12n
0484
(K12n
0484
)
A knot diagram
1
Linearized knot diagam
3 6 12 7 2 10 11 3 6 4 8 9
Solving Sequence
3,8 6,9
10 2 1 12 4 11 7 5
c
8
c
9
c
2
c
1
c
12
c
3
c
11
c
7
c
4
c
5
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.57724 × 10
98
u
40
+ 8.25670 × 10
97
u
39
+ ··· + 1.32591 × 10
100
b + 2.87003 × 10
100
,
1.90566 × 10
100
u
40
+ 7.67451 × 10
99
u
39
+ ··· + 1.84302 × 10
102
a 3.98069 × 10
102
,
2u
41
+ 59u
39
+ ··· 792u 139i
I
u
2
= h183u
10
+ 1583u
9
+ ··· + 3889b 2353, 2799u
10
+ 10760u
9
+ ··· + 3889a + 223,
u
11
+ 3u
10
+ 7u
9
+ 13u
8
+ 11u
7
+ 19u
6
+ 6u
5
+ 18u
4
+ 6u
2
2u + 1i
I
u
3
= hb + 1, a 1, u + 1i
I
u
4
= h−2u
3
2u
2
+ 2b 3u 3, 2u
3
+ a 3u 2, 2u
4
+ 3u
2
+ 2u + 1i
* 4 irreducible components of dim
C
= 0, with total 57 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.58 × 10
98
u
40
+ 8.26 × 10
97
u
39
+ · · · + 1.33 × 10
100
b + 2.87 ×
10
100
, 1.91 × 10
100
u
40
+ 7.67 × 10
99
u
39
+ · · · + 1.84 × 10
102
a 3.98 ×
10
102
, 2u
41
+ 59u
39
+ · · · 792u 139i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
6
=
0.0103399u
40
0.00416410u
39
+ ··· 1.23241u + 2.15988
0.0194375u
40
0.00622719u
39
+ ··· 11.2533u 2.16457
a
9
=
1
u
2
a
10
=
0.0209471u
40
+ 0.00485889u
39
+ ··· + 19.6703u + 5.53621
0.00627194u
40
+ 0.00359880u
39
+ ··· + 4.80640u 0.268658
a
2
=
0.0223730u
40
+ 0.00212611u
39
+ ··· + 18.5281u + 3.03016
0.00396870u
40
0.00262692u
39
+ ··· + 5.47182u + 1.30806
a
1
=
0.0223730u
40
+ 0.00212611u
39
+ ··· + 18.5281u + 3.03016
0.00307852u
40
0.00354962u
39
+ ··· + 6.18480u + 1.16029
a
12
=
0.0184043u
40
+ 0.00475303u
39
+ ··· + 13.0562u + 1.72210
0.000584007u
40
0.00418261u
39
+ ··· + 4.86872u + 0.977723
a
4
=
0.0191133u
40
+ 0.00882757u
39
+ ··· + 0.506034u 0.758338
0.00679681u
40
0.00471144u
39
+ ··· 3.46799u 0.799858
a
11
=
0.0189883u
40
+ 0.000570424u
39
+ ··· + 17.9250u + 2.69983
0.000584007u
40
0.00418261u
39
+ ··· + 4.86872u + 0.977723
a
7
=
0.000436229u
40
0.00330818u
39
+ ··· + 6.39844u + 2.38333
0.0110725u
40
0.0101050u
39
+ ··· 0.426320u + 1.29385
a
5
=
0.00336300u
40
+ 0.00725991u
39
+ ··· 12.4525u 5.75232
0.0229539u
40
+ 0.00793740u
39
+ ··· + 12.3051u + 2.17246
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0503579u
40
0.0337763u
39
+ ··· 41.9472u 6.50005
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
41
+ 62u
40
+ ··· + 20980954u + 3066001
c
2
, c
5
u
41
2u
40
+ ··· 994u + 1751
c
3
u
41
7u
40
+ ··· 32u + 2
c
4
u
41
+ 8u
40
+ ··· + 202u + 482
c
6
, c
9
u
41
4u
40
+ ··· 532u 484
c
7
, c
11
u
41
18u
39
+ ··· 147u 9
c
8
2(2u
41
+ 59u
39
+ ··· 792u + 139)
c
10
2(2u
41
+ 4u
40
+ ··· + 12u 1)
c
12
u
41
+ 50u
39
+ ··· + 3836088u + 323212
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
41
174y
40
+ ··· 176579932485582y 9400362132001
c
2
, c
5
y
41
62y
40
+ ··· + 20980954y 3066001
c
3
y
41
7y
40
+ ··· + 68y 4
c
4
y
41
+ 26y
40
+ ··· 2659360y 232324
c
6
, c
9
y
41
+ 50y
39
+ ··· 1201888y 234256
c
7
, c
11
y
41
36y
40
+ ··· + 6831y 81
c
8
4(4y
41
+ 236y
40
+ ··· 158364y 19321)
c
10
4(4y
41
+ 36y
40
+ ··· + 32y 1)
c
12
y
41
+ 100y
40
+ ··· + 6045979389712y 104465996944
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.659232 + 0.776800I
a = 0.577914 + 0.165637I
b = 0.024468 0.254653I
0.03579 2.12702I 2.30724 + 6.34493I
u = 0.659232 0.776800I
a = 0.577914 0.165637I
b = 0.024468 + 0.254653I
0.03579 + 2.12702I 2.30724 6.34493I
u = 0.393962 + 0.883594I
a = 0.541007 0.684990I
b = 1.124350 0.835430I
3.52455 0.44279I 1.64463 + 0.69069I
u = 0.393962 0.883594I
a = 0.541007 + 0.684990I
b = 1.124350 + 0.835430I
3.52455 + 0.44279I 1.64463 0.69069I
u = 0.254000 + 1.050130I
a = 1.31930 + 0.64361I
b = 0.809991 + 0.134439I
5.50368 6.18013I 6.07543 + 4.97240I
u = 0.254000 1.050130I
a = 1.31930 0.64361I
b = 0.809991 0.134439I
5.50368 + 6.18013I 6.07543 4.97240I
u = 0.343509 + 0.778339I
a = 1.50036 0.93858I
b = 0.597196 0.150858I
5.88104 0.44141I 6.92109 + 1.29385I
u = 0.343509 0.778339I
a = 1.50036 + 0.93858I
b = 0.597196 + 0.150858I
5.88104 + 0.44141I 6.92109 1.29385I
u = 0.432526 + 0.728373I
a = 0.847277 0.498164I
b = 0.263708 0.214377I
1.32932 0.71050I 7.34406 + 3.00260I
u = 0.432526 0.728373I
a = 0.847277 + 0.498164I
b = 0.263708 + 0.214377I
1.32932 + 0.71050I 7.34406 3.00260I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.786645
a = 1.52147
b = 0.499922
2.75131 5.92420
u = 0.572393 + 0.467249I
a = 0.784322 + 0.182815I
b = 0.577015 1.030610I
2.75470 0.87273I 3.72912 + 1.33601I
u = 0.572393 0.467249I
a = 0.784322 0.182815I
b = 0.577015 + 1.030610I
2.75470 + 0.87273I 3.72912 1.33601I
u = 0.416524 + 1.237420I
a = 0.408598 0.403112I
b = 0.286242 0.497821I
0.89253 2.94273I 0
u = 0.416524 1.237420I
a = 0.408598 + 0.403112I
b = 0.286242 + 0.497821I
0.89253 + 2.94273I 0
u = 0.534052 + 0.272508I
a = 1.35667 + 0.56380I
b = 0.977815 0.039583I
2.14913 0.81916I 6.43098 + 7.00832I
u = 0.534052 0.272508I
a = 1.35667 0.56380I
b = 0.977815 + 0.039583I
2.14913 + 0.81916I 6.43098 7.00832I
u = 0.171734 + 0.527077I
a = 0.88599 + 1.93343I
b = 0.381893 + 0.315896I
4.54292 + 2.96089I 5.84505 9.32253I
u = 0.171734 0.527077I
a = 0.88599 1.93343I
b = 0.381893 0.315896I
4.54292 2.96089I 5.84505 + 9.32253I
u = 1.04509 + 1.16303I
a = 0.575660 + 0.408131I
b = 0.336966 + 0.467880I
4.77375 + 7.71761I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.04509 1.16303I
a = 0.575660 0.408131I
b = 0.336966 0.467880I
4.77375 7.71761I 0
u = 0.356665 + 0.207131I
a = 1.12852 1.40117I
b = 0.933888 + 0.923317I
1.64023 6.11163I 0.87211 + 3.36095I
u = 0.356665 0.207131I
a = 1.12852 + 1.40117I
b = 0.933888 0.923317I
1.64023 + 6.11163I 0.87211 3.36095I
u = 0.241179 + 0.293581I
a = 1.84296 0.32729I
b = 0.998293 0.269510I
1.88617 0.91020I 6.79810 1.89134I
u = 0.241179 0.293581I
a = 1.84296 + 0.32729I
b = 0.998293 + 0.269510I
1.88617 + 0.91020I 6.79810 + 1.89134I
u = 0.18824 + 1.62909I
a = 0.155518 + 1.166050I
b = 0.00435 + 2.45451I
8.69666 + 3.51054I 0
u = 0.18824 1.62909I
a = 0.155518 1.166050I
b = 0.00435 2.45451I
8.69666 3.51054I 0
u = 0.30115 + 1.75023I
a = 0.062139 + 1.105720I
b = 0.52944 + 2.26135I
14.5520 3.8090I 0
u = 0.30115 1.75023I
a = 0.062139 1.105720I
b = 0.52944 2.26135I
14.5520 + 3.8090I 0
u = 0.24365 + 1.79461I
a = 0.005218 1.222810I
b = 0.03876 2.26816I
9.19332 6.12722I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.24365 1.79461I
a = 0.005218 + 1.222810I
b = 0.03876 + 2.26816I
9.19332 + 6.12722I 0
u = 0.16879 + 1.88364I
a = 0.044736 1.118060I
b = 0.35074 2.24460I
16.2241 3.4621I 0
u = 0.16879 1.88364I
a = 0.044736 + 1.118060I
b = 0.35074 + 2.24460I
16.2241 + 3.4621I 0
u = 0.32422 + 1.88669I
a = 0.053583 + 0.940689I
b = 0.11454 + 2.30108I
10.43640 + 3.80935I 0
u = 0.32422 1.88669I
a = 0.053583 0.940689I
b = 0.11454 2.30108I
10.43640 3.80935I 0
u = 0.32406 + 1.92161I
a = 0.072428 1.055780I
b = 0.14431 2.43176I
15.2118 + 13.8525I 0
u = 0.32406 1.92161I
a = 0.072428 + 1.055780I
b = 0.14431 + 2.43176I
15.2118 13.8525I 0
u = 0.17851 + 2.01135I
a = 0.115497 + 0.968666I
b = 0.18704 + 2.37176I
16.2944 5.5634I 0
u = 0.17851 2.01135I
a = 0.115497 0.968666I
b = 0.18704 2.37176I
16.2944 + 5.5634I 0
u = 0.99386 + 1.82091I
a = 0.349882 0.371487I
b = 0.70955 1.54548I
3.40570 + 0.32734I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.99386 1.82091I
a = 0.349882 + 0.371487I
b = 0.70955 + 1.54548I
3.40570 0.32734I 0
9
II. I
u
2
= h183u
10
+ 1583u
9
+ · · · + 3889b 2353, 2799u
10
+ 10760u
9
+ · · · +
3889a + 223, u
11
+ 3u
10
+ · · · 2u + 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
6
=
0.719722u
10
2.76678u
9
+ ··· 5.35485u 0.0573412
0.0470558u
10
0.407046u
9
+ ··· 0.206480u + 0.605040
a
9
=
1
u
2
a
10
=
0.582926u
10
+ 2.36488u
9
+ ··· + 6.37208u + 1.15505
0.136796u
10
0.401903u
9
+ ··· + 1.01723u 0.902289
a
2
=
0.622011u
10
2.33685u
9
+ ··· 4.65287u 2.26999
0.556956u
10
1.85060u
9
+ ··· 0.00128568u + 0.112111
a
1
=
0.622011u
10
2.33685u
9
+ ··· 4.65287u 2.26999
0.497814u
10
1.59038u
9
+ ··· + 0.318334u 0.358704
a
12
=
0.0650553u
10
0.486243u
9
+ ··· 4.65158u 2.38210
0.349447u
10
1.13757u
9
+ ··· + 0.515814u 0.178966
a
4
=
2.03626u
10
6.55953u
9
+ ··· 8.33942u + 3.59733
0.212651u
10
+ 0.735665u
9
+ ··· + 1.50141u + 0.276678
a
11
=
0.414502u
10
1.62381u
9
+ ··· 4.13577u 2.56107
0.349447u
10
1.13757u
9
+ ··· + 0.515814u 0.178966
a
7
=
0.0105426u
10
0.446387u
9
+ ··· + 1.58215u + 1.43610
0.266135u
10
+ 0.170995u
9
+ ··· + 1.93829u 0.618668
a
5
=
1.32142u
10
4.41425u
9
+ ··· 3.51967u + 3.51530
0.286192u
10
+ 0.459244u
9
+ ··· + 2.97711u 0.204423
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9564
3889
u
10
28859
3889
u
9
63016
3889
u
8
109107
3889
u
7
66615
3889
u
6
107750
3889
u
5
+
13439
3889
u
4
81002
3889
u
3
+
23490
3889
u
2
+
22170
3889
u +
11276
3889
10
(iv) u-Polynomials at the component
11
Crossings u-Polynomials at each crossing
c
1
u
11
8u
10
+ ··· 16u
2
1
c
2
u
11
+ 6u
10
+ 14u
9
+ 16u
8
+ 8u
7
u
6
3u
5
4u
4
7u
3
8u
2
4u 1
c
3
u
11
+ 3u
10
+ ··· + 5u + 1
c
4
u
11
+ 2u
10
+ ··· + 2u 1
c
5
u
11
6u
10
+ 14u
9
16u
8
+ 8u
7
+ u
6
3u
5
+ 4u
4
7u
3
+ 8u
2
4u + 1
c
6
u
11
3u
10
+ u
9
+ 7u
8
8u
7
5u
6
+ 12u
5
+ 2u
4
10u
3
+ 5u 1
c
7
u
11
3u
9
4u
8
+ 2u
7
+ 11u
6
+ 12u
5
5u
4
11u
3
10u
2
+ 7u 1
c
8
u
11
+ 3u
10
+ 7u
9
+ 13u
8
+ 11u
7
+ 19u
6
+ 6u
5
+ 18u
4
+ 6u
2
2u + 1
c
9
u
11
+ 3u
10
+ u
9
7u
8
8u
7
+ 5u
6
+ 12u
5
2u
4
10u
3
+ 5u + 1
c
10
u
11
+ 3u
10
+ 4u
9
+ 7u
8
+ 6u
7
+ 8u
6
+ u
5
+ 6u
4
+ 2u
3
+ 2u
2
+ 1
c
11
u
11
3u
9
+ 4u
8
+ 2u
7
11u
6
+ 12u
5
+ 5u
4
11u
3
+ 10u
2
+ 7u + 1
c
12
u
11
u
10
+ 11u
9
+ 26u
7
+ 29u
6
+ 35u
5
+ 42u
4
+ 37u
3
+ 14u
2
+ 4u 1
12
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
24y
10
+ ··· 32y 1
c
2
, c
5
y
11
8y
10
+ ··· 16y
2
1
c
3
y
11
+ y
10
+ ··· + 7y 1
c
4
y
11
+ 2y
10
+ ··· 2y 1
c
6
, c
9
y
11
7y
10
+ ··· + 25y 1
c
7
, c
11
y
11
6y
10
+ ··· + 29y 1
c
8
y
11
+ 5y
10
+ ··· 8y 1
c
10
y
11
y
10
+ ··· 4y 1
c
12
y
11
+ 21y
10
+ ··· + 44y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.480135 + 0.881380I
a = 0.153776 0.485356I
b = 1.41525 0.50524I
2.33883 + 7.37149I 3.11706 6.99331I
u = 0.480135 0.881380I
a = 0.153776 + 0.485356I
b = 1.41525 + 0.50524I
2.33883 7.37149I 3.11706 + 6.99331I
u = 0.264154 + 0.702912I
a = 1.116630 + 0.190741I
b = 1.138780 0.052004I
1.51158 1.27486I 4.85663 + 8.07328I
u = 0.264154 0.702912I
a = 1.116630 0.190741I
b = 1.138780 + 0.052004I
1.51158 + 1.27486I 4.85663 8.07328I
u = 0.484263 + 1.208900I
a = 0.410507 0.693136I
b = 0.113275 0.961423I
1.13538 3.62559I 3.13967 + 10.18749I
u = 0.484263 1.208900I
a = 0.410507 + 0.693136I
b = 0.113275 + 0.961423I
1.13538 + 3.62559I 3.13967 10.18749I
u = 0.241024 + 0.302729I
a = 0.11240 3.01728I
b = 0.661755 0.219226I
4.85889 + 2.59846I 5.06519 + 2.32360I
u = 0.241024 0.302729I
a = 0.11240 + 3.01728I
b = 0.661755 + 0.219226I
4.85889 2.59846I 5.06519 2.32360I
u = 0.34106 + 1.71658I
a = 0.189096 1.101710I
b = 0.12085 2.27707I
9.52186 4.70907I 4.95123 + 4.90980I
u = 0.34106 1.71658I
a = 0.189096 + 1.101710I
b = 0.12085 + 2.27707I
9.52186 + 4.70907I 4.95123 4.90980I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 2.26337
a = 0.406666
b = 2.30231
3.19814 36.0010
16
III. I
u
3
= hb + 1, a 1, u + 1i
(i) Arc colorings
a
3
=
0
1
a
8
=
1
0
a
6
=
1
1
a
9
=
1
1
a
10
=
1
1
a
2
=
1
0
a
1
=
1
1
a
12
=
1
1
a
4
=
1
2
a
11
=
0
1
a
7
=
1
1
a
5
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
7
u 1
c
3
, c
5
, c
8
c
10
, c
11
u + 1
c
6
, c
9
, c
12
u
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
7
c
8
, c
10
, c
11
y 1
c
6
, c
9
, c
12
y
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
3.28987 12.0000
20
IV. I
u
4
= h−2u
3
2u
2
+ 2b 3u 3, 2u
3
+ a 3u 2, 2u
4
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
6
=
2u
3
+ 3u + 2
u
3
+ u
2
+
3
2
u +
3
2
a
9
=
1
u
2
a
10
=
3u
3
+ u
2
7
2
u
3
2
u
3
1
2
u
3
2
a
2
=
2u
3
3u 2
u
3
u
2
1
2
u
3
2
a
1
=
2u
3
3u 2
u
3
u
2
3
2
u
3
2
a
12
=
u
3
+ u
2
5
2
u
1
2
1
a
4
=
2u
2
1
u
3
u
2
+
3
2
u +
1
2
a
11
=
u
3
+ u
2
5
2
u
3
2
1
a
7
=
u
3
+ u
2
5
2
u
1
2
1
a
5
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
(u 1)
4
c
3
, c
4
u
4
+ 2u
3
+ 5u
2
+ 4u + 2
c
5
, c
7
(u + 1)
4
c
6
, c
9
, c
12
(u
2
2)
2
c
8
2(2u
4
+ 3u
2
+ 2u + 1)
c
10
2(2u
4
+ 3u
2
2u + 1)
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
11
(y 1)
4
c
3
, c
4
y
4
+ 6y
3
+ 13y
2
+ 4y + 4
c
6
, c
9
, c
12
(y 2)
4
c
8
, c
10
4(4y
4
+ 12y
3
+ 13y
2
+ 2y + 1)
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.353553 + 1.257820I
a = 0.207107 + 0.736813I
b = 1.06066 + 1.25782I
1.64493 4.00000
u = 0.353553 1.257820I
a = 0.207107 0.736813I
b = 1.06066 1.25782I
1.64493 4.00000
u = 0.353553 + 0.409748I
a = 1.20711 + 1.39897I
b = 1.060660 + 0.409748I
1.64493 4.00000
u = 0.353553 0.409748I
a = 1.20711 1.39897I
b = 1.060660 0.409748I
1.64493 4.00000
24
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
11
8u
10
+ ··· 16u
2
1)
· (u
41
+ 62u
40
+ ··· + 20980954u + 3066001)
c
2
(u 1)
5
· (u
11
+ 6u
10
+ 14u
9
+ 16u
8
+ 8u
7
u
6
3u
5
4u
4
7u
3
8u
2
4u 1)
· (u
41
2u
40
+ ··· 994u + 1751)
c
3
(u + 1)(u
4
+ 2u
3
+ ··· + 4u + 2)(u
11
+ 3u
10
+ ··· + 5u + 1)
· (u
41
7u
40
+ ··· 32u + 2)
c
4
(u 1)(u
4
+ 2u
3
+ ··· + 4u + 2)(u
11
+ 2u
10
+ ··· + 2u 1)
· (u
41
+ 8u
40
+ ··· + 202u + 482)
c
5
(u + 1)
5
· (u
11
6u
10
+ 14u
9
16u
8
+ 8u
7
+ u
6
3u
5
+ 4u
4
7u
3
+ 8u
2
4u + 1)
· (u
41
2u
40
+ ··· 994u + 1751)
c
6
u(u
2
2)
2
· (u
11
3u
10
+ u
9
+ 7u
8
8u
7
5u
6
+ 12u
5
+ 2u
4
10u
3
+ 5u 1)
· (u
41
4u
40
+ ··· 532u 484)
c
7
(u 1)(u + 1)
4
· (u
11
3u
9
4u
8
+ 2u
7
+ 11u
6
+ 12u
5
5u
4
11u
3
10u
2
+ 7u 1)
· (u
41
18u
39
+ ··· 147u 9)
c
8
4(u + 1)(2u
4
+ 3u
2
+ 2u + 1)
· (u
11
+ 3u
10
+ 7u
9
+ 13u
8
+ 11u
7
+ 19u
6
+ 6u
5
+ 18u
4
+ 6u
2
2u + 1)
· (2u
41
+ 59u
39
+ ··· 792u + 139)
c
9
u(u
2
2)
2
· (u
11
+ 3u
10
+ u
9
7u
8
8u
7
+ 5u
6
+ 12u
5
2u
4
10u
3
+ 5u + 1)
· (u
41
4u
40
+ ··· 532u 484)
c
10
4(u + 1)(2u
4
+ 3u
2
2u + 1)
· (u
11
+ 3u
10
+ 4u
9
+ 7u
8
+ 6u
7
+ 8u
6
+ u
5
+ 6u
4
+ 2u
3
+ 2u
2
+ 1)
· (2u
41
+ 4u
40
+ ··· + 12u 1)
c
11
(u 1)
4
(u + 1)
· (u
11
3u
9
+ 4u
8
+ 2u
7
11u
6
+ 12u
5
+ 5u
4
11u
3
+ 10u
2
+ 7u + 1)
· (u
41
18u
39
+ ··· 147u 9)
c
12
u(u
2
2)
2
· (u
11
u
10
+ 11u
9
+ 26u
7
+ 29u
6
+ 35u
5
+ 42u
4
+ 37u
3
+ 14u
2
+ 4u 1)
· (u
41
+ 50u
39
+ ··· + 3836088u + 323212)
25
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
11
24y
10
+ ··· 32y 1)
· (y
41
174y
40
+ ··· 176579932485582y 9400362132001)
c
2
, c
5
((y 1)
5
)(y
11
8y
10
+ ··· 16y
2
1)
· (y
41
62y
40
+ ··· + 20980954y 3066001)
c
3
(y 1)(y
4
+ 6y
3
+ ··· + 4y + 4)(y
11
+ y
10
+ ··· + 7y 1)
· (y
41
7y
40
+ ··· + 68y 4)
c
4
(y 1)(y
4
+ 6y
3
+ ··· + 4y + 4)(y
11
+ 2y
10
+ ··· 2y 1)
· (y
41
+ 26y
40
+ ··· 2659360y 232324)
c
6
, c
9
y(y 2)
4
(y
11
7y
10
+ ··· + 25y 1)
· (y
41
+ 50y
39
+ ··· 1201888y 234256)
c
7
, c
11
((y 1)
5
)(y
11
6y
10
+ ··· + 29y 1)(y
41
36y
40
+ ··· + 6831y 81)
c
8
16(y 1)(4y
4
+ 12y
3
+ ··· + 2y + 1)(y
11
+ 5y
10
+ ··· 8y 1)
· (4y
41
+ 236y
40
+ ··· 158364y 19321)
c
10
16(y 1)(4y
4
+ 12y
3
+ ··· + 2y + 1)(y
11
y
10
+ ··· 4y 1)
· (4y
41
+ 36y
40
+ ··· + 32y 1)
c
12
y(y 2)
4
(y
11
+ 21y
10
+ ··· + 44y 1)
· (y
41
+ 100y
40
+ ··· + 6045979389712y 104465996944)
26