12n
0483
(K12n
0483
)
A knot diagram
1
Linearized knot diagam
3 5 12 7 2 11 10 3 4 5 9 8
Solving Sequence
4,12 3,10
9 8 1 7 5 2 6 11
c
3
c
9
c
8
c
12
c
7
c
4
c
2
c
5
c
11
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
7
+ u
4
+ 2u
3
+ 2u
2
+ b, u
5
u
2
+ a 2u 1,
u
12
u
11
+ u
10
+ 2u
9
+ 2u
8
+ 2u
7
+ u
6
+ 5u
5
+ 6u
4
+ 3u
3
+ 2u
2
+ u + 1i
I
u
2
= hu
17
+ 7u
16
+ ··· + b 1, 6u
17
+ 47u
16
+ ··· + a + 12, u
18
+ 8u
17
+ ··· + 5u + 1i
I
u
3
= h15u
13
39u
12
+ ··· + b 29, 49u
13
+ 118u
12
+ ··· + a + 75,
u
14
3u
13
+ 4u
12
3u
11
+ 9u
10
21u
9
+ 22u
8
7u
7
+ 7u
6
31u
5
+ 48u
4
41u
3
+ 22u
2
7u + 1i
I
u
4
= hb, a + 1, u + 1i
* 4 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
7
+ u
4
+ 2u
3
+ 2u
2
+ b, u
5
u
2
+ a 2u 1, u
12
u
11
+ · · · + u + 1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
3
=
1
u
2
a
10
=
u
5
+ u
2
+ 2u + 1
u
7
u
4
2u
3
2u
2
a
9
=
u
7
+ u
5
+ u
4
+ 2u
3
+ 3u
2
+ 2u + 1
u
7
u
4
2u
3
2u
2
a
8
=
u
9
+ u
7
+ u
6
+ 3u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ 2u + 1
u
11
u
8
3u
7
2u
6
2u
3
2u
2
a
1
=
u
11
u
9
2u
8
3u
7
4u
6
2u
5
4u
4
3u
3
2u
2
u
10
u
9
u
8
3u
7
4u
6
7u
5
5u
4
4u
3
3u
2
u 1
a
7
=
u
11
u
10
+ u
9
+ u
8
+ 3u
7
+ u
6
+ 4u
4
+ 5u
3
+ 3u
2
+ u
u
a
5
=
u
9
+ u
8
u
7
u
6
u
5
u
4
u
2
u
u
2
a
2
=
u
9
u
8
u
7
2u
6
3u
5
6u
4
4u
3
2u
2
u
u
10
+ u
9
+ u
8
+ u
7
+ 4u
6
+ 5u
5
+ 4u
4
+ 2u
3
+ u
a
6
=
u
11
+ u
10
+ u
9
+ 2u
8
+ 3u
7
+ 5u
6
+ 4u
5
+ 2u
4
+ u
3
+ u
2
u
10
+ u
9
+ u
8
+ 3u
7
+ 4u
6
+ 7u
5
+ 5u
4
+ 4u
3
+ 3u
2
+ u + 1
a
11
=
u
10
+ u
7
+ 2u
6
+ 3u
5
u
4
u
3
+ u
2
+ 2u + 1
u
11
u
8
3u
7
2u
6
2u
3
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
11
+ 6u
10
6u
9
6u
8
6u
7
2u
6
2u
5
20u
4
14u
3
2u
2
2u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 36u
11
+ ··· + 10212u + 784
c
2
, c
5
u
12
+ 4u
11
+ ··· + 34u + 28
c
3
, c
4
u
12
u
11
+ u
10
+ 2u
9
+ 2u
8
+ 2u
7
+ u
6
+ 5u
5
+ 6u
4
+ 3u
3
+ 2u
2
+ u + 1
c
6
, c
12
u
12
u
11
+ ··· 112u + 16
c
7
, c
11
u
12
+ u
11
+ ··· + 3u + 1
c
8
, c
10
u
12
u
11
+ ··· u + 1
c
9
u
12
+ 8u
11
+ ··· + 32u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
104y
11
+ ··· 27451376y + 614656
c
2
, c
5
y
12
+ 36y
11
+ ··· + 10212y + 784
c
3
, c
4
y
12
+ y
11
+ ··· + 3y + 1
c
6
, c
12
y
12
35y
11
+ ··· + 1280y + 256
c
7
, c
11
y
12
+ 11y
11
+ ··· + 175y + 1
c
8
, c
10
y
12
25y
11
+ ··· + 21y + 1
c
9
y
12
6y
11
+ ··· + 160y + 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.943494 + 0.203851I
a = 0.445140 + 0.755661I
b = 0.761544 0.427838I
1.86414 + 1.86169I 7.41273 3.81862I
u = 0.943494 0.203851I
a = 0.445140 0.755661I
b = 0.761544 + 0.427838I
1.86414 1.86169I 7.41273 + 3.81862I
u = 0.428222 + 0.989663I
a = 1.95175 + 0.47004I
b = 1.156050 0.432518I
2.66700 + 5.59294I 4.27657 7.89716I
u = 0.428222 0.989663I
a = 1.95175 0.47004I
b = 1.156050 + 0.432518I
2.66700 5.59294I 4.27657 + 7.89716I
u = 0.433065 + 0.576514I
a = 0.004562 + 0.459402I
b = 0.083913 + 0.568146I
0.34049 + 1.65634I 1.46994 4.66889I
u = 0.433065 0.576514I
a = 0.004562 0.459402I
b = 0.083913 0.568146I
0.34049 1.65634I 1.46994 + 4.66889I
u = 0.308633 + 0.557970I
a = 1.46204 + 1.37428I
b = 1.005310 0.551014I
1.99940 1.87880I 2.68729 + 1.13887I
u = 0.308633 0.557970I
a = 1.46204 1.37428I
b = 1.005310 + 0.551014I
1.99940 + 1.87880I 2.68729 1.13887I
u = 0.96431 + 1.04939I
a = 0.436521 0.813671I
b = 1.55023 1.27982I
18.7687 2.1933I 2.97846 + 2.17261I
u = 0.96431 1.04939I
a = 0.436521 + 0.813671I
b = 1.55023 + 1.27982I
18.7687 + 2.1933I 2.97846 2.17261I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.03184 + 1.04165I
a = 1.63319 0.67021I
b = 1.45358 + 1.34749I
19.0592 12.8315I 3.10274 + 5.68817I
u = 1.03184 1.04165I
a = 1.63319 + 0.67021I
b = 1.45358 1.34749I
19.0592 + 12.8315I 3.10274 5.68817I
6
II.
I
u
2
= hu
17
+7u
16
+· · ·+b1, 6u
17
+47u
16
+· · ·+a+12, u
18
+8u
17
+· · ·+5u+1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
3
=
1
u
2
a
10
=
6u
17
47u
16
+ ··· 50u 12
u
17
7u
16
+ ··· u + 1
a
9
=
5u
17
40u
16
+ ··· 49u 13
u
17
7u
16
+ ··· u + 1
a
8
=
5u
17
39u
16
+ ··· 45u 12
u
16
+ 7u
15
+ ··· + 4u + 2
a
1
=
13u
17
+ 99u
16
+ ··· + 84u + 19
2u
17
16u
16
+ ··· 18u 6
a
7
=
3u
17
+ 19u
16
+ ··· 11u 8
5u
17
38u
16
+ ··· 29u 6
a
5
=
21u
17
+ 156u
16
+ ··· + 111u + 22
6u
17
48u
16
+ ··· 45u 12
a
2
=
14u
17
+ 107u
16
+ ··· + 90u + 20
u
17
9u
16
+ ··· 17u 6
a
6
=
33u
17
+ 249u
16
+ ··· + 195u + 43
5u
17
42u
16
+ ··· 54u 16
a
11
=
18u
17
+ 137u
16
+ ··· + 109u + 23
3u
17
26u
16
+ ··· 34u 10
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 36u
17
268u
16
1035u
15
2527u
14
4242u
13
4893u
12
3632u
11
1032u
10
+
1235u
9
+ 2183u
8
+ 1783u
7
+ 724u
6
361u
5
832u
4
748u
3
435u
2
188u 40
7
(iv) u-Polynomials at the component
8
Crossings u-Polynomials at each crossing
c
1
(u
9
5u
8
+ 11u
7
5u
6
6u
5
+ 6u
4
+ 3u
3
4u
2
+ 1)
2
c
2
(u
9
u
8
+ 3u
7
u
6
+ 2u
5
2u
4
u
3
+ 1)
2
c
3
u
18
+ 8u
17
+ ··· + 5u + 1
c
4
u
18
8u
17
+ ··· 5u + 1
c
5
(u
9
+ u
8
+ 3u
7
+ u
6
+ 2u
5
+ 2u
4
u
3
1)
2
c
6
u
18
+ 4u
17
+ ··· 64u + 16
c
7
u
18
+ 5u
17
+ ··· + 6u + 1
c
8
u
18
+ 2u
17
+ ··· u + 1
c
9
u
18
6u
16
+ 18u
14
32u
12
+ 36u
10
21u
8
u
6
+ 13u
4
9u
2
+ 2
c
10
u
18
2u
17
+ ··· + u + 1
c
11
u
18
5u
17
+ ··· 6u + 1
c
12
u
18
4u
17
+ ··· + 64u + 16
9
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
9
3y
8
+ 59y
7
91y
6
+ 122y
5
102y
4
+ 67y
3
28y
2
+ 8y 1)
2
c
2
, c
5
(y
9
+ 5y
8
+ 11y
7
+ 5y
6
6y
5
6y
4
+ 3y
3
+ 4y
2
1)
2
c
3
, c
4
y
18
+ 2y
17
+ ··· + 3y + 1
c
6
, c
12
y
18
22y
17
+ ··· 512y + 256
c
7
, c
11
y
18
9y
17
+ ··· 4y + 1
c
8
, c
10
y
18
8y
17
+ ··· y + 1
c
9
(y
9
6y
8
+ 18y
7
32y
6
+ 36y
5
21y
4
y
3
+ 13y
2
9y + 2)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.777312 + 0.486718I
a = 0.117694 0.428312I
b = 0.824936I
2.92265 6.32125 + 0.I
u = 0.777312 0.486718I
a = 0.117694 + 0.428312I
b = 0.824936I
2.92265 6.32125 + 0.I
u = 0.787271 + 0.193545I
a = 1.94391 + 0.62047I
b = 0.738756 0.073670I
2.59122 4.23353I 10.52461 + 5.89343I
u = 0.787271 0.193545I
a = 1.94391 0.62047I
b = 0.738756 + 0.073670I
2.59122 + 4.23353I 10.52461 5.89343I
u = 0.195408 + 0.775085I
a = 0.783024 + 0.052101I
b = 1.018860 0.510794I
0.08023 + 1.48591I 1.59236 0.75430I
u = 0.195408 0.775085I
a = 0.783024 0.052101I
b = 1.018860 + 0.510794I
0.08023 1.48591I 1.59236 + 0.75430I
u = 0.913089 + 0.817029I
a = 0.586719 + 0.636830I
b = 1.018860 + 0.510794I
0.08023 + 1.48591I 1.59236 0.75430I
u = 0.913089 0.817029I
a = 0.586719 0.636830I
b = 1.018860 0.510794I
0.08023 1.48591I 1.59236 + 0.75430I
u = 0.017456 + 0.678862I
a = 1.85849 0.76267I
b = 1.298400 0.418995I
1.04126 5.01228I 1.26831 + 4.06630I
u = 0.017456 0.678862I
a = 1.85849 + 0.76267I
b = 1.298400 + 0.418995I
1.04126 + 5.01228I 1.26831 4.06630I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.831665 + 1.107580I
a = 1.39851 + 0.58903I
b = 1.298400 0.418995I
1.04126 + 5.01228I 1.26831 4.06630I
u = 0.831665 1.107580I
a = 1.39851 0.58903I
b = 1.298400 + 0.418995I
1.04126 5.01228I 1.26831 + 4.06630I
u = 0.458886 + 0.399467I
a = 0.31142 2.76924I
b = 0.948371 + 0.622031I
0.35881 + 6.46016I 3.04591 10.04151I
u = 0.458886 0.399467I
a = 0.31142 + 2.76924I
b = 0.948371 0.622031I
0.35881 6.46016I 3.04591 + 10.04151I
u = 0.83752 + 1.26265I
a = 1.41028 + 0.27520I
b = 0.948371 0.622031I
0.35881 + 6.46016I 3.04591 10.04151I
u = 0.83752 1.26265I
a = 1.41028 0.27520I
b = 0.948371 + 0.622031I
0.35881 6.46016I 3.04591 + 10.04151I
u = 1.18166 + 1.05458I
a = 0.995814 + 0.295938I
b = 0.738756 0.073670I
2.59122 + 4.23353I 10.52461 5.89343I
u = 1.18166 1.05458I
a = 0.995814 0.295938I
b = 0.738756 + 0.073670I
2.59122 4.23353I 10.52461 + 5.89343I
13
III. I
u
3
= h15u
13
39u
12
+ · · · + b 29, 49u
13
+ 118u
12
+ · · · + a +
75, u
14
3u
13
+ · · · 7u + 1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
3
=
1
u
2
a
10
=
49u
13
118u
12
+ ··· + 423u 75
15u
13
+ 39u
12
+ ··· 154u + 29
a
9
=
64u
13
157u
12
+ ··· + 577u 104
15u
13
+ 39u
12
+ ··· 154u + 29
a
8
=
65u
13
161u
12
+ ··· + 604u 110
14u
13
+ 36u
12
+ ··· 146u + 28
a
1
=
126u
13
+ 308u
12
+ ··· 1138u + 209
36u
13
93u
12
+ ··· + 373u 71
a
7
=
31u
13
81u
12
+ ··· + 326u 60
u
13
+ 2u
12
+ ··· 7u + 1
a
5
=
5u
13
+ 22u
12
+ ··· 156u + 37
9u
13
19u
12
+ ··· + 59u 10
a
2
=
127u
13
+ 311u
12
+ ··· 1147u + 210
35u
13
91u
12
+ ··· + 372u 71
a
6
=
17u
13
28u
12
+ ··· 38u + 25
28u
13
60u
12
+ ··· + 186u 32
a
11
=
129u
13
+ 315u
12
+ ··· 1155u + 211
37u
13
96u
12
+ ··· + 385u 73
(ii) Obstruction class = 1
(iii) Cusp Shapes = 53u
13
121u
12
+ 127u
11
73u
10
+ 429u
9
807u
8
+ 601u
7
+
26u
6
+ 409u
5
1340u
4
+ 1590u
3
1091u
2
+ 442u 85
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
7
+ 14u
6
+ 45u
5
237u
4
+ 432u
3
394u
2
+ 180u 25)
2
c
2
, c
5
(u
7
2u
6
+ 9u
5
u
4
16u
3
+ 8u
2
+ 10u 5)
2
c
3
, c
4
u
14
3u
13
+ ··· 7u + 1
c
6
, c
12
u
14
+ 4u
13
+ ··· 5685u + 12167
c
7
, c
11
u
14
+ 6u
13
+ ··· + 168u + 361
c
8
, c
10
u
14
u
13
+ ··· u + 1
c
9
(u
7
+ 5u
6
+ 11u
5
+ 10u
4
u
3
11u
2
10u 4)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
7
106y
6
+ ··· + 12700y 625)
2
c
2
, c
5
(y
7
+ 14y
6
+ 45y
5
237y
4
+ 432y
3
394y
2
+ 180y 25)
2
c
3
, c
4
y
14
y
13
+ ··· 5y + 1
c
6
, c
12
y
14
56y
13
+ ··· + 40244763y + 148035889
c
7
, c
11
y
14
+ 14y
13
+ ··· + 169604y + 130321
c
8
, c
10
y
14
33y
13
+ ··· 19y + 1
c
9
(y
7
3y
6
+ 19y
5
32y
4
+ 41y
3
21y
2
+ 12y 16)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.032790 + 0.667853I
a = 0.440984 + 0.090406I
b = 0.471661 + 0.715058I
2.57696 + 1.21057I 5.12278 3.79229I
u = 1.032790 0.667853I
a = 0.440984 0.090406I
b = 0.471661 0.715058I
2.57696 1.21057I 5.12278 + 3.79229I
u = 0.637347 + 0.231640I
a = 0.05338 2.45178I
b = 1.057670 + 0.584877I
0.84974 6.19083I 9.29875 + 3.50078I
u = 0.637347 0.231640I
a = 0.05338 + 2.45178I
b = 1.057670 0.584877I
0.84974 + 6.19083I 9.29875 3.50078I
u = 0.198510 + 0.598009I
a = 0.99736 + 1.49028I
b = 0.989402
2.30231 4.53226 + 0.I
u = 0.198510 0.598009I
a = 0.99736 1.49028I
b = 0.989402
2.30231 4.53226 + 0.I
u = 1.04789 + 0.96312I
a = 1.56610 0.77379I
b = 1.46537 + 1.27456I
19.1086 5.1850I 3.34460 + 2.00744I
u = 1.04789 0.96312I
a = 1.56610 + 0.77379I
b = 1.46537 1.27456I
19.1086 + 5.1850I 3.34460 2.00744I
u = 0.555992 + 0.145874I
a = 1.30613 + 1.18459I
b = 0.471661 0.715058I
2.57696 1.21057I 5.12278 + 3.79229I
u = 0.555992 0.145874I
a = 1.30613 1.18459I
b = 0.471661 + 0.715058I
2.57696 + 1.21057I 5.12278 3.79229I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.05150 + 1.03574I
a = 0.404815 0.663769I
b = 1.46537 1.27456I
19.1086 + 5.1850I 3.34460 2.00744I
u = 1.05150 1.03574I
a = 0.404815 + 0.663769I
b = 1.46537 + 1.27456I
19.1086 5.1850I 3.34460 + 2.00744I
u = 0.95844 + 1.25093I
a = 1.338220 + 0.349939I
b = 1.057670 0.584877I
0.84974 + 6.19083I 9.29875 3.50078I
u = 0.95844 1.25093I
a = 1.338220 0.349939I
b = 1.057670 + 0.584877I
0.84974 6.19083I 9.29875 + 3.50078I
18
IV. I
u
4
= hb, a + 1, u + 1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
1
a
3
=
1
1
a
10
=
1
0
a
9
=
1
0
a
8
=
2
1
a
1
=
4
3
a
7
=
3
1
a
5
=
2
1
a
2
=
3
2
a
6
=
5
3
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
10
, c
11
u + 1
c
4
, c
5
, c
7
c
8
u 1
c
6
u 2
c
9
u
c
12
u + 2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
7
c
8
, c
10
, c
11
y 1
c
6
, c
12
y 4
c
9
y
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
3.28987 12.0000
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u + 1)(u
7
+ 14u
6
+ 45u
5
237u
4
+ 432u
3
394u
2
+ 180u 25)
2
· (u
9
5u
8
+ 11u
7
5u
6
6u
5
+ 6u
4
+ 3u
3
4u
2
+ 1)
2
· (u
12
+ 36u
11
+ ··· + 10212u + 784)
c
2
(u + 1)(u
7
2u
6
+ 9u
5
u
4
16u
3
+ 8u
2
+ 10u 5)
2
· ((u
9
u
8
+ ··· u
3
+ 1)
2
)(u
12
+ 4u
11
+ ··· + 34u + 28)
c
3
(u + 1)
· (u
12
u
11
+ u
10
+ 2u
9
+ 2u
8
+ 2u
7
+ u
6
+ 5u
5
+ 6u
4
+ 3u
3
+ 2u
2
+ u + 1)
· (u
14
3u
13
+ ··· 7u + 1)(u
18
+ 8u
17
+ ··· + 5u + 1)
c
4
(u 1)
· (u
12
u
11
+ u
10
+ 2u
9
+ 2u
8
+ 2u
7
+ u
6
+ 5u
5
+ 6u
4
+ 3u
3
+ 2u
2
+ u + 1)
· (u
14
3u
13
+ ··· 7u + 1)(u
18
8u
17
+ ··· 5u + 1)
c
5
(u 1)(u
7
2u
6
+ 9u
5
u
4
16u
3
+ 8u
2
+ 10u 5)
2
· ((u
9
+ u
8
+ ··· u
3
1)
2
)(u
12
+ 4u
11
+ ··· + 34u + 28)
c
6
(u 2)(u
12
u
11
+ ··· 112u + 16)(u
14
+ 4u
13
+ ··· 5685u + 12167)
· (u
18
+ 4u
17
+ ··· 64u + 16)
c
7
(u 1)(u
12
+ u
11
+ ··· + 3u + 1)(u
14
+ 6u
13
+ ··· + 168u + 361)
· (u
18
+ 5u
17
+ ··· + 6u + 1)
c
8
(u 1)(u
12
u
11
+ ··· u + 1)(u
14
u
13
+ ··· u + 1)
· (u
18
+ 2u
17
+ ··· u + 1)
c
9
u(u
7
+ 5u
6
+ 11u
5
+ 10u
4
u
3
11u
2
10u 4)
2
· (u
12
+ 8u
11
+ ··· + 32u + 8)
· (u
18
6u
16
+ 18u
14
32u
12
+ 36u
10
21u
8
u
6
+ 13u
4
9u
2
+ 2)
c
10
(u + 1)(u
12
u
11
+ ··· u + 1)(u
14
u
13
+ ··· u + 1)
· (u
18
2u
17
+ ··· + u + 1)
c
11
(u + 1)(u
12
+ u
11
+ ··· + 3u + 1)(u
14
+ 6u
13
+ ··· + 168u + 361)
· (u
18
5u
17
+ ··· 6u + 1)
c
12
(u + 2)(u
12
u
11
+ ··· 112u + 16)(u
14
+ 4u
13
+ ··· 5685u + 12167)
· (u
18
4u
17
+ ··· + 64u + 16)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
7
106y
6
+ ··· + 12700y 625)
2
· (y
9
3y
8
+ 59y
7
91y
6
+ 122y
5
102y
4
+ 67y
3
28y
2
+ 8y 1)
2
· (y
12
104y
11
+ ··· 27451376y + 614656)
c
2
, c
5
(y 1)(y
7
+ 14y
6
+ 45y
5
237y
4
+ 432y
3
394y
2
+ 180y 25)
2
· (y
9
+ 5y
8
+ 11y
7
+ 5y
6
6y
5
6y
4
+ 3y
3
+ 4y
2
1)
2
· (y
12
+ 36y
11
+ ··· + 10212y + 784)
c
3
, c
4
(y 1)(y
12
+ y
11
+ ··· + 3y + 1)(y
14
y
13
+ ··· 5y + 1)
· (y
18
+ 2y
17
+ ··· + 3y + 1)
c
6
, c
12
(y 4)(y
12
35y
11
+ ··· + 1280y + 256)
· (y
14
56y
13
+ ··· + 40244763y + 148035889)
· (y
18
22y
17
+ ··· 512y + 256)
c
7
, c
11
(y 1)(y
12
+ 11y
11
+ ··· + 175y + 1)
· (y
14
+ 14y
13
+ ··· + 169604y + 130321)(y
18
9y
17
+ ··· 4y + 1)
c
8
, c
10
(y 1)(y
12
25y
11
+ ··· + 21y + 1)(y
14
33y
13
+ ··· 19y + 1)
· (y
18
8y
17
+ ··· y + 1)
c
9
y(y
7
3y
6
+ 19y
5
32y
4
+ 41y
3
21y
2
+ 12y 16)
2
· (y
9
6y
8
+ 18y
7
32y
6
+ 36y
5
21y
4
y
3
+ 13y
2
9y + 2)
2
· (y
12
6y
11
+ ··· + 160y + 64)
24