12n
0489
(K12n
0489
)
A knot diagram
1
Linearized knot diagam
3 6 10 12 2 11 12 1 4 1 5 8
Solving Sequence
2,5
6
3,11
7 12 8 1 4 10 9
c
5
c
2
c
6
c
11
c
7
c
1
c
4
c
10
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−17u
26
87u
25
+ ··· + 4b 12, 47u
26
+ 291u
25
+ ··· + 8a + 260, u
27
+ 7u
26
+ ··· + 44u + 8i
I
u
2
= h58848u
7
a
5
+ 58468u
7
a
4
+ ··· + 79844a + 35715, 2u
7
a
5
+ 15u
7
a
4
+ ··· + 216a + 224,
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
I
u
3
= hu
15
2u
13
+ u
12
+ 6u
11
u
10
8u
9
+ 4u
8
+ 11u
7
3u
6
8u
5
+ 4u
4
+ 6u
3
2u
2
+ b u,
2u
15
+ 2u
14
+ ··· + a 4,
u
16
3u
14
+ u
13
+ 8u
12
2u
11
13u
10
+ 5u
9
+ 17u
8
6u
7
15u
6
+ 6u
5
+ 10u
4
4u
3
4u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 91 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−17u
26
87u
25
+ · · · + 4b 12, 47u
26
+ 291u
25
+ · · · + 8a +
260, u
27
+ 7u
26
+ · · · + 44u + 8i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
5.87500u
26
36.3750u
25
+ ··· 165.250u 32.5000
17
4
u
26
+
87
4
u
25
+ ··· + 34u + 3
a
7
=
53
8
u
26
+
301
8
u
25
+ ··· +
475
4
u + 21
3
4
u
26
11
4
u
25
+ ··· +
47
2
u + 7
a
12
=
10.1250u
26
58.1250u
25
+ ··· 199.250u 35.5000
17
4
u
26
+
87
4
u
25
+ ··· + 34u + 3
a
8
=
75
8
u
26
461
8
u
25
+ ···
535
2
u 52
15
2
u
26
+ 40u
25
+ ··· +
165
2
u + 11
a
1
=
u
3
u
5
u
3
+ u
a
4
=
19
8
u
26
+
107
8
u
25
+ ··· +
245
4
u + 13
1
4
u
26
+
13
4
u
25
+ ··· +
65
2
u + 7
a
10
=
13.1250u
26
+ 78.6250u
25
+ ··· + 338.750u + 63.5000
27
4
u
26
121
4
u
25
+ ··· + 68u + 25
a
9
=
115
8
u
26
+
749
8
u
25
+ ··· +
1047
2
u + 108
17u
26
185
2
u
25
+ ···
455
2
u 35
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 23u
26
150u
25
376u
24
261u
23
+ 729u
22
+ 1734u
21
+ 538u
20
2534u
19
2547u
18
+
3058u
17
+ 6966u
16
+ 232u
15
11605u
14
12159u
13
+ 2392u
12
+ 15331u
11
+ 11486u
10
2810u
9
10111u
8
4910u
7
+ 3090u
6
+ 4696u
5
+ 1095u
4
1912u
3
2073u
2
972u 214
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
27
+ 9u
26
+ ··· + 144u + 64
c
2
, c
5
u
27
+ 7u
26
+ ··· + 44u + 8
c
3
, c
4
, c
9
c
11
u
27
+ 4u
25
+ ··· + 3u + 1
c
6
, c
10
u
27
2u
26
+ ··· + 10u + 1
c
7
, c
8
, c
12
u
27
+ 15u
26
+ ··· + 2816u + 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
27
+ 19y
26
+ ··· 11008y 4096
c
2
, c
5
y
27
9y
26
+ ··· + 144y 64
c
3
, c
4
, c
9
c
11
y
27
+ 8y
26
+ ··· 5y 1
c
6
, c
10
y
27
18y
26
+ ··· + 116y 1
c
7
, c
8
, c
12
y
27
15y
26
+ ··· + 524288y 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.685572 + 0.852680I
a = 0.294505 + 0.463699I
b = 0.669615 0.882383I
1.08424 3.42475I 3.67335 + 3.91434I
u = 0.685572 0.852680I
a = 0.294505 0.463699I
b = 0.669615 + 0.882383I
1.08424 + 3.42475I 3.67335 3.91434I
u = 0.627323 + 0.898264I
a = 0.159682 0.346047I
b = 0.73050 + 1.24655I
3.67005 10.56210I 0.83521 + 5.59011I
u = 0.627323 0.898264I
a = 0.159682 + 0.346047I
b = 0.73050 1.24655I
3.67005 + 10.56210I 0.83521 5.59011I
u = 0.237310 + 0.870614I
a = 0.179034 + 0.342963I
b = 0.625069 0.943841I
1.43533 + 6.41550I 1.16841 7.33424I
u = 0.237310 0.870614I
a = 0.179034 0.342963I
b = 0.625069 + 0.943841I
1.43533 6.41550I 1.16841 + 7.33424I
u = 1.098600 + 0.138393I
a = 1.98959 + 0.36891I
b = 0.870859 + 0.704449I
5.71910 3.18007I 10.81910 + 3.99905I
u = 1.098600 0.138393I
a = 1.98959 0.36891I
b = 0.870859 0.704449I
5.71910 + 3.18007I 10.81910 3.99905I
u = 0.693539 + 0.484425I
a = 0.697012 + 0.794438I
b = 0.093480 0.606899I
1.37365 1.86319I 0.94665 + 4.18320I
u = 0.693539 0.484425I
a = 0.697012 0.794438I
b = 0.093480 + 0.606899I
1.37365 + 1.86319I 0.94665 4.18320I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.024830 + 0.541180I
a = 0.720475 + 1.113140I
b = 0.938303 + 0.355958I
3.31479 + 3.49091I 9.36494 3.65965I
u = 1.024830 0.541180I
a = 0.720475 1.113140I
b = 0.938303 0.355958I
3.31479 3.49091I 9.36494 + 3.65965I
u = 1.179100 + 0.151427I
a = 1.68814 0.80165I
b = 0.832047 1.051930I
3.55373 9.54122I 7.19005 + 7.47977I
u = 1.179100 0.151427I
a = 1.68814 + 0.80165I
b = 0.832047 + 1.051930I
3.55373 + 9.54122I 7.19005 7.47977I
u = 0.777167
a = 0.501723
b = 0.408121
1.00831 10.7050
u = 1.143530 + 0.466150I
a = 0.139215 0.916449I
b = 0.656924 0.691492I
1.52298 1.56653I 6.91776 + 4.99160I
u = 1.143530 0.466150I
a = 0.139215 + 0.916449I
b = 0.656924 + 0.691492I
1.52298 + 1.56653I 6.91776 4.99160I
u = 0.916430 + 0.866188I
a = 0.479520 1.066450I
b = 0.009586 + 0.768274I
9.08124 + 3.20872I 9.49976 1.13015I
u = 0.916430 0.866188I
a = 0.479520 + 1.066450I
b = 0.009586 0.768274I
9.08124 3.20872I 9.49976 + 1.13015I
u = 1.036230 + 0.737283I
a = 1.67104 + 0.91689I
b = 0.731439 0.942909I
0.00440 + 9.36453I 4.76974 8.14508I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.036230 0.737283I
a = 1.67104 0.91689I
b = 0.731439 + 0.942909I
0.00440 9.36453I 4.76974 + 8.14508I
u = 1.072090 + 0.729726I
a = 1.92994 0.65272I
b = 0.79138 + 1.29074I
2.2965 + 16.5821I 2.72249 9.74695I
u = 1.072090 0.729726I
a = 1.92994 + 0.65272I
b = 0.79138 1.29074I
2.2965 16.5821I 2.72249 + 9.74695I
u = 0.931659 + 0.932655I
a = 0.416195 0.265879I
b = 0.053666 + 0.840001I
9.39926 3.40339I 4.88512 + 3.93618I
u = 0.931659 0.932655I
a = 0.416195 + 0.265879I
b = 0.053666 0.840001I
9.39926 + 3.40339I 4.88512 3.93618I
u = 0.271005 + 0.622370I
a = 0.406824 0.384016I
b = 0.692744 + 0.470458I
1.39292 + 0.87413I 6.12461 2.84895I
u = 0.271005 0.622370I
a = 0.406824 + 0.384016I
b = 0.692744 0.470458I
1.39292 0.87413I 6.12461 + 2.84895I
7
II. I
u
2
= h58848u
7
a
5
+ 58468u
7
a
4
+ · · · + 79844a + 35715, 2u
7
a
5
+ 15u
7
a
4
+
· · · + 216a + 224, u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
a
4.54670a
5
u
7
4.51735a
4
u
7
+ ··· 6.16889a 2.75941
a
7
=
2.18697a
5
u
7
+ 4.03230a
4
u
7
+ ··· + 11.1542a + 13.0883
1.02326a
2
u
7
0.511628u
7
+ ··· + 0.139535a
2
1.06977
a
12
=
4.54670a
5
u
7
+ 4.51735a
4
u
7
+ ··· + 7.16889a + 2.75941
4.54670a
5
u
7
4.51735a
4
u
7
+ ··· 6.16889a 2.75941
a
8
=
1.36213a
4
u
7
+ 1.69103a
3
u
7
+ ··· + 4.92691a + 9.32890
1.10871a
4
u
7
0.372093a
3
u
7
+ ··· + 1.68771a + 2.68964
a
1
=
u
3
u
5
u
3
+ u
a
4
=
1.81264a
5
u
7
4.09101a
4
u
7
+ ··· 8.42162a 8.29267
0.374334a
5
u
7
+ 0.0587190a
4
u
7
+ ··· 2.73260a 2.79564
a
10
=
0.0878467a
5
u
7
0.620335a
4
u
7
+ ··· 0.431353a 0.271035
3.49648a
5
u
7
2.67535a
4
u
7
+ ··· 4.68160a 2.52963
a
9
=
2.58379a
4
u
7
2.84385a
3
u
7
+ ··· 5.32558a 9.18798
1.22166a
4
u
7
+ 2.10631a
3
u
7
+ ··· + 0.538206a 0.140926
(ii) Obstruction class = 1
(iii) Cusp Shapes =
113224
12943
u
7
a
4
1880
301
u
7
a
3
+ ···
2960
301
a
312682
12943
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
6
c
2
, c
5
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
6
c
3
, c
4
, c
9
c
11
u
48
+ u
47
+ ··· 164u + 229
c
6
, c
10
u
48
9u
47
+ ··· + 666u + 661
c
7
, c
8
, c
12
(u
3
u
2
+ 1)
16
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
6
c
2
, c
5
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
6
c
3
, c
4
, c
9
c
11
y
48
+ 27y
47
+ ··· + 832312y + 52441
c
6
, c
10
y
48
+ 15y
47
+ ··· 734396y + 436921
c
7
, c
8
, c
12
(y
3
y
2
+ 2y 1)
16
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 0.434653 0.839070I
b = 1.149610 + 0.301433I
0.87002 + 3.95936I 2.92498 3.49024I
u = 0.570868 + 0.730671I
a = 0.535134 + 0.647465I
b = 0.636009 0.805422I
0.87002 1.69689I 2.92498 + 2.46866I
u = 0.570868 + 0.730671I
a = 0.120842 + 0.801190I
b = 0.538735 0.794929I
0.87002 1.69689I 2.92498 + 2.46866I
u = 0.570868 + 0.730671I
a = 0.277424 0.743391I
b = 0.544694 + 1.183380I
0.87002 + 3.95936I 2.92498 3.49024I
u = 0.570868 + 0.730671I
a = 0.579346 + 0.223976I
b = 0.004274 + 0.929917I
5.00760 + 1.13123I 3.60429 0.51079I
u = 0.570868 + 0.730671I
a = 0.081353 0.401232I
b = 0.676753 1.082970I
5.00760 + 1.13123I 3.60429 0.51079I
u = 0.570868 0.730671I
a = 0.434653 + 0.839070I
b = 1.149610 0.301433I
0.87002 3.95936I 2.92498 + 3.49024I
u = 0.570868 0.730671I
a = 0.535134 0.647465I
b = 0.636009 + 0.805422I
0.87002 + 1.69689I 2.92498 2.46866I
u = 0.570868 0.730671I
a = 0.120842 0.801190I
b = 0.538735 + 0.794929I
0.87002 + 1.69689I 2.92498 2.46866I
u = 0.570868 0.730671I
a = 0.277424 + 0.743391I
b = 0.544694 1.183380I
0.87002 3.95936I 2.92498 + 3.49024I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 0.730671I
a = 0.579346 0.223976I
b = 0.004274 0.929917I
5.00760 1.13123I 3.60429 + 0.51079I
u = 0.570868 0.730671I
a = 0.081353 + 0.401232I
b = 0.676753 + 1.082970I
5.00760 1.13123I 3.60429 + 0.51079I
u = 0.855237 + 0.665892I
a = 0.842747 0.830266I
b = 0.090666 + 0.885994I
4.07009 + 5.40662I 0.21317 6.54740I
u = 0.855237 + 0.665892I
a = 0.494638 0.291001I
b = 0.786177 1.031780I
4.07009 0.24963I 0.213168 0.588510I
u = 0.855237 + 0.665892I
a = 1.57064 + 0.15400I
b = 0.08193 1.92144I
8.20767 + 2.57849I 6.74243 3.56796I
u = 0.855237 + 0.665892I
a = 1.43317 1.40899I
b = 0.02034 + 1.49548I
8.20767 + 2.57849I 6.74243 3.56796I
u = 0.855237 + 0.665892I
a = 2.08795 + 0.67193I
b = 0.909681 0.905479I
4.07009 + 5.40662I 0.21317 6.54740I
u = 0.855237 + 0.665892I
a = 2.33228 0.49803I
b = 0.167674 + 0.729716I
4.07009 0.24963I 0.213168 0.588510I
u = 0.855237 0.665892I
a = 0.842747 + 0.830266I
b = 0.090666 0.885994I
4.07009 5.40662I 0.21317 + 6.54740I
u = 0.855237 0.665892I
a = 0.494638 + 0.291001I
b = 0.786177 + 1.031780I
4.07009 + 0.24963I 0.213168 + 0.588510I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.855237 0.665892I
a = 1.57064 0.15400I
b = 0.08193 + 1.92144I
8.20767 2.57849I 6.74243 + 3.56796I
u = 0.855237 0.665892I
a = 1.43317 + 1.40899I
b = 0.02034 1.49548I
8.20767 2.57849I 6.74243 + 3.56796I
u = 0.855237 0.665892I
a = 2.08795 0.67193I
b = 0.909681 + 0.905479I
4.07009 5.40662I 0.21317 + 6.54740I
u = 0.855237 0.665892I
a = 2.33228 + 0.49803I
b = 0.167674 0.729716I
4.07009 + 0.24963I 0.213168 + 0.588510I
u = 1.09818
a = 0.352337 + 1.063250I
b = 0.390626 + 0.540817I
0.454474 2.84453 + 0.I
u = 1.09818
a = 0.352337 1.063250I
b = 0.390626 0.540817I
0.454474 2.84453 + 0.I
u = 1.09818
a = 1.87930 + 0.47836I
b = 1.035690 + 0.728269I
4.59206 2.82812I 9.37379 + 2.97945I
u = 1.09818
a = 1.87930 0.47836I
b = 1.035690 0.728269I
4.59206 + 2.82812I 9.37379 2.97945I
u = 1.09818
a = 1.61333 + 1.13807I
b = 0.740815 + 1.063820I
4.59206 2.82812I 9.37379 + 2.97945I
u = 1.09818
a = 1.61333 1.13807I
b = 0.740815 1.063820I
4.59206 + 2.82812I 9.37379 2.97945I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.031810 + 0.655470I
a = 0.012794 0.843235I
b = 0.798211 0.789739I
0.46900 3.61542I 4.93820 + 2.31472I
u = 1.031810 + 0.655470I
a = 0.655325 + 1.142960I
b = 1.323150 + 0.413843I
0.46900 9.27166I 4.93820 + 8.27362I
u = 1.031810 + 0.655470I
a = 1.57349 + 0.39663I
b = 0.140651 + 0.792574I
3.66858 6.44354I 1.59106 + 5.29417I
u = 1.031810 + 0.655470I
a = 1.65798 + 0.26104I
b = 0.901119 0.974313I
3.66858 6.44354I 1.59106 + 5.29417I
u = 1.031810 + 0.655470I
a = 1.55331 + 0.89766I
b = 0.668354 1.023270I
0.46900 3.61542I 4.93820 + 2.31472I
u = 1.031810 + 0.655470I
a = 2.13206 0.70093I
b = 0.619236 + 1.261980I
0.46900 9.27166I 4.93820 + 8.27362I
u = 1.031810 0.655470I
a = 0.012794 + 0.843235I
b = 0.798211 + 0.789739I
0.46900 + 3.61542I 4.93820 2.31472I
u = 1.031810 0.655470I
a = 0.655325 1.142960I
b = 1.323150 0.413843I
0.46900 + 9.27166I 4.93820 8.27362I
u = 1.031810 0.655470I
a = 1.57349 0.39663I
b = 0.140651 0.792574I
3.66858 + 6.44354I 1.59106 5.29417I
u = 1.031810 0.655470I
a = 1.65798 0.26104I
b = 0.901119 + 0.974313I
3.66858 + 6.44354I 1.59106 5.29417I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.031810 0.655470I
a = 1.55331 0.89766I
b = 0.668354 + 1.023270I
0.46900 + 3.61542I 4.93820 2.31472I
u = 1.031810 0.655470I
a = 2.13206 + 0.70093I
b = 0.619236 1.261980I
0.46900 + 9.27166I 4.93820 8.27362I
u = 0.603304
a = 1.01626 + 1.44968I
b = 0.374836 0.929425I
1.06564 2.82812I 7.40422 + 2.97945I
u = 0.603304
a = 1.01626 1.44968I
b = 0.374836 + 0.929425I
1.06564 + 2.82812I 7.40422 2.97945I
u = 0.603304
a = 1.03439 + 2.13156I
b = 0.13210 + 1.44648I
5.20322 6 0.874953 + 0.10I
u = 0.603304
a = 1.03439 2.13156I
b = 0.13210 1.44648I
5.20322 6 0.874953 + 0.10I
u = 0.603304
a = 0.23542 + 3.29584I
b = 0.474556 + 0.323382I
1.06564 2.82812I 7.40422 + 2.97945I
u = 0.603304
a = 0.23542 3.29584I
b = 0.474556 0.323382I
1.06564 + 2.82812I 7.40422 2.97945I
15
III.
I
u
3
= hu
15
2u
13
+· · ·+bu, 2u
15
+2u
14
+· · ·+a4, u
16
3u
14
+· · ·+u+1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
2u
15
2u
14
+ ··· 17u
2
+ 4
u
15
+ 2u
13
+ ··· + 2u
2
+ u
a
7
=
u
15
+ 2u
14
+ ··· 5u + 1
u
13
2u
11
+ u
10
+ 5u
9
u
8
6u
7
+ 3u
6
+ 6u
5
2u
4
3u
3
+ 2u
2
+ u 1
a
12
=
3u
15
2u
14
+ ··· u + 4
u
15
+ 2u
13
+ ··· + 2u
2
+ u
a
8
=
2u
15
6u
13
+ ··· 2u + 4
u
14
+ u
13
+ ··· u 2
a
1
=
u
3
u
5
u
3
+ u
a
4
=
2u
15
+ 6u
13
+ ··· + 4u 2
u
14
+ 3u
12
+ ··· + 2u + 2
a
10
=
2u
15
2u
14
+ ··· + u + 4
u
15
+ 2u
13
+ ··· + u 1
a
9
=
2u
15
6u
13
+ ··· 2u + 4
u
14
+ u
13
+ ··· u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
15
+ 11u
14
+ 12u
13
34u
12
20u
11
+ 84u
10
+ 32u
9
132u
8
18u
7
+ 158u
6
+ 10u
5
120u
4
+ 9u
3
+ 70u
2
11u 17
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
6u
15
+ ··· 9u + 1
c
2
u
16
3u
14
+ ··· u + 1
c
3
, c
11
u
16
+ 8u
14
+ ··· u + 1
c
4
, c
9
u
16
+ 8u
14
+ ··· + u + 1
c
5
u
16
3u
14
+ ··· + u + 1
c
6
, c
10
u
16
+ 4u
15
+ ··· + 8u + 3
c
7
, c
8
u
16
+ 4u
15
+ ··· 6u
2
+ 1
c
12
u
16
4u
15
+ ··· 6u
2
+ 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
+ 14y
15
+ ··· + 7y + 1
c
2
, c
5
y
16
6y
15
+ ··· 9y + 1
c
3
, c
4
, c
9
c
11
y
16
+ 16y
15
+ ··· + 11y + 1
c
6
, c
10
y
16
+ 6y
15
+ ··· + 14y + 9
c
7
, c
8
, c
12
y
16
14y
15
+ ··· 12y + 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.697088 + 0.669632I
a = 0.872141 0.419345I
b = 0.555602 0.792024I
3.31760 + 1.95723I 1.91125 3.50456I
u = 0.697088 0.669632I
a = 0.872141 + 0.419345I
b = 0.555602 + 0.792024I
3.31760 1.95723I 1.91125 + 3.50456I
u = 0.858913 + 0.641497I
a = 1.57955 + 0.75916I
b = 0.04461 1.68746I
7.46435 + 2.50164I 6.64418 2.34827I
u = 0.858913 0.641497I
a = 1.57955 0.75916I
b = 0.04461 + 1.68746I
7.46435 2.50164I 6.64418 + 2.34827I
u = 1.083430 + 0.218721I
a = 0.063889 1.037280I
b = 0.397891 0.465672I
0.441697 1.082400I 2.31411 + 4.80071I
u = 1.083430 0.218721I
a = 0.063889 + 1.037280I
b = 0.397891 + 0.465672I
0.441697 + 1.082400I 2.31411 4.80071I
u = 0.993253 + 0.639630I
a = 1.76311 + 0.05393I
b = 0.670393 0.715848I
2.38716 7.06415I 5.02024 + 8.84090I
u = 0.993253 0.639630I
a = 1.76311 0.05393I
b = 0.670393 + 0.715848I
2.38716 + 7.06415I 5.02024 8.84090I
u = 0.764991 + 0.200725I
a = 0.19627 1.80468I
b = 0.08665 1.47695I
5.12690 0.82457I 2.88269 + 8.96873I
u = 0.764991 0.200725I
a = 0.19627 + 1.80468I
b = 0.08665 + 1.47695I
5.12690 + 0.82457I 2.88269 8.96873I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.904876 + 0.830651I
a = 0.816305 0.414345I
b = 0.015954 + 1.301360I
11.24100 + 3.09873I 4.47651 2.43200I
u = 0.904876 0.830651I
a = 0.816305 + 0.414345I
b = 0.015954 1.301360I
11.24100 3.09873I 4.47651 + 2.43200I
u = 0.921176 + 0.893488I
a = 0.327921 0.754564I
b = 0.029313 + 0.666177I
8.63862 3.28911I 10.02068 + 3.66308I
u = 0.921176 0.893488I
a = 0.327921 + 0.754564I
b = 0.029313 0.666177I
8.63862 + 3.28911I 10.02068 3.66308I
u = 0.529286 + 0.266978I
a = 0.06782 + 2.71225I
b = 0.336156 0.719208I
1.74451 + 3.30158I 2.81664 9.31541I
u = 0.529286 0.266978I
a = 0.06782 2.71225I
b = 0.336156 + 0.719208I
1.74451 3.30158I 2.81664 + 9.31541I
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
6
· (u
16
6u
15
+ ··· 9u + 1)(u
27
+ 9u
26
+ ··· + 144u + 64)
c
2
((u
8
u
7
+ ··· + 2u 1)
6
)(u
16
3u
14
+ ··· u + 1)
· (u
27
+ 7u
26
+ ··· + 44u + 8)
c
3
, c
11
(u
16
+ 8u
14
+ ··· u + 1)(u
27
+ 4u
25
+ ··· + 3u + 1)
· (u
48
+ u
47
+ ··· 164u + 229)
c
4
, c
9
(u
16
+ 8u
14
+ ··· + u + 1)(u
27
+ 4u
25
+ ··· + 3u + 1)
· (u
48
+ u
47
+ ··· 164u + 229)
c
5
((u
8
u
7
+ ··· + 2u 1)
6
)(u
16
3u
14
+ ··· + u + 1)
· (u
27
+ 7u
26
+ ··· + 44u + 8)
c
6
, c
10
(u
16
+ 4u
15
+ ··· + 8u + 3)(u
27
2u
26
+ ··· + 10u + 1)
· (u
48
9u
47
+ ··· + 666u + 661)
c
7
, c
8
((u
3
u
2
+ 1)
16
)(u
16
+ 4u
15
+ ··· 6u
2
+ 1)
· (u
27
+ 15u
26
+ ··· + 2816u + 256)
c
12
((u
3
u
2
+ 1)
16
)(u
16
4u
15
+ ··· 6u
2
+ 1)
· (u
27
+ 15u
26
+ ··· + 2816u + 256)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
6
· (y
16
+ 14y
15
+ ··· + 7y + 1)(y
27
+ 19y
26
+ ··· 11008y 4096)
c
2
, c
5
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
6
· (y
16
6y
15
+ ··· 9y + 1)(y
27
9y
26
+ ··· + 144y 64)
c
3
, c
4
, c
9
c
11
(y
16
+ 16y
15
+ ··· + 11y + 1)(y
27
+ 8y
26
+ ··· 5y 1)
· (y
48
+ 27y
47
+ ··· + 832312y + 52441)
c
6
, c
10
(y
16
+ 6y
15
+ ··· + 14y + 9)(y
27
18y
26
+ ··· + 116y 1)
· (y
48
+ 15y
47
+ ··· 734396y + 436921)
c
7
, c
8
, c
12
((y
3
y
2
+ 2y 1)
16
)(y
16
14y
15
+ ··· 12y + 1)
· (y
27
15y
26
+ ··· + 524288y 65536)
22