12n
0491
(K12n
0491
)
A knot diagram
1
Linearized knot diagam
3 6 11 8 2 12 10 3 6 4 7 9
Solving Sequence
7,11 4,12
3 6 2 1 5 10 8 9
c
11
c
3
c
6
c
2
c
1
c
5
c
10
c
7
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.28259 × 10
69
u
52
3.92104 × 10
70
u
51
+ ··· + 1.58927 × 10
71
b + 7.23259 × 10
71
,
1.12367 × 10
72
u
52
+ 1.44284 × 10
72
u
51
+ ··· + 3.01961 × 10
72
a + 1.87033 × 10
73
,
u
53
2u
52
+ ··· 40u 19i
I
u
2
= h−13796u
18
18331u
17
+ ··· + 45431b + 86665,
172722u
18
+ 249659u
17
+ ··· + 318017a 540027, u
19
+ u
18
+ ··· 3u 7i
* 2 irreducible components of dim
C
= 0, with total 72 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.28 × 10
69
u
52
3.92 × 10
70
u
51
+ · · · + 1.59 × 10
71
b + 7.23 ×
10
71
, 1.12 × 10
72
u
52
+ 1.44 × 10
72
u
51
+ · · · + 3.02 × 10
72
a + 1.87 ×
10
73
, u
53
2u
52
+ · · · 40u 19i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
4
=
0.372124u
52
0.477822u
51
+ ··· 20.2423u 6.19396
0.0395313u
52
+ 0.246720u
51
+ ··· 9.19809u 4.55090
a
12
=
1
u
2
a
3
=
0.411656u
52
0.231102u
51
+ ··· 29.4404u 10.7449
0.0395313u
52
+ 0.246720u
51
+ ··· 9.19809u 4.55090
a
6
=
u
u
3
+ u
a
2
=
0.458907u
52
0.728958u
51
+ ··· 18.2819u 5.32838
0.0479872u
52
+ 0.108330u
51
+ ··· 5.12020u 2.30366
a
1
=
0.217784u
52
1.10568u
51
+ ··· + 53.3268u + 23.0233
0.0127121u
52
1.28483u
51
+ ··· + 42.1962u + 19.5101
a
5
=
0.486443u
52
+ 0.781036u
51
+ ··· + 16.1784u + 4.41592
0.210529u
52
0.0287556u
51
+ ··· 14.2682u 5.35874
a
10
=
0.151735u
52
+ 0.441502u
51
+ ··· 4.60673u 1.92073
0.621884u
52
1.11241u
51
+ ··· 9.54706u 0.104321
a
8
=
0.124913u
52
0.625193u
51
+ ··· + 8.69636u + 6.25801
0.0892206u
52
+ 0.468833u
51
+ ··· 9.12061u 4.72212
a
9
=
0.642220u
52
0.865075u
51
+ ··· 19.8419u 3.61549
0.832643u
52
1.27823u
51
+ ··· 20.6504u 3.75489
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0970191u
52
+ 0.877677u
51
+ ··· 34.0551u 20.3470
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
53
+ 78u
52
+ ··· + 5037u + 49
c
2
, c
5
u
53
+ 6u
52
+ ··· + 173u 7
c
3
, c
10
u
53
+ 2u
52
+ ··· 17u 13
c
4
u
53
3u
52
+ ··· + 34374u 17789
c
6
, c
11
u
53
2u
52
+ ··· 40u 19
c
7
u
53
+ 16u
52
+ ··· 1526u 127
c
8
u
53
+ u
52
+ ··· + 307064u 83053
c
9
u
53
4u
52
+ ··· 9953511u 5353931
c
12
u
53
+ 44u
51
+ ··· 895504u 204397
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
53
198y
52
+ ··· + 8975185y 2401
c
2
, c
5
y
53
78y
52
+ ··· + 5037y 49
c
3
, c
10
y
53
+ 34y
52
+ ··· 23y 169
c
4
y
53
+ 27y
52
+ ··· 3258740414y 316448521
c
6
, c
11
y
53
+ 38y
52
+ ··· + 1866y 361
c
7
y
53
+ 6y
52
+ ··· 286000y 16129
c
8
y
53
+ 109y
52
+ ··· + 44431418090y 6897800809
c
9
y
53
+ 74y
52
+ ··· 616501666366053y 28664577152761
c
12
y
53
+ 88y
52
+ ··· 165123439470y 41778133609
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.020424 + 1.053450I
a = 1.37500 + 1.00686I
b = 0.412944 0.888348I
3.41496 0.13150I 2.61329 + 0.59782I
u = 0.020424 1.053450I
a = 1.37500 1.00686I
b = 0.412944 + 0.888348I
3.41496 + 0.13150I 2.61329 0.59782I
u = 0.114759 + 1.057300I
a = 3.20217 0.52473I
b = 0.249252 + 0.779627I
12.52400 0.56124I 3.93900 2.29264I
u = 0.114759 1.057300I
a = 3.20217 + 0.52473I
b = 0.249252 0.779627I
12.52400 + 0.56124I 3.93900 + 2.29264I
u = 0.897126 + 0.227286I
a = 0.379021 + 0.772014I
b = 0.836819 0.182673I
11.53260 3.30283I 1.48794 + 1.83705I
u = 0.897126 0.227286I
a = 0.379021 0.772014I
b = 0.836819 + 0.182673I
11.53260 + 3.30283I 1.48794 1.83705I
u = 0.758954 + 0.497746I
a = 0.352903 1.066290I
b = 0.082346 + 1.057370I
1.94643 + 1.44631I 4.91144 4.52605I
u = 0.758954 0.497746I
a = 0.352903 + 1.066290I
b = 0.082346 1.057370I
1.94643 1.44631I 4.91144 + 4.52605I
u = 0.100638 + 1.126930I
a = 0.093158 + 0.628972I
b = 0.60558 2.11609I
9.49889 + 0.94288I 12.4384 8.3240I
u = 0.100638 1.126930I
a = 0.093158 0.628972I
b = 0.60558 + 2.11609I
9.49889 0.94288I 12.4384 + 8.3240I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.167867 + 1.122590I
a = 1.025970 0.785312I
b = 0.74301 + 1.32853I
0.62397 4.66230I 2.14855 + 3.98094I
u = 0.167867 1.122590I
a = 1.025970 + 0.785312I
b = 0.74301 1.32853I
0.62397 + 4.66230I 2.14855 3.98094I
u = 1.145150 + 0.111172I
a = 0.220953 + 1.242920I
b = 0.400983 1.048090I
1.16018 3.48244I 0. + 4.21874I
u = 1.145150 0.111172I
a = 0.220953 1.242920I
b = 0.400983 + 1.048090I
1.16018 + 3.48244I 0. 4.21874I
u = 1.009890 + 0.580274I
a = 0.45461 1.51023I
b = 0.201772 + 0.717706I
0.404087 0.664512I 0
u = 1.009890 0.580274I
a = 0.45461 + 1.51023I
b = 0.201772 0.717706I
0.404087 + 0.664512I 0
u = 0.446506 + 1.080840I
a = 0.758454 0.942259I
b = 0.560983 + 1.108950I
0.01834 + 3.18821I 0
u = 0.446506 1.080840I
a = 0.758454 + 0.942259I
b = 0.560983 1.108950I
0.01834 3.18821I 0
u = 0.094171 + 1.189170I
a = 0.198337 0.285371I
b = 0.815075 + 0.102906I
2.73134 + 1.95349I 0
u = 0.094171 1.189170I
a = 0.198337 + 0.285371I
b = 0.815075 0.102906I
2.73134 1.95349I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.372324 + 1.144500I
a = 1.16966 + 1.43335I
b = 0.463731 1.211130I
0.97517 6.41654I 0
u = 0.372324 1.144500I
a = 1.16966 1.43335I
b = 0.463731 + 1.211130I
0.97517 + 6.41654I 0
u = 0.713359 + 0.352723I
a = 0.82265 + 1.89224I
b = 0.291445 1.061860I
3.49003 + 2.33827I 7.35150 0.03351I
u = 0.713359 0.352723I
a = 0.82265 1.89224I
b = 0.291445 + 1.061860I
3.49003 2.33827I 7.35150 + 0.03351I
u = 1.208870 + 0.041842I
a = 0.14294 + 1.53627I
b = 0.553234 1.183980I
8.60540 + 8.39391I 0
u = 1.208870 0.041842I
a = 0.14294 1.53627I
b = 0.553234 + 1.183980I
8.60540 8.39391I 0
u = 0.231709 + 1.213410I
a = 0.225449 + 0.057108I
b = 1.259850 0.339420I
5.52106 2.87929I 0
u = 0.231709 1.213410I
a = 0.225449 0.057108I
b = 1.259850 + 0.339420I
5.52106 + 2.87929I 0
u = 0.129199 + 1.337350I
a = 0.537924 0.387937I
b = 0.324016 0.723848I
4.06104 + 3.45520I 0
u = 0.129199 1.337350I
a = 0.537924 + 0.387937I
b = 0.324016 + 0.723848I
4.06104 3.45520I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.180042 + 1.332050I
a = 1.50668 + 0.75298I
b = 0.339166 + 0.960564I
11.76730 + 3.22677I 0
u = 0.180042 1.332050I
a = 1.50668 0.75298I
b = 0.339166 0.960564I
11.76730 3.22677I 0
u = 0.577971 + 1.247660I
a = 0.78777 1.50170I
b = 0.421565 + 1.016140I
2.93844 5.32446I 0
u = 0.577971 1.247660I
a = 0.78777 + 1.50170I
b = 0.421565 1.016140I
2.93844 + 5.32446I 0
u = 0.39239 + 1.36564I
a = 0.081320 + 0.209135I
b = 1.232780 + 0.267892I
16.4729 7.8769I 0
u = 0.39239 1.36564I
a = 0.081320 0.209135I
b = 1.232780 0.267892I
16.4729 + 7.8769I 0
u = 0.75288 + 1.22697I
a = 0.39606 + 1.40742I
b = 0.528365 0.680227I
14.0211 2.5435I 0
u = 0.75288 1.22697I
a = 0.39606 1.40742I
b = 0.528365 + 0.680227I
14.0211 + 2.5435I 0
u = 0.54784 + 1.33209I
a = 0.759325 + 1.028150I
b = 0.675306 1.215400I
2.77910 + 9.40789I 0
u = 0.54784 1.33209I
a = 0.759325 1.028150I
b = 0.675306 + 1.215400I
2.77910 9.40789I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.33828 + 1.43001I
a = 0.0525982 0.0974268I
b = 0.359013 + 0.599994I
4.31265 + 1.85896I 0
u = 0.33828 1.43001I
a = 0.0525982 + 0.0974268I
b = 0.359013 0.599994I
4.31265 1.85896I 0
u = 0.443343 + 0.193493I
a = 2.20108 + 1.09321I
b = 0.385941 1.326290I
7.01956 + 0.93199I 3.37878 0.77497I
u = 0.443343 0.193493I
a = 2.20108 1.09321I
b = 0.385941 + 1.326290I
7.01956 0.93199I 3.37878 + 0.77497I
u = 0.54770 + 1.41531I
a = 0.89521 1.20600I
b = 0.68192 + 1.29863I
13.2260 + 14.5372I 0
u = 0.54770 1.41531I
a = 0.89521 + 1.20600I
b = 0.68192 1.29863I
13.2260 14.5372I 0
u = 0.471441
a = 0.781098
b = 0.296482
0.918032 11.4070
u = 0.241489 + 0.382395I
a = 1.38602 0.67704I
b = 0.380240 + 1.189440I
1.58800 + 2.79734I 0.78154 2.00922I
u = 0.241489 0.382395I
a = 1.38602 + 0.67704I
b = 0.380240 1.189440I
1.58800 2.79734I 0.78154 + 2.00922I
u = 0.56855 + 1.51885I
a = 0.248170 + 0.465569I
b = 0.541885 0.930855I
13.25010 1.79041I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.56855 1.51885I
a = 0.248170 0.465569I
b = 0.541885 + 0.930855I
13.25010 + 1.79041I 0
u = 0.293628 + 0.169658I
a = 0.43844 1.77881I
b = 0.492003 0.133929I
1.46218 0.58938I 4.90888 + 1.84572I
u = 0.293628 0.169658I
a = 0.43844 + 1.77881I
b = 0.492003 + 0.133929I
1.46218 + 0.58938I 4.90888 1.84572I
10
II. I
u
2
= h−13796u
18
18331u
17
+ · · · + 45431b + 86665, 1.73 × 10
5
u
18
+
2.50 × 10
5
u
17
+ · · · + 3.18 × 10
5
a 5.40 × 10
5
, u
19
+ u
18
+ · · · 3u 7i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
4
=
0.543122u
18
0.785049u
17
+ ··· + 2.33131u + 1.69811
0.303669u
18
+ 0.403491u
17
+ ··· 1.20556u 1.90762
a
12
=
1
u
2
a
3
=
0.239453u
18
0.381558u
17
+ ··· + 1.12575u 0.209511
0.303669u
18
+ 0.403491u
17
+ ··· 1.20556u 1.90762
a
6
=
u
u
3
+ u
a
2
=
0.429037u
18
0.992044u
17
+ ··· + 4.06352u + 3.76898
0.309634u
18
+ 0.774493u
17
+ ··· 1.55354u 2.93980
a
1
=
1.09950u
18
0.891735u
17
+ ··· + 9.42967u + 3.59530
1.14149u
18
0.770487u
17
+ ··· + 6.82585u + 0.0622042
a
5
=
0.148385u
18
+ 0.268435u
17
+ ··· 1.01515u + 0.939076
0.495675u
18
+ 0.891506u
17
+ ··· 4.32517u 4.91394
a
10
=
0.00459724u
18
+ 0.00136785u
17
+ ··· 0.540462u 0.334187
0.217583u
18
1.26700u
17
+ ··· + 1.84046u + 6.86386
a
8
=
0.624070u
18
+ 0.511306u
17
+ ··· 1.65340u + 0.296396
0.211618u
18
+ 0.104004u
17
+ ··· + 0.492483u 1.16832
a
9
=
0.00459724u
18
0.998632u
17
+ ··· + 1.45954u + 6.66581
0.217583u
18
1.26700u
17
+ ··· + 2.84046u + 6.86386
(ii) Obstruction class = 1
(iii) Cusp Shapes =
29514
45431
u
18
+
3561
45431
u
17
+ ··· +
108503
45431
u
237418
45431
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
19
23u
18
+ ··· + 142u 9
c
2
u
19
+ u
18
+ ··· + 4u 3
c
3
u
19
u
18
+ ··· 2u + 1
c
4
u
19
2u
18
+ ··· 3u + 1
c
5
u
19
u
18
+ ··· + 4u + 3
c
6
u
19
u
18
+ ··· 3u + 7
c
7
u
19
+ 3u
18
+ ··· + u + 1
c
8
u
19
+ 12u
17
+ ··· + 17u 7
c
9
u
19
+ 3u
18
+ ··· + 6u 1
c
10
u
19
+ u
18
+ ··· 2u 1
c
11
u
19
+ u
18
+ ··· 3u 7
c
12
u
19
u
18
+ ··· + 3u 1
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
47y
18
+ ··· + 1138y 81
c
2
, c
5
y
19
23y
18
+ ··· + 142y 9
c
3
, c
10
y
19
+ 17y
18
+ ··· 10y 1
c
4
y
19
+ 2y
18
+ ··· + 11y 1
c
6
, c
11
y
19
+ 13y
18
+ ··· 61y 49
c
7
y
19
7y
18
+ ··· 7y 1
c
8
y
19
+ 24y
18
+ ··· + 1283y 49
c
9
y
19
+ 25y
18
+ ··· + 4y 1
c
12
y
19
+ 15y
18
+ ··· + 7y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.912989 + 0.470847I
a = 0.08016 1.71011I
b = 0.090557 + 0.743656I
0.23953 + 1.45033I 1.46889 5.46667I
u = 0.912989 0.470847I
a = 0.08016 + 1.71011I
b = 0.090557 0.743656I
0.23953 1.45033I 1.46889 + 5.46667I
u = 0.122558 + 1.056040I
a = 0.431762 + 0.531081I
b = 0.25264 1.78160I
9.10403 0.56699I 0.10463 2.18342I
u = 0.122558 1.056040I
a = 0.431762 0.531081I
b = 0.25264 + 1.78160I
9.10403 + 0.56699I 0.10463 + 2.18342I
u = 0.375439 + 1.005050I
a = 0.80534 1.25378I
b = 0.51738 + 1.33523I
0.95735 4.84388I 2.57358 + 4.50026I
u = 0.375439 1.005050I
a = 0.80534 + 1.25378I
b = 0.51738 1.33523I
0.95735 + 4.84388I 2.57358 4.50026I
u = 0.828010 + 0.194067I
a = 0.18741 + 1.74034I
b = 0.388243 1.140120I
3.03087 + 3.56656I 5.57109 5.07215I
u = 0.828010 0.194067I
a = 0.18741 1.74034I
b = 0.388243 + 1.140120I
3.03087 3.56656I 5.57109 + 5.07215I
u = 0.798171 + 0.862325I
a = 0.599547 0.825372I
b = 0.299334 + 1.118840I
1.52458 + 0.35003I 1.30577 1.04146I
u = 0.798171 0.862325I
a = 0.599547 + 0.825372I
b = 0.299334 1.118840I
1.52458 0.35003I 1.30577 + 1.04146I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.361100 + 1.153390I
a = 2.44435 + 0.80442I
b = 0.074478 0.751501I
12.31010 + 1.60834I 0.89180 3.51923I
u = 0.361100 1.153390I
a = 2.44435 0.80442I
b = 0.074478 + 0.751501I
12.31010 1.60834I 0.89180 + 3.51923I
u = 0.245707 + 1.238420I
a = 0.451047 0.220292I
b = 0.863122 0.000595I
3.94352 + 3.17778I 2.47265 4.38700I
u = 0.245707 1.238420I
a = 0.451047 + 0.220292I
b = 0.863122 + 0.000595I
3.94352 3.17778I 2.47265 + 4.38700I
u = 0.231435 + 1.334010I
a = 0.681102 0.044640I
b = 0.229020 + 0.511916I
3.91760 + 2.77143I 0.013564 1.322656I
u = 0.231435 1.334010I
a = 0.681102 + 0.044640I
b = 0.229020 0.511916I
3.91760 2.77143I 0.013564 + 1.322656I
u = 0.635520
a = 0.0744073
b = 0.586817
0.102213 0.467600
u = 0.444813 + 1.297870I
a = 1.14727 + 0.98503I
b = 0.544126 1.209470I
0.62097 8.31420I 0.62025 + 6.65896I
u = 0.444813 1.297870I
a = 1.14727 0.98503I
b = 0.544126 + 1.209470I
0.62097 + 8.31420I 0.62025 6.65896I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
19
23u
18
+ ··· + 142u 9)(u
53
+ 78u
52
+ ··· + 5037u + 49)
c
2
(u
19
+ u
18
+ ··· + 4u 3)(u
53
+ 6u
52
+ ··· + 173u 7)
c
3
(u
19
u
18
+ ··· 2u + 1)(u
53
+ 2u
52
+ ··· 17u 13)
c
4
(u
19
2u
18
+ ··· 3u + 1)(u
53
3u
52
+ ··· + 34374u 17789)
c
5
(u
19
u
18
+ ··· + 4u + 3)(u
53
+ 6u
52
+ ··· + 173u 7)
c
6
(u
19
u
18
+ ··· 3u + 7)(u
53
2u
52
+ ··· 40u 19)
c
7
(u
19
+ 3u
18
+ ··· + u + 1)(u
53
+ 16u
52
+ ··· 1526u 127)
c
8
(u
19
+ 12u
17
+ ··· + 17u 7)(u
53
+ u
52
+ ··· + 307064u 83053)
c
9
(u
19
+ 3u
18
+ ··· + 6u 1)(u
53
4u
52
+ ··· 9953511u 5353931)
c
10
(u
19
+ u
18
+ ··· 2u 1)(u
53
+ 2u
52
+ ··· 17u 13)
c
11
(u
19
+ u
18
+ ··· 3u 7)(u
53
2u
52
+ ··· 40u 19)
c
12
(u
19
u
18
+ ··· + 3u 1)(u
53
+ 44u
51
+ ··· 895504u 204397)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
19
47y
18
+ ··· + 1138y 81)
· (y
53
198y
52
+ ··· + 8975185y 2401)
c
2
, c
5
(y
19
23y
18
+ ··· + 142y 9)(y
53
78y
52
+ ··· + 5037y 49)
c
3
, c
10
(y
19
+ 17y
18
+ ··· 10y 1)(y
53
+ 34y
52
+ ··· 23y 169)
c
4
(y
19
+ 2y
18
+ ··· + 11y 1)
· (y
53
+ 27y
52
+ ··· 3258740414y 316448521)
c
6
, c
11
(y
19
+ 13y
18
+ ··· 61y 49)(y
53
+ 38y
52
+ ··· + 1866y 361)
c
7
(y
19
7y
18
+ ··· 7y 1)(y
53
+ 6y
52
+ ··· 286000y 16129)
c
8
(y
19
+ 24y
18
+ ··· + 1283y 49)
· (y
53
+ 109y
52
+ ··· + 44431418090y 6897800809)
c
9
(y
19
+ 25y
18
+ ··· + 4y 1)
· (y
53
+ 74y
52
+ ··· 616501666366053y 28664577152761)
c
12
(y
19
+ 15y
18
+ ··· + 7y 1)
· (y
53
+ 88y
52
+ ··· 165123439470y 41778133609)
19