416 1.005200I
a = 0.568027 + 0.600769I
b = 0.950416 1.005200I
9.62378 0
u = 0.350575 + 0.499346I
a = 3.57554 0.40279I
b = 0.479231 1.064790I
3.82831 4.84634I 7.70612 + 6.88664I
u = 0.350575 0.499346I
a = 3.57554 + 0.40279I
b = 0.479231 + 1.064790I
3.82831 + 4.84634I 7.70612 6.88664I
u = 0.887628 + 1.095510I
a = 1.53068 + 0.50554I
b = 0.976290 + 0.949251I
9.80034 7.08036I 0
u = 0.887628 1.095510I
a = 1.53068 0.50554I
b = 0.976290 0.949251I
9.80034 + 7.08036I 0
u = 1.14162 + 0.84482I
a = 0.714096 + 0.478108I
b = 1.00890 1.04517I
9.91517 + 7.54398I 0
u = 1.14162 0.84482I
a = 0.714096 0.478108I
b = 1.00890 + 1.04517I
9.91517 7.54398I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00890 + 1.04517I
a = 0.554397 + 0.631289I
b = 1.14162 0.84482I
9.91517 + 7.54398I 0
u = 1.00890 1.04517I
a = 0.554397 0.631289I
b = 1.14162 + 0.84482I
9.91517 7.54398I 0
u = 0.49939 + 1.38926I
a = 0.521072 + 0.543402I
b = 0.769998 + 0.586991I
1.95090 + 5.96839I 0
u = 0.49939 1.38926I
a = 0.521072 0.543402I
b = 0.769998 0.586991I
1.95090 5.96839I 0
u = 0.400909 + 0.103737I
a = 0.580462 1.039280I
b = 0.908346 + 0.735932I
1.01937 3.04219I 4.58994 + 7.02078I
u = 0.400909 0.103737I
a = 0.580462 + 1.039280I
b = 0.908346 0.735932I
1.01937 + 3.04219I 4.58994 7.02078I
u = 0.319310 + 0.249382I
a = 0.99071 + 3.27648I
b = 0.151590 + 0.840331I
1.87491 1.48071I 3.81413 + 3.72384I
u = 0.319310 0.249382I
a = 0.99071 3.27648I
b = 0.151590 0.840331I
1.87491 + 1.48071I 3.81413 3.72384I
13
III. I
u
3
= hb + u, 3u
4
+ 3u
3
2u
2
+ a + 5u 2, u
5
u
4
+ u
3
2u
2
+ u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
5
=
3u
4
3u
3
+ 2u
2
5u + 2
u
a
2
=
u
3
u
2
+ u 2
u
2
a
6
=
2u
4
2u
3
+ u
2
3u + 2
u
3
u
a
1
=
u
3
+ u 2
u
2
a
9
=
u
u
3
+ u
a
11
=
u
3
u
4
+ 2u
2
+ 1
a
8
=
u
3
u
3
+ u
a
7
=
u
4
+ u
3
u
2
2u 1
u
3
u
2
+ u 1
a
12
=
u
4
+ u
3
u
2
+ 2u 3
u
4
+ 3u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
4
2u
3
7u
2
u 12
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
u
4
u
3
+ 4u
2
3u + 1
c
2
, c
9
u
5
+ u
4
+ u
3
+ 2u
2
+ u + 1
c
3
, c
5
u
5
u
4
+ u
3
2u
2
+ u 1
c
4
, c
6
u
5
2u
3
+ u
2
+ 2u 1
c
7
u
5
+ 2u
4
+ 2u
3
+ 3u
2
+ 2u + 1
c
8
u
5
+ 5u
4
+ 6u
3
+ 3u
2
+ u + 1
c
10
u
5
+ u
4
u
3
4u
2
3u 1
c
11
u
5
2u
3
u
2
+ 2u + 1
c
12
u
5
+ 6u
4
+ 9u
3
+ 8u
2
+ 4u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
5
3y
4
+ 3y
3
8y
2
+ y 1
c
2
, c
3
, c
5
c
9
y
5
+ y
4
y
3
4y
2
3y 1
c
4
, c
6
, c
11
y
5
4y
4
+ 8y
3
9y
2
+ 6y 1
c
7
y
5
4y
3
5y
2
2y 1
c
8
y
5
13y
4
+ 8y
3
7y
2
5y 1
c
12
y
5
18y
4
7y
3
4y
2
1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.428550 + 1.039280I
a = 1.54944 0.53709I
b = 0.428550 1.039280I
5.20316 6.77491I 7.90607 + 7.89291I
u = 0.428550 1.039280I
a = 1.54944 + 0.53709I
b = 0.428550 + 1.039280I
5.20316 + 6.77491I 7.90607 7.89291I
u = 0.276511 + 0.728237I
a = 1.09747 3.27495I
b = 0.276511 0.728237I
2.50012 0.60716I 8.21805 3.47460I
u = 0.276511 0.728237I
a = 1.09747 + 3.27495I
b = 0.276511 + 0.728237I
2.50012 + 0.60716I 8.21805 + 3.47460I
u = 1.30408
a = 0.903937
b = 1.30408
2.24708 26.7520
17
IV. I
u
4
= hb + u, a + 2u + 2, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u + 1
a
5
=
2u 2
u
a
2
=
1
u 1
a
6
=
u 2
u 1
a
1
=
u 2
u 1
a
9
=
u
u + 1
a
11
=
1
0
a
8
=
1
u + 1
a
7
=
u + 2
u + 2
a
12
=
2u 2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u + 6
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
9
, c
10
, c
11
c
12
u
2
+ u + 1
c
7
, c
8
u
2
u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
2
+ y + 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000 1.73205I
b = 0.500000 0.866025I
6.08965I 0. + 10.39230I
u = 0.500000 0.866025I
a = 1.00000 + 1.73205I
b = 0.500000 + 0.866025I
6.08965I 0. 10.39230I
21
V.
I
u
5
= h−u
13
2u
12
+· · ·+b2, 3u
13
u
12
+· · ·+a+2u, u
14
+4u
12
+· · ·+u+1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
5
=
3u
13
+ u
12
+ ··· 3u
2
2u
u
13
+ 2u
12
+ ··· + 3u + 2
a
2
=
3u
13
u
12
+ ··· + 6u + 1
u
13
u
12
+ ··· 4u 3
a
6
=
2u
13
+ 2u
12
+ ··· 4u + 2
u
13
+ 2u
12
+ ··· + 6u + 4
a
1
=
2u
13
2u
12
+ ··· + 2u 2
u
13
u
12
+ ··· 4u 3
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
3
u
3
+ u
a
7
=
2u
13
u
12
+ ··· + 4u + 2
u
11
u
10
+ 3u
9
2u
8
+ 5u
7
3u
6
+ 5u
5
u
4
+ 4u
3
u
2
+ 3u
a
12
=
3u
13
2u
12
+ ··· + 6u 1
u
13
u
12
+ ··· 3u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 5u
13
+7u
12
+16u
11
+31u
10
+38u
9
+65u
8
+56u
7
+90u
6
+72u
5
+79u
4
+53u
3
+50u
2
+18u+4
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
8u
13
+ ··· 9u + 1
c
2
, c
9
u
14
+ 4u
12
+ ··· u + 1
c
3
, c
5
u
14
+ 4u
12
+ ··· + u + 1
c
4
, c
6
u
14
2u
13
+ ··· + u + 1
c
7
u
14
3u
13
+ ··· 2u + 1
c
8
u
14
3u
13
+ ··· 3u + 1
c
10
u
14
+ 8u
13
+ ··· + 9u + 1
c
11
u
14
+ 2u
13
+ ··· u + 1
c
12
(u
7
2u
6
+ 2u
5
u
4
+ 2u
2
2u + 1)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
14
+ 4y
13
+ ··· 3y + 1
c
2
, c
3
, c
5
c
9
y
14
+ 8y
13
+ ··· + 9y + 1
c
4
, c
6
, c
11
y
14
6y
13
+ ··· 11y + 1
c
7
y
14
+ 11y
13
+ ··· + 2y + 1
c
8
y
14
+ 3y
13
+ ··· + 17y + 1
c
12
(y
7
+ 3y
4
2y
2
1)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.716205 + 0.619830I
a = 1.50526 + 0.73982I
b = 0.417581 + 1.200450I
2.50419 5.00992I 2.87922 + 5.19233I
u = 0.716205 0.619830I
a = 1.50526 0.73982I
b = 0.417581 1.200450I
2.50419 + 5.00992I 2.87922 5.19233I
u = 0.369492 + 1.060950I
a = 1.074490 0.287225I
b = 0.355639 0.671652I
3.83313 + 3.38801I 5.24712 4.06276I
u = 0.369492 1.060950I
a = 1.074490 + 0.287225I
b = 0.355639 + 0.671652I
3.83313 3.38801I 5.24712 + 4.06276I
u = 0.764704 + 0.855799I
a = 0.685493 0.365462I
b = 0.064397 + 0.681658I
0.24628 + 2.90027I 9.12896 4.50234I
u = 0.764704 0.855799I
a = 0.685493 + 0.365462I
b = 0.064397 0.681658I
0.24628 2.90027I 9.12896 + 4.50234I
u = 0.544331 + 1.111970I
a = 0.113385 + 0.231625I
b = 0.544331 + 1.111970I
4.26728 4.48940 + 0.I
u = 0.544331 1.111970I
a = 0.113385 0.231625I
b = 0.544331 1.111970I
4.26728 4.48940 + 0.I
u = 0.355639 + 0.671652I
a = 1.39220 + 0.87457I
b = 0.369492 1.060950I
3.83313 + 3.38801I 5.24712 4.06276I
u = 0.355639 0.671652I
a = 1.39220 0.87457I
b = 0.369492 + 1.060950I
3.83313 3.38801I 5.24712 + 4.06276I
25
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.417581 + 1.200450I
a = 0.696781 + 1.037670I
b = 0.716205 + 0.619830I
2.50419 + 5.00992I 2.87922 5.19233I
u = 0.417581 1.200450I
a = 0.696781 1.037670I
b = 0.716205 0.619830I
2.50419 5.00992I 2.87922 + 5.19233I
u = 0.064397 + 0.681658I
a = 1.230320 + 0.426410I
b = 0.764704 + 0.855799I
0.24628 2.90027I 9.12896 + 4.50234I
u = 0.064397 0.681658I
a = 1.230320 0.426410I
b = 0.764704 0.855799I
0.24628 + 2.90027I 9.12896 4.50234I
26
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
+ u + 1)(u
5
u
4
+ ··· 3u + 1)(u
11
+ 2u
10
+ ··· 6u 1)
· (u
14
8u
13
+ ··· 9u + 1)(u
38
+ 7u
37
+ ··· 3u + 1)
c
2
, c
9
(u
2
+ u + 1)(u
5
+ u
4
+ u
3
+ 2u
2
+ u + 1)
· (u
11
2u
10
+ 3u
9
4u
8
+ 8u
7
11u
6
+ 12u
5
11u
4
+ 5u
3
3u
2
1)
· (u
14
+ 4u
12
+ ··· u + 1)(u
38
+ u
37
+ ··· + 11u + 1)
c
3
, c
5
(u
2
+ u + 1)(u
5
u
4
+ u
3
2u
2
+ u 1)
· (u
11
2u
10
+ 3u
9
4u
8
+ 8u
7
11u
6
+ 12u
5
11u
4
+ 5u
3
3u
2
1)
· (u
14
+ 4u
12
+ ··· + u + 1)(u
38
+ u
37
+ ··· + 11u + 1)
c
4
, c
6
(u
2
+ u + 1)(u
5
2u
3
+ u
2
+ 2u 1)
· (u
11
u
10
u
9
+ u
8
+ 5u
7
3u
6
4u
5
+ u
4
+ 3u
3
u
2
+ 3u 1)
· (u
14
2u
13
+ ··· + u + 1)(u
38
+ u
37
+ ··· 13u + 1)
c
7
(u
2
u + 1)(u
5
+ 2u
4
+ ··· + 2u + 1)(u
11
+ u
10
+ ··· 51u 17)
· (u
14
3u
13
+ ··· 2u + 1)(u
38
+ 6u
37
+ ··· + 279558u + 34943)
c
8
(u
2
u + 1)(u
5
+ 5u
4
+ ··· + u + 1)(u
11
4u
10
+ ··· 16u 1)
· (u
14
3u
13
+ ··· 3u + 1)(u
38
+ 2u
37
+ ··· + 31225u + 84625)
c
10
(u
2
+ u + 1)(u
5
+ u
4
+ ··· 3u 1)(u
11
+ 2u
10
+ ··· 6u 1)
· (u
14
+ 8u
13
+ ··· + 9u + 1)(u
38
+ 7u
37
+ ··· 3u + 1)
c
11
(u
2
+ u + 1)(u
5
2u
3
u
2
+ 2u + 1)
· (u
11
u
10
u
9
+ u
8
+ 5u
7
3u
6
4u
5
+ u
4
+ 3u
3
u
2
+ 3u 1)
· (u
14
+ 2u
13
+ ··· u + 1)(u
38
+ u
37
+ ··· 13u + 1)
c
12
(u
2
+ u + 1)(u
5
+ 6u
4
+ 9u
3
+ 8u
2
+ 4u + 1)
· ((u
7
2u
6
+ 2u
5
u
4
+ 2u
2
2u + 1)
2
)(u
11
+ 8u
10
+ ··· 320u 64)
· (u
19
4u
18
+ ··· + 182u 103)
2
27
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
2
+ y + 1)(y
5
3y
4
+ ··· + y 1)(y
11
+ 14y
10
+ ··· 26y 1)
· (y
14
+ 4y
13
+ ··· 3y + 1)(y
38
+ 47y
37
+ ··· + 41y + 1)
c
2
, c
3
, c
5
c
9
(y
2
+ y + 1)(y
5
+ y
4
+ ··· 3y 1)(y
11
+ 2y
10
+ ··· 6y 1)
· (y
14
+ 8y
13
+ ··· + 9y + 1)(y
38
+ 7y
37
+ ··· 3y + 1)
c
4
, c
6
, c
11
(y
2
+ y + 1)(y
5
4y
4
+ ··· + 6y 1)(y
11
3y
10
+ ··· + 7y 1)
· (y
14
6y
13
+ ··· 11y + 1)(y
38
7y
37
+ ··· 27y + 1)
c
7
(y
2
+ y + 1)(y
5
4y
3
+ ··· 2y 1)(y
11
15y
10
+ ··· 425y 289)
· (y
14
+ 11y
13
+ ··· + 2y + 1)
· (y
38
54y
37
+ ··· + 19424324302y + 1221013249)
c
8
(y
2
+ y + 1)(y
5
13y
4
+ ··· 5y 1)(y
11
+ 20y
10
+ ··· + 92y 1)
· (y
14
+ 3y
13
+ ··· + 17y + 1)
· (y
38
+ 90y
37
+ ··· + 115039950625y + 7161390625)
c
12
(y
2
+ y + 1)(y
5
18y
4
7y
3
4y
2
1)(y
7
+ 3y
4
2y
2
1)
2
· (y
11
22y
10
+ ··· 10240y 4096)
· (y
19
18y
18
+ ··· 49070y 10609)
2
28