12n
0490
(K12n
0490
)
A knot diagram
1
Linearized knot diagam
3 6 9 11 2 11 1 12 3 1 4 8
Solving Sequence
8,12
9
1,4
3 7 11 5 6 2 10
c
8
c
12
c
3
c
7
c
11
c
4
c
6
c
2
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h3u
25
+ 33u
24
+ ··· + 4b + 36, 17u
25
+ 196u
24
+ ··· + 32a + 656, u
26
+ 12u
25
+ ··· + 288u + 32i
I
u
2
= h−333638458a
9
u
2
+ 2803980318a
8
u
2
+ ··· 878011078a 1380422771,
a
9
u
2
+ 5a
8
u
2
+ ··· + 528a + 584, u
3
u
2
+ 2u 1i
I
u
3
= h2u
17
+ 15u
15
+ ··· + b + 2, 2u
16
2u
15
+ ··· + a + 4, u
18
u
17
+ ··· 4u + 1i
* 3 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3u
25
+ 33u
24
+ · · · + 4b + 36, 17u
25
+ 196u
24
+ · · · + 32a +
656, u
26
+ 12u
25
+ · · · + 288u + 32i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
a
4
=
0.531250u
25
6.12500u
24
+ ··· 148.500u 20.5000
3
4
u
25
33
4
u
24
+ ···
155
2
u 9
a
3
=
9
32
u
25
21
8
u
24
+ ··· 16u
7
2
1
2
u
25
+
23
4
u
24
+ ··· +
149
2
u + 7
a
7
=
u
2
+ 1
u
2
a
11
=
19
32
u
25
105
16
u
24
+ ··· 134u 16
3
16
u
25
17
8
u
24
+ ··· 11u 1
a
5
=
2.87500u
25
+ 30.5625u
24
+ ··· + 671.750u + 82.5000
23
16
u
25
137
8
u
24
+ ···
483
2
u 26
a
6
=
57
32
u
25
157
8
u
24
+ ···
1077
2
u 68
3
4
u
25
+
69
8
u
24
+ ··· + 116u + 13
a
2
=
1
32
u
25
3
16
u
24
+ ··· + 23u + 3
9
16
u
25
+
51
8
u
24
+ ··· + 155u + 19
a
10
=
1
32
u
25
+
3
16
u
24
+ ··· 21u 2
7
16
u
25
+
37
8
u
24
+ ··· + 102u + 13
(ii) Obstruction class = 1
(iii) Cusp Shapes =
7
4
u
25
20u
24
+ ··· 292u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
+ 9u
25
+ ··· + 96u + 64
c
2
, c
5
u
26
+ 9u
25
+ ··· + 24u + 8
c
3
, c
4
, c
9
c
11
u
26
+ 8u
24
+ ··· + 3u + 1
c
6
, c
10
u
26
+ u
25
+ ··· + 14u + 1
c
7
, c
8
, c
12
u
26
12u
25
+ ··· 288u + 32
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
26
+ 19y
25
+ ··· 8704y + 4096
c
2
, c
5
y
26
9y
25
+ ··· 96y + 64
c
3
, c
4
, c
9
c
11
y
26
+ 16y
25
+ ··· + 5y + 1
c
6
, c
10
y
26
+ 39y
25
+ ··· 50y + 1
c
7
, c
8
, c
12
y
26
+ 22y
25
+ ··· + 512y + 1024
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.373580 + 0.933614I
a = 0.280319 + 0.410765I
b = 0.406899 + 0.387993I
0.83502 2.62007I 5.29205 + 6.35608I
u = 0.373580 0.933614I
a = 0.280319 0.410765I
b = 0.406899 0.387993I
0.83502 + 2.62007I 5.29205 6.35608I
u = 0.977022 + 0.289560I
a = 0.999855 + 0.807238I
b = 0.329282 0.190408I
5.86673 2.98457I 2.91733 + 2.32225I
u = 0.977022 0.289560I
a = 0.999855 0.807238I
b = 0.329282 + 0.190408I
5.86673 + 2.98457I 2.91733 2.32225I
u = 1.040460 + 0.290353I
a = 0.885056 0.906575I
b = 0.321883 + 0.239511I
4.93150 9.47568I 1.22997 + 6.65192I
u = 1.040460 0.290353I
a = 0.885056 + 0.906575I
b = 0.321883 0.239511I
4.93150 + 9.47568I 1.22997 6.65192I
u = 0.893372 + 0.672431I
a = 0.616422 0.459995I
b = 0.580795 + 0.074295I
1.98248 3.07677I 3.82004 + 5.96476I
u = 0.893372 0.672431I
a = 0.616422 + 0.459995I
b = 0.580795 0.074295I
1.98248 + 3.07677I 3.82004 5.96476I
u = 0.658604 + 1.099520I
a = 0.357985 + 0.662624I
b = 0.744381 + 0.825205I
3.47939 2.75359I 0. + 1.54097I
u = 0.658604 1.099520I
a = 0.357985 0.662624I
b = 0.744381 0.825205I
3.47939 + 2.75359I 0. 1.54097I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.737527 + 1.134930I
a = 0.473155 0.623862I
b = 1.037410 0.669242I
2.46178 + 3.30067I 1.81816 2.93564I
u = 0.737527 1.134930I
a = 0.473155 + 0.623862I
b = 1.037410 + 0.669242I
2.46178 3.30067I 1.81816 + 2.93564I
u = 0.500184 + 0.273597I
a = 1.113850 + 0.000222I
b = 0.361841 0.000040I
1.011870 0.620695I 7.41936 + 3.02549I
u = 0.500184 0.273597I
a = 1.113850 0.000222I
b = 0.361841 + 0.000040I
1.011870 + 0.620695I 7.41936 3.02549I
u = 0.345460 + 0.396654I
a = 0.416298 + 0.809635I
b = 0.415031 0.528152I
1.54818 + 1.01569I 2.49851 + 1.48185I
u = 0.345460 0.396654I
a = 0.416298 0.809635I
b = 0.415031 + 0.528152I
1.54818 1.01569I 2.49851 1.48185I
u = 0.12954 + 1.47954I
a = 0.663655 + 0.382952I
b = 1.94741 + 0.15396I
4.82392 2.67431I 0
u = 0.12954 1.47954I
a = 0.663655 0.382952I
b = 1.94741 0.15396I
4.82392 + 2.67431I 0
u = 0.39186 + 1.47047I
a = 1.031950 + 0.307632I
b = 2.57514 + 0.41031I
0.23550 7.89653I 0
u = 0.39186 1.47047I
a = 1.031950 0.307632I
b = 2.57514 0.41031I
0.23550 + 7.89653I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.42139 + 1.47806I
a = 1.077660 0.235946I
b = 2.67192 0.32255I
0.7052 14.6997I 0. + 7.55199I
u = 0.42139 1.47806I
a = 1.077660 + 0.235946I
b = 2.67192 + 0.32255I
0.7052 + 14.6997I 0. 7.55199I
u = 0.04653 + 1.56180I
a = 0.561335 0.336020I
b = 1.91553 + 0.15501I
8.47892 + 2.46726I 0
u = 0.04653 1.56180I
a = 0.561335 + 0.336020I
b = 1.91553 0.15501I
8.47892 2.46726I 0
u = 0.26846 + 1.59618I
a = 0.756170 0.252389I
b = 2.26161 0.13367I
9.48266 7.26585I 0
u = 0.26846 1.59618I
a = 0.756170 + 0.252389I
b = 2.26161 + 0.13367I
9.48266 + 7.26585I 0
7
II. I
u
2
= h−3.34 × 10
8
a
9
u
2
+ 2.80 × 10
9
a
8
u
2
+ · · · 8.78 × 10
8
a 1.38 ×
10
9
, a
9
u
2
+ 5a
8
u
2
+ · · · + 528a + 584, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
a
4
=
a
0.209620a
9
u
2
1.76170a
8
u
2
+ ··· + 0.551640a + 0.867297
a
3
=
0.209620a
9
u
2
+ 1.76170a
8
u
2
+ ··· + 0.448360a 0.867297
1.52915a
9
u
2
+ 2.83867a
8
u
2
+ ··· + 1.28335a + 1.54825
a
7
=
u
2
+ 1
u
2
a
11
=
a
2
u
1.83712a
9
u
2
+ 2.43089a
8
u
2
+ ··· 0.217188a + 3.13850
a
5
=
a
3
u
2
+ a
2.20070a
9
u
2
+ 2.46990a
8
u
2
+ ··· 1.35859a + 2.49562
a
6
=
1.87891a
9
u
2
3.01206a
8
u
2
+ ··· 0.212937a 1.75521
2.51980a
9
u
2
2.23306a
8
u
2
+ ··· + 1.62064a 2.93193
a
2
=
0.232543a
9
u
2
+ 1.95512a
8
u
2
+ ··· + 0.115174a + 0.454433
a
2
u
2
+ 2u 2
a
10
=
2.70862a
9
u
2
2.33692a
8
u
2
+ ··· + 1.65477a 1.76434
0.871503a
9
u
2
+ 0.0939733a
8
u
2
+ ··· + 1.43758a + 1.37417
(ii) Obstruction class = 1
(iii) Cusp Shapes =
640570216
1591637129
a
9
u
2
+
5775444576
1591637129
a
8
u
2
+ ··· +
12123611228
1591637129
a +
11646488850
1591637129
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
6
c
2
, c
5
(u
5
u
4
+ u
2
+ u 1)
6
c
3
, c
4
, c
9
c
11
u
30
u
29
+ ··· + 1390u + 773
c
6
, c
10
u
30
3u
29
+ ··· 9926u + 2939
c
7
, c
8
, c
12
(u
3
+ u
2
+ 2u + 1)
10
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
6
c
2
, c
5
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
6
c
3
, c
4
, c
9
c
11
y
30
+ 15y
29
+ ··· + 5878292y + 597529
c
6
, c
10
y
30
+ 19y
29
+ ··· 67383832y + 8637721
c
7
, c
8
, c
12
(y
3
+ 3y
2
+ 2y 1)
10
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.014630 + 0.047968I
b = 2.30589 0.97577I
8.84111 + 2.82812I 11.11859 2.97945I
u = 0.215080 + 1.307140I
a = 0.771849 0.683924I
b = 1.093870 0.106141I
6.13913 + 5.04209I 2.62407 7.20234I
u = 0.215080 + 1.307140I
a = 1.115000 0.034024I
b = 2.93266 0.29143I
6.13913 + 5.04209I 2.62407 7.20234I
u = 0.215080 + 1.307140I
a = 0.784986 + 0.155927I
b = 2.90073 + 1.14869I
2.99936 + 6.15987I 1.59102 5.34173I
u = 0.215080 + 1.307140I
a = 1.217270 + 0.148472I
b = 2.62933 + 0.23436I
6.13913 + 0.61415I 2.62407 + 1.24344I
u = 0.215080 + 1.307140I
a = 0.305785 + 1.223910I
b = 0.871169 + 0.998250I
2.99936 0.50362I 1.59102 0.61717I
u = 0.215080 + 1.307140I
a = 0.683723 0.136389I
b = 2.59396 1.27411I
2.99936 0.50362I 1.59102 0.61717I
u = 0.215080 + 1.307140I
a = 0.127449 1.308880I
b = 0.575167 1.111610I
2.99936 + 6.15987I 1.59102 5.34173I
u = 0.215080 + 1.307140I
a = 1.290360 0.282036I
b = 2.26738 + 0.12156I
8.84111 + 2.82812I 11.11859 2.97945I
u = 0.215080 + 1.307140I
a = 0.564558 + 0.306692I
b = 0.833786 0.795800I
6.13913 + 0.61415I 2.62407 + 1.24344I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 1.307140I
a = 1.014630 0.047968I
b = 2.30589 + 0.97577I
8.84111 2.82812I 11.11859 + 2.97945I
u = 0.215080 1.307140I
a = 0.771849 + 0.683924I
b = 1.093870 + 0.106141I
6.13913 5.04209I 2.62407 + 7.20234I
u = 0.215080 1.307140I
a = 1.115000 + 0.034024I
b = 2.93266 + 0.29143I
6.13913 5.04209I 2.62407 + 7.20234I
u = 0.215080 1.307140I
a = 0.784986 0.155927I
b = 2.90073 1.14869I
2.99936 6.15987I 1.59102 + 5.34173I
u = 0.215080 1.307140I
a = 1.217270 0.148472I
b = 2.62933 0.23436I
6.13913 0.61415I 2.62407 1.24344I
u = 0.215080 1.307140I
a = 0.305785 1.223910I
b = 0.871169 0.998250I
2.99936 + 0.50362I 1.59102 + 0.61717I
u = 0.215080 1.307140I
a = 0.683723 + 0.136389I
b = 2.59396 + 1.27411I
2.99936 + 0.50362I 1.59102 + 0.61717I
u = 0.215080 1.307140I
a = 0.127449 + 1.308880I
b = 0.575167 + 1.111610I
2.99936 6.15987I 1.59102 + 5.34173I
u = 0.215080 1.307140I
a = 1.290360 + 0.282036I
b = 2.26738 0.12156I
8.84111 2.82812I 11.11859 + 2.97945I
u = 0.215080 1.307140I
a = 0.564558 0.306692I
b = 0.833786 + 0.795800I
6.13913 0.61415I 2.62407 1.24344I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.569840
a = 0.494172 + 1.023630I
b = 0.055265 + 0.919402I
2.00154 2.21397I 3.90519 + 4.22289I
u = 0.569840
a = 0.494172 1.023630I
b = 0.055265 0.919402I
2.00154 + 2.21397I 3.90519 4.22289I
u = 0.569840
a = 1.81678 + 0.97410I
b = 0.401412 1.037940I
7.13694 + 3.33174I 4.93825 2.36228I
u = 0.569840
a = 1.81678 0.97410I
b = 0.401412 + 1.037940I
7.13694 3.33174I 4.93825 + 2.36228I
u = 0.569840
a = 1.73970 + 1.26637I
b = 0.470359 0.966293I
7.13694 + 3.33174I 4.93825 2.36228I
u = 0.569840
a = 1.73970 1.26637I
b = 0.470359 + 0.966293I
7.13694 3.33174I 4.93825 + 2.36228I
u = 0.569840
a = 0.18462 + 2.19674I
b = 0.221651 0.130016I
2.00154 + 2.21397I 3.90519 4.22289I
u = 0.569840
a = 0.18462 2.19674I
b = 0.221651 + 0.130016I
2.00154 2.21397I 3.90519 + 4.22289I
u = 0.569840
a = 0.27573 + 2.20498I
b = 0.246656 + 0.540491I
4.70353 4.58932 + 0.I
u = 0.569840
a = 0.27573 2.20498I
b = 0.246656 0.540491I
4.70353 4.58932 + 0.I
13
III.
I
u
3
= h2u
17
+15u
15
+· · ·+b+2, 2u
16
2u
15
+· · ·+a+4, u
18
u
17
+· · ·4u+1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
a
4
=
2u
16
+ 2u
15
+ ··· 4u 4
2u
17
15u
15
+ ··· + 4u 2
a
3
=
2u
17
4u
16
+ ··· 21u
2
4
3u
16
+ 4u
15
+ ··· + 6u 2
a
7
=
u
2
+ 1
u
2
a
11
=
2u
17
+ 2u
16
+ ··· 22u + 5
u
17
+ 2u
16
+ ··· 4u + 2
a
5
=
u
17
3u
16
+ ··· + 13u 2
3u
17
21u
15
+ ··· + 19u 5
a
6
=
u
17
2u
16
+ ··· + 27u 5
2u
17
+ u
16
+ ··· + 6u 3
a
2
=
u
16
8u
14
+ ··· 15u + 1
u
16
+ u
15
+ ··· 19u
2
+ 3u
a
10
=
2u
17
+ u
16
+ ··· 19u + 4
u
17
+ u
16
+ ··· u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
17
+ 7u
16
24u
15
+ 61u
14
112u
13
+ 219u
12
282u
11
+
425u
10
445u
9
+ 493u
8
466u
7
+ 358u
6
299u
5
+ 167u
4
81u
3
+ 44u
2
+ 7u 5
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
8u
17
+ ··· 8u + 1
c
2
u
18
+ 2u
17
+ ··· + 2u + 1
c
3
, c
11
u
18
+ 7u
16
+ ··· + 13u
2
+ 1
c
4
, c
9
u
18
+ 7u
16
+ ··· + 13u
2
+ 1
c
5
u
18
2u
17
+ ··· 2u + 1
c
6
, c
10
u
18
+ u
17
+ ··· + u + 1
c
7
, c
8
u
18
u
17
+ ··· 4u + 1
c
12
u
18
+ u
17
+ ··· + 4u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
+ 12y
17
+ ··· + 16y + 1
c
2
, c
5
y
18
8y
17
+ ··· 8y + 1
c
3
, c
4
, c
9
c
11
y
18
+ 14y
17
+ ··· + 26y + 1
c
6
, c
10
y
18
+ 5y
17
+ ··· 9y + 1
c
7
, c
8
, c
12
y
18
+ 19y
17
+ ··· + 26y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.548156 + 0.847238I
a = 0.223507 + 0.171449I
b = 0.275267 0.419395I
1.41562 2.18118I 2.40356 + 0.24504I
u = 0.548156 0.847238I
a = 0.223507 0.171449I
b = 0.275267 + 0.419395I
1.41562 + 2.18118I 2.40356 0.24504I
u = 0.289325 + 0.967313I
a = 0.214015 0.827701I
b = 1.143520 0.792525I
4.75616 4.41472I 1.35648 + 3.62940I
u = 0.289325 0.967313I
a = 0.214015 + 0.827701I
b = 1.143520 + 0.792525I
4.75616 + 4.41472I 1.35648 3.62940I
u = 0.301562 + 1.039980I
a = 0.015170 + 0.829040I
b = 1.39264 + 0.54596I
4.48430 + 2.10133I 1.59454 2.04993I
u = 0.301562 1.039980I
a = 0.015170 0.829040I
b = 1.39264 0.54596I
4.48430 2.10133I 1.59454 + 2.04993I
u = 0.826816 + 0.217598I
a = 0.35619 1.39245I
b = 0.265916 0.214656I
4.52038 + 1.43762I 3.35124 4.60330I
u = 0.826816 0.217598I
a = 0.35619 + 1.39245I
b = 0.265916 + 0.214656I
4.52038 1.43762I 3.35124 + 4.60330I
u = 0.278515 + 1.287490I
a = 1.123880 + 0.058895I
b = 2.12241 0.53151I
7.92752 + 2.43301I 1.35565 + 0.52411I
u = 0.278515 1.287490I
a = 1.123880 0.058895I
b = 2.12241 + 0.53151I
7.92752 2.43301I 1.35565 0.52411I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.094154 + 1.349150I
a = 0.996965 + 0.368074I
b = 2.30279 0.39041I
7.09698 + 2.98270I 3.08593 3.04995I
u = 0.094154 1.349150I
a = 0.996965 0.368074I
b = 2.30279 + 0.39041I
7.09698 2.98270I 3.08593 + 3.04995I
u = 0.01485 + 1.49543I
a = 0.746594 0.367613I
b = 2.22443 + 0.33307I
9.34606 2.01452I 7.23332 0.16467I
u = 0.01485 1.49543I
a = 0.746594 + 0.367613I
b = 2.22443 0.33307I
9.34606 + 2.01452I 7.23332 + 0.16467I
u = 0.35110 + 1.52606I
a = 0.830916 0.030800I
b = 2.13840 + 0.29887I
10.29080 + 5.91942I 5.83679 3.74571I
u = 0.35110 1.52606I
a = 0.830916 + 0.030800I
b = 2.13840 0.29887I
10.29080 5.91942I 5.83679 + 3.74571I
u = 0.103300 + 0.232173I
a = 3.64778 2.10197I
b = 0.147325 0.979951I
3.18667 2.11613I 5.18453 + 3.64144I
u = 0.103300 0.232173I
a = 3.64778 + 2.10197I
b = 0.147325 + 0.979951I
3.18667 + 2.11613I 5.18453 3.64144I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
6
)(u
18
8u
17
+ ··· 8u + 1)
· (u
26
+ 9u
25
+ ··· + 96u + 64)
c
2
((u
5
u
4
+ u
2
+ u 1)
6
)(u
18
+ 2u
17
+ ··· + 2u + 1)
· (u
26
+ 9u
25
+ ··· + 24u + 8)
c
3
, c
11
(u
18
+ 7u
16
+ ··· + 13u
2
+ 1)(u
26
+ 8u
24
+ ··· + 3u + 1)
· (u
30
u
29
+ ··· + 1390u + 773)
c
4
, c
9
(u
18
+ 7u
16
+ ··· + 13u
2
+ 1)(u
26
+ 8u
24
+ ··· + 3u + 1)
· (u
30
u
29
+ ··· + 1390u + 773)
c
5
((u
5
u
4
+ u
2
+ u 1)
6
)(u
18
2u
17
+ ··· 2u + 1)
· (u
26
+ 9u
25
+ ··· + 24u + 8)
c
6
, c
10
(u
18
+ u
17
+ ··· + u + 1)(u
26
+ u
25
+ ··· + 14u + 1)
· (u
30
3u
29
+ ··· 9926u + 2939)
c
7
, c
8
((u
3
+ u
2
+ 2u + 1)
10
)(u
18
u
17
+ ··· 4u + 1)
· (u
26
12u
25
+ ··· 288u + 32)
c
12
((u
3
+ u
2
+ 2u + 1)
10
)(u
18
+ u
17
+ ··· + 4u + 1)
· (u
26
12u
25
+ ··· 288u + 32)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
6
)(y
18
+ 12y
17
+ ··· + 16y + 1)
· (y
26
+ 19y
25
+ ··· 8704y + 4096)
c
2
, c
5
((y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
6
)(y
18
8y
17
+ ··· 8y + 1)
· (y
26
9y
25
+ ··· 96y + 64)
c
3
, c
4
, c
9
c
11
(y
18
+ 14y
17
+ ··· + 26y + 1)(y
26
+ 16y
25
+ ··· + 5y + 1)
· (y
30
+ 15y
29
+ ··· + 5878292y + 597529)
c
6
, c
10
(y
18
+ 5y
17
+ ··· 9y + 1)(y
26
+ 39y
25
+ ··· 50y + 1)
· (y
30
+ 19y
29
+ ··· 67383832y + 8637721)
c
7
, c
8
, c
12
((y
3
+ 3y
2
+ 2y 1)
10
)(y
18
+ 19y
17
+ ··· + 26y + 1)
· (y
26
+ 22y
25
+ ··· + 512y + 1024)
20