12n
0486
(K12n
0486
)
A knot diagram
1
Linearized knot diagam
3 6 9 11 2 11 12 1 3 1 4 8
Solving Sequence
2,3 1,10
11 9 4 5 6 7 8 12
c
1
c
10
c
9
c
3
c
4
c
5
c
6
c
8
c
12
c
2
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−29739878226279u
18
+ 120434793497659u
17
+ ··· + 532958163092980b 59832203175112,
9362493576748u
18
+ 40768461372003u
17
+ ··· + 532958163092980a 81214256524619,
u
19
5u
18
+ ··· + 12u 16i
I
u
2
= h−u
10
+ 4u
9
13u
8
+ 29u
7
51u
6
+ 74u
5
84u
4
+ 78u
3
54u
2
+ b + 26u 6,
3u
11
+ 12u
10
41u
9
+ 96u
8
179u
7
+ 277u
6
338u
5
+ 345u
4
274u
3
+ 163u
2
+ a 67u + 13,
u
12
4u
11
+ 14u
10
33u
9
+ 63u
8
99u
7
+ 124u
6
131u
5
+ 108u
4
70u
3
+ 32u
2
9u + 1i
I
u
3
= h2u
4
a
3
11u
4
a
2
+ ··· + 2a 17, 3u
4
a
2
+ 9u
4
a + ··· + 19a 25, u
5
u
4
+ 4u
3
3u
2
+ 3u 1i
* 3 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.97 × 10
13
u
18
+ 1.20 × 10
14
u
17
+ · · · + 5.33 × 10
14
b 5.98 ×
10
13
, 9.36 × 10
12
u
18
+ 4.08 × 10
13
u
17
+ · · · + 5.33 × 10
14
a 8.12 ×
10
13
, u
19
5u
18
+ · · · + 12u 16i
(i) Arc colorings
a
2
=
1
0
a
3
=
0
u
a
1
=
1
u
2
a
10
=
0.0175670u
18
0.0764947u
17
+ ··· + 4.43978u + 0.152384
0.0558015u
18
0.225974u
17
+ ··· + 0.918202u + 0.112264
a
11
=
0.00459523u
18
+ 0.0200061u
17
+ ··· + 3.37659u 0.141328
0.00804171u
18
0.0413187u
17
+ ··· + 1.10107u + 0.341233
a
9
=
0.0175670u
18
0.0764947u
17
+ ··· + 4.43978u + 0.152384
0.0221623u
18
0.0965008u
17
+ ··· + 1.06319u + 0.293712
a
4
=
0.0168589u
18
0.0901711u
17
+ ··· 2.65099u + 0.926294
0.0247508u
18
0.110253u
17
+ ··· 0.106730u + 0.303577
a
5
=
0.00896711u
18
0.0700889u
17
+ ··· 4.19525u + 1.54901
0.0662912u
18
0.290418u
17
+ ··· 1.31972u + 0.917186
a
6
=
0.0573241u
18
+ 0.220329u
17
+ ··· 2.87554u + 0.631826
0.0662912u
18
0.290418u
17
+ ··· 1.31972u + 0.917186
a
7
=
0.0618479u
18
+ 0.231160u
17
+ ··· 1.58362u + 0.249407
0.0729756u
18
0.306781u
17
+ ··· 0.884238u + 0.609177
a
8
=
0.0290440u
18
0.109467u
17
+ ··· + 3.23161u 0.322776
0.0303669u
18
+ 0.123682u
17
+ ··· + 1.17250u 0.0968854
a
12
=
0.0146657u
18
+ 0.0593565u
17
+ ··· + 1.94146u + 0.302400
0.0190316u
18
0.0849051u
17
+ ··· + 0.645986u + 0.311849
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
51647443263187
133239540773245
u
18
+
248046807631858
133239540773245
u
17
+ ···
45855187936601
7837620045485
u
9980369352966
26647908154649
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
+ 5u
18
+ ··· + 12u + 16
c
2
, c
5
u
19
+ 5u
18
+ ··· + 6u + 4
c
3
, c
4
, c
9
c
11
u
19
4u
17
+ ··· + u 1
c
6
, c
10
u
19
2u
18
+ ··· + 17u + 1
c
7
, c
8
, c
12
u
19
+ 9u
18
+ ··· + 96u + 32
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
+ 19y
18
+ ··· 2960y 256
c
2
, c
5
y
19
5y
18
+ ··· + 12y 16
c
3
, c
4
, c
9
c
11
y
19
8y
18
+ ··· + 3y 1
c
6
, c
10
y
19
+ 48y
18
+ ··· + 103y 1
c
7
, c
8
, c
12
y
19
19y
18
+ ··· + 1536y 1024
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.722196 + 0.657529I
a = 0.102214 0.799363I
b = 1.17960 0.94405I
0.82235 3.78512I 1.21860 + 9.00060I
u = 0.722196 0.657529I
a = 0.102214 + 0.799363I
b = 1.17960 + 0.94405I
0.82235 + 3.78512I 1.21860 9.00060I
u = 0.746643 + 0.730089I
a = 0.462703 1.042820I
b = 0.810875 1.125140I
7.60259 + 2.70738I 8.67277 2.95502I
u = 0.746643 0.730089I
a = 0.462703 + 1.042820I
b = 0.810875 + 1.125140I
7.60259 2.70738I 8.67277 + 2.95502I
u = 0.693820 + 0.494332I
a = 0.456624 + 0.344671I
b = 0.060397 0.381407I
1.48005 1.04351I 2.45665 + 0.14135I
u = 0.693820 0.494332I
a = 0.456624 0.344671I
b = 0.060397 + 0.381407I
1.48005 + 1.04351I 2.45665 0.14135I
u = 0.04060 + 1.46804I
a = 0.307074 + 0.628614I
b = 0.45900 + 3.71191I
6.95938 + 1.17078I 6.09940 4.23132I
u = 0.04060 1.46804I
a = 0.307074 0.628614I
b = 0.45900 3.71191I
6.95938 1.17078I 6.09940 + 4.23132I
u = 0.89865 + 1.22513I
a = 0.029251 + 0.797483I
b = 2.06454 + 1.29373I
5.18478 8.09242I 3.53036 + 7.90230I
u = 0.89865 1.22513I
a = 0.029251 0.797483I
b = 2.06454 1.29373I
5.18478 + 8.09242I 3.53036 7.90230I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.24994 + 1.58443I
a = 0.240884 0.605481I
b = 1.19770 3.77858I
6.58876 7.45308I 5.69466 + 9.39888I
u = 0.24994 1.58443I
a = 0.240884 + 0.605481I
b = 1.19770 + 3.77858I
6.58876 + 7.45308I 5.69466 9.39888I
u = 1.63895
a = 0.425083
b = 1.00806
1.14876 15.5300
u = 0.158529 + 0.292224I
a = 0.28403 + 1.88623I
b = 0.221614 + 0.650228I
1.090730 + 0.511038I 7.83780 2.24263I
u = 0.158529 0.292224I
a = 0.28403 1.88623I
b = 0.221614 0.650228I
1.090730 0.511038I 7.83780 + 2.24263I
u = 0.20388 + 1.65874I
a = 0.557769 0.904546I
b = 2.54312 4.44242I
15.7917 + 6.1961I 6.23161 1.95293I
u = 0.20388 1.65874I
a = 0.557769 + 0.904546I
b = 2.54312 + 4.44242I
15.7917 6.1961I 6.23161 + 1.95293I
u = 0.26558 + 1.78867I
a = 0.543309 + 0.825825I
b = 3.25252 + 4.45796I
15.2603 12.9682I 5.40622 + 6.37379I
u = 0.26558 1.78867I
a = 0.543309 0.825825I
b = 3.25252 4.45796I
15.2603 + 12.9682I 5.40622 6.37379I
6
II. I
u
2
=
h−u
10
+4u
9
+· · ·+b6, 3u
11
+12u
10
+· · ·+a+13, u
12
4u
11
+· · ·9u+1i
(i) Arc colorings
a
2
=
1
0
a
3
=
0
u
a
1
=
1
u
2
a
10
=
3u
11
12u
10
+ ··· + 67u 13
u
10
4u
9
+ ··· 26u + 6
a
11
=
4u
11
16u
10
+ ··· + 96u 19
u
10
4u
9
+ ··· 25u + 6
a
9
=
3u
11
12u
10
+ ··· + 67u 13
u
11
+ 4u
10
+ ··· 29u + 6
a
4
=
5u
11
+ 18u
10
+ ··· 78u + 13
2u
11
7u
10
+ ··· + 27u 5
a
5
=
2u
11
7u
10
+ ··· + 26u 5
u
11
+ 4u
10
+ ··· 19u + 3
a
6
=
3u
11
11u
10
+ ··· + 45u 8
u
11
+ 4u
10
+ ··· 19u + 3
a
7
=
5u
11
+ 18u
10
+ ··· 94u + 21
3u
11
11u
10
+ ··· + 48u 10
a
8
=
5u
11
19u
10
+ ··· + 99u 19
u
11
+ 5u
10
+ ··· 36u + 7
a
12
=
4u
11
15u
10
+ ··· + 88u 20
2u
11
+ 7u
10
+ ··· 34u + 8
(ii) Obstruction class = 1
(iii) Cusp Shapes = 13u
11
+ 47u
10
166u
9
+ 372u
8
699u
7
+ 1066u
6
1282u
5
+
1319u
4
1003u
3
+ 610u
2
225u + 43
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
4u
11
+ ··· 9u + 1
c
2
u
12
2u
10
u
9
+ 5u
8
+ u
7
6u
6
3u
5
+ 6u
4
+ 2u
3
4u
2
u + 1
c
3
, c
11
u
12
+ 4u
10
u
9
+ 3u
8
3u
7
2u
6
u
5
+ u
4
+ u
3
+ 2u
2
u 1
c
4
, c
9
u
12
+ 4u
10
+ u
9
+ 3u
8
+ 3u
7
2u
6
+ u
5
+ u
4
u
3
+ 2u
2
+ u 1
c
5
u
12
2u
10
+ u
9
+ 5u
8
u
7
6u
6
+ 3u
5
+ 6u
4
2u
3
4u
2
+ u + 1
c
6
, c
10
u
12
+ 4u
11
+ ··· + 3u + 3
c
7
, c
8
u
12
+ 4u
11
+ ··· 3u + 1
c
12
u
12
4u
11
+ ··· + 3u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
+ 12y
11
+ ··· 17y + 1
c
2
, c
5
y
12
4y
11
+ ··· 9y + 1
c
3
, c
4
, c
9
c
11
y
12
+ 8y
11
+ ··· 5y + 1
c
6
, c
10
y
12
6y
10
+ ··· 57y + 9
c
7
, c
8
, c
12
y
12
16y
11
+ ··· + 15y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.357661 + 0.853277I
a = 1.006500 0.552011I
b = 1.98533 + 0.33152I
3.18626 2.11191I 5.03654 + 3.50140I
u = 0.357661 0.853277I
a = 1.006500 + 0.552011I
b = 1.98533 0.33152I
3.18626 + 2.11191I 5.03654 3.50140I
u = 1.33890
a = 0.378165
b = 0.0994654
0.752387 5.56660
u = 0.118312 + 1.364600I
a = 0.194015 + 0.582314I
b = 0.39097 + 2.54203I
7.47820 0.09552I 9.05586 + 0.80110I
u = 0.118312 1.364600I
a = 0.194015 0.582314I
b = 0.39097 2.54203I
7.47820 + 0.09552I 9.05586 0.80110I
u = 0.482446 + 0.323250I
a = 1.43003 + 1.83498I
b = 0.028669 1.102010I
4.70811 0.91881I 1.33372 + 7.78233I
u = 0.482446 0.323250I
a = 1.43003 1.83498I
b = 0.028669 + 1.102010I
4.70811 + 0.91881I 1.33372 7.78233I
u = 0.13668 + 1.47421I
a = 1.038380 + 0.082127I
b = 3.16343 0.41871I
1.25726 3.06264I 4.57080 + 2.71896I
u = 0.13668 1.47421I
a = 1.038380 0.082127I
b = 3.16343 + 0.41871I
1.25726 + 3.06264I 4.57080 2.71896I
u = 0.35564 + 1.60476I
a = 0.157731 0.476658I
b = 0.53686 2.57354I
6.83685 6.10895I 7.44385 + 4.40804I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.35564 1.60476I
a = 0.157731 + 0.476658I
b = 0.53686 + 2.57354I
6.83685 + 6.10895I 7.44385 4.40804I
u = 0.232856
a = 3.59850
b = 2.09237
3.63095 14.1660
11
III. I
u
3
= h2u
4
a
3
11u
4
a
2
+ · · · + 2a 17, 3u
4
a
2
+ 9u
4
a + · · · + 19a
25, u
5
u
4
+ 4u
3
3u
2
+ 3u 1i
(i) Arc colorings
a
2
=
1
0
a
3
=
0
u
a
1
=
1
u
2
a
10
=
a
0.0952381a
3
u
4
+ 0.523810a
2
u
4
+ ··· 0.0952381a + 0.809524
a
11
=
0.0952381a
3
u
4
0.523810a
2
u
4
+ ··· + 1.09524a 0.809524
0.619048a
3
u
4
0.0952381a
2
u
4
+ ··· + 0.380952a + 1.76190
a
9
=
a
0.0952381a
3
u
4
+ 0.523810a
2
u
4
+ ··· 0.0952381a + 0.809524
a
4
=
a
2
u
0.476190a
3
u
4
+ 0.380952a
2
u
4
+ ··· 0.523810a 1.04762
a
5
=
u
3
+ 2u
u
4
+ u
3
3u
2
+ 2u 1
a
6
=
u
4
+ 3u
2
+ 1
u
4
+ u
3
3u
2
+ 2u 1
a
7
=
0.619048a
3
u
4
+ 0.0952381a
2
u
4
+ ··· + 0.619048a 0.761905
a
2
u
2
+ 2u
2
+ 2
a
8
=
0.0952381a
3
u
4
0.523810a
2
u
4
+ ··· + 1.09524a 0.809524
0.619048a
3
u
4
0.0952381a
2
u
4
+ ··· + 0.380952a + 1.76190
a
12
=
5
7
u
4
a
3
3
7
u
4
a
2
+ ··· +
5
7
a
4
7
0.523810a
3
u
4
0.619048a
2
u
4
+ ··· + 0.476190a + 2.95238
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
3
16u
2
+ 12u 6
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
4
c
2
, c
5
(u
5
u
4
+ u
2
+ u 1)
4
c
3
, c
4
, c
9
c
11
u
20
u
19
+ ··· 72u 29
c
6
, c
10
u
20
3u
19
+ ··· 2460u + 649
c
7
, c
8
, c
12
(u
2
u 1)
10
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
4
c
2
, c
5
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
4
c
3
, c
4
, c
9
c
11
y
20
+ 3y
19
+ ··· 3444y + 841
c
6
, c
10
y
20
+ 15y
19
+ ··· 2679396y + 421201
c
7
, c
8
, c
12
(y
2
3y + 1)
10
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.233677 + 0.885557I
a = 0.690882 0.475916I
b = 2.02011 0.12259I
2.12804 2.21397I 4.88568 + 4.22289I
u = 0.233677 + 0.885557I
a = 0.628935 1.009350I
b = 0.135192 0.952263I
5.76765 2.21397I 4.88568 + 4.22289I
u = 0.233677 + 0.885557I
a = 1.308920 + 0.475916I
b = 1.68589 0.38898I
2.12804 2.21397I 4.88568 + 4.22289I
u = 0.233677 + 0.885557I
a = 0.989099 + 1.009350I
b = 1.01021 + 2.29157I
5.76765 2.21397I 4.88568 + 4.22289I
u = 0.233677 0.885557I
a = 0.690882 + 0.475916I
b = 2.02011 + 0.12259I
2.12804 + 2.21397I 4.88568 4.22289I
u = 0.233677 0.885557I
a = 0.628935 + 1.009350I
b = 0.135192 + 0.952263I
5.76765 + 2.21397I 4.88568 4.22289I
u = 0.233677 0.885557I
a = 1.308920 0.475916I
b = 1.68589 + 0.38898I
2.12804 + 2.21397I 4.88568 4.22289I
u = 0.233677 0.885557I
a = 0.989099 1.009350I
b = 1.01021 2.29157I
5.76765 + 2.21397I 4.88568 4.22289I
u = 0.416284
a = 0.985681
b = 1.27641
3.06566 3.60880
u = 0.416284
a = 2.60371
b = 2.52044
3.06566 3.60880
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.416284
a = 0.30902 + 3.20024I
b = 0.725134 1.109150I
4.83002 3.60880
u = 0.416284
a = 0.30902 3.20024I
b = 0.725134 + 1.109150I
4.83002 3.60880
u = 0.05818 + 1.69128I
a = 0.799116 0.748924I
b = 3.24296 3.96488I
14.9061 3.3317I 5.91874 + 2.36228I
u = 0.05818 + 1.69128I
a = 0.818918 + 0.748924I
b = 2.76655 + 4.60174I
14.9061 3.3317I 5.91874 + 2.36228I
u = 0.05818 + 1.69128I
a = 0.342215 + 0.584767I
b = 1.56758 + 3.20671I
7.01045 3.33174I 5.91874 + 2.36228I
u = 0.05818 + 1.69128I
a = 0.275819 0.584767I
b = 0.72785 3.44997I
7.01045 3.33174I 5.91874 + 2.36228I
u = 0.05818 1.69128I
a = 0.799116 + 0.748924I
b = 3.24296 + 3.96488I
14.9061 + 3.3317I 5.91874 2.36228I
u = 0.05818 1.69128I
a = 0.818918 0.748924I
b = 2.76655 4.60174I
14.9061 + 3.3317I 5.91874 2.36228I
u = 0.05818 1.69128I
a = 0.342215 0.584767I
b = 1.56758 3.20671I
7.01045 + 3.33174I 5.91874 2.36228I
u = 0.05818 1.69128I
a = 0.275819 + 0.584767I
b = 0.72785 + 3.44997I
7.01045 + 3.33174I 5.91874 2.36228I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
4
)(u
12
4u
11
+ ··· 9u + 1)
· (u
19
+ 5u
18
+ ··· + 12u + 16)
c
2
(u
5
u
4
+ u
2
+ u 1)
4
· (u
12
2u
10
u
9
+ 5u
8
+ u
7
6u
6
3u
5
+ 6u
4
+ 2u
3
4u
2
u + 1)
· (u
19
+ 5u
18
+ ··· + 6u + 4)
c
3
, c
11
(u
12
+ 4u
10
u
9
+ 3u
8
3u
7
2u
6
u
5
+ u
4
+ u
3
+ 2u
2
u 1)
· (u
19
4u
17
+ ··· + u 1)(u
20
u
19
+ ··· 72u 29)
c
4
, c
9
(u
12
+ 4u
10
+ u
9
+ 3u
8
+ 3u
7
2u
6
+ u
5
+ u
4
u
3
+ 2u
2
+ u 1)
· (u
19
4u
17
+ ··· + u 1)(u
20
u
19
+ ··· 72u 29)
c
5
(u
5
u
4
+ u
2
+ u 1)
4
· (u
12
2u
10
+ u
9
+ 5u
8
u
7
6u
6
+ 3u
5
+ 6u
4
2u
3
4u
2
+ u + 1)
· (u
19
+ 5u
18
+ ··· + 6u + 4)
c
6
, c
10
(u
12
+ 4u
11
+ ··· + 3u + 3)(u
19
2u
18
+ ··· + 17u + 1)
· (u
20
3u
19
+ ··· 2460u + 649)
c
7
, c
8
((u
2
u 1)
10
)(u
12
+ 4u
11
+ ··· 3u + 1)(u
19
+ 9u
18
+ ··· + 96u + 32)
c
12
((u
2
u 1)
10
)(u
12
4u
11
+ ··· + 3u + 1)(u
19
+ 9u
18
+ ··· + 96u + 32)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
4
)(y
12
+ 12y
11
+ ··· 17y + 1)
· (y
19
+ 19y
18
+ ··· 2960y 256)
c
2
, c
5
((y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
4
)(y
12
4y
11
+ ··· 9y + 1)
· (y
19
5y
18
+ ··· + 12y 16)
c
3
, c
4
, c
9
c
11
(y
12
+ 8y
11
+ ··· 5y + 1)(y
19
8y
18
+ ··· + 3y 1)
· (y
20
+ 3y
19
+ ··· 3444y + 841)
c
6
, c
10
(y
12
6y
10
+ ··· 57y + 9)(y
19
+ 48y
18
+ ··· + 103y 1)
· (y
20
+ 15y
19
+ ··· 2679396y + 421201)
c
7
, c
8
, c
12
((y
2
3y + 1)
10
)(y
12
16y
11
+ ··· + 15y + 1)
· (y
19
19y
18
+ ··· + 1536y 1024)
18