12n
0492
(K12n
0492
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 9 12 5 7 4 7 8
Solving Sequence
2,5
6
3,9
7 10 1 4 8 12 11
c
5
c
2
c
6
c
9
c
1
c
4
c
8
c
12
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h4.46973 × 10
50
u
60
+ 8.99199 × 10
50
u
59
+ ··· + 8.26421 × 10
50
b 5.17817 × 10
50
,
3.56747 × 10
51
u
60
+ 4.54307 × 10
51
u
59
+ ··· + 1.57020 × 10
52
a 1.57657 × 10
52
, u
61
+ 2u
60
+ ··· + 17u + 19i
I
u
2
= hu
15
+ u
14
2u
13
2u
12
+ 6u
11
+ 6u
10
8u
9
6u
8
+ 11u
7
+ 9u
6
9u
5
5u
4
+ 6u
3
+ 3u
2
+ b 2u 1,
u
14
+ 2u
13
u
12
3u
11
+ 4u
10
+ 8u
9
3u
8
5u
7
+ 7u
6
+ 5u
5
3u
4
+ 3u
2
+ a u, u
17
+ u
16
+ ··· + u + 1i
* 2 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h4.47×10
50
u
60
+8.99×10
50
u
59
+· · ·+8.26×10
50
b5.18×10
50
, 3.57×10
51
u
60
+
4.54 × 10
51
u
59
+ · · · + 1.57 × 10
52
a 1.58 × 10
52
, u
61
+ 2u
60
+ · · · + 17u + 19i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
0.227198u
60
0.289331u
59
+ ··· 26.0080u + 1.00406
0.540853u
60
1.08806u
59
+ ··· + 4.86169u + 0.626578
a
7
=
0.253819u
60
+ 0.465067u
59
+ ··· 3.89004u + 7.64807
0.300175u
60
+ 0.771180u
59
+ ··· 12.1668u 2.42640
a
10
=
0.676302u
60
+ 0.841602u
59
+ ··· + 3.47497u + 9.49090
0.207184u
60
+ 0.269966u
59
+ ··· 4.37631u 0.968624
a
1
=
u
3
u
5
u
3
+ u
a
4
=
0.274794u
60
0.333191u
59
+ ··· 3.80176u 15.2300
0.503752u
60
0.859618u
59
+ ··· + 9.74194u 3.86368
a
8
=
0.313655u
60
+ 0.798733u
59
+ ··· 30.8697u + 0.377479
0.540853u
60
1.08806u
59
+ ··· + 4.86169u + 0.626578
a
12
=
0.459255u
60
0.619696u
59
+ ··· + 4.13848u 10.2887
0.255017u
60
+ 0.385918u
59
+ ··· 11.3938u 6.86607
a
11
=
1.18571u
60
1.47546u
59
+ ··· 4.66063u 37.2565
0.0486439u
60
0.362172u
59
+ ··· + 2.29122u 3.22234
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.599933u
60
0.940036u
59
+ ··· 28.5387u + 5.37229
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
61
+ 18u
60
+ ··· + 5229u + 361
c
2
, c
5
u
61
+ 2u
60
+ ··· + 17u + 19
c
3
u
61
+ 2u
60
+ ··· + 82113u + 15047
c
4
, c
10
u
61
+ 3u
60
+ ··· + 21u + 1
c
6
, c
9
u
61
28u
59
+ ··· 4u + 1
c
7
, c
11
, c
12
u
61
+ u
60
+ ··· + 15u 1
c
8
u
61
u
60
+ ··· + 5u 11
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
61
+ 58y
60
+ ··· 1648747y 130321
c
2
, c
5
y
61
18y
60
+ ··· + 5229y 361
c
3
y
61
72y
60
+ ··· + 15660841481y 226412209
c
4
, c
10
y
61
+ 17y
60
+ ··· + 63y 1
c
6
, c
9
y
61
56y
60
+ ··· + 94y 1
c
7
, c
11
, c
12
y
61
15y
60
+ ··· + 31y 1
c
8
y
61
+ y
60
+ ··· + 7945y 121
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.008560 + 0.099272I
a = 0.30905 1.85898I
b = 0.359420 0.718984I
3.62853 2.81695I 7.75571 + 7.59659I
u = 1.008560 0.099272I
a = 0.30905 + 1.85898I
b = 0.359420 + 0.718984I
3.62853 + 2.81695I 7.75571 7.59659I
u = 0.059768 + 1.029870I
a = 0.357240 + 0.027030I
b = 0.775249 + 0.356076I
3.37069 + 4.37380I 4.08170 9.15688I
u = 0.059768 1.029870I
a = 0.357240 0.027030I
b = 0.775249 0.356076I
3.37069 4.37380I 4.08170 + 9.15688I
u = 0.711308 + 0.756370I
a = 0.898738 + 0.163809I
b = 0.502080 + 0.422908I
2.16071 2.54963I 1.92850 + 5.48932I
u = 0.711308 0.756370I
a = 0.898738 0.163809I
b = 0.502080 0.422908I
2.16071 + 2.54963I 1.92850 5.48932I
u = 0.802317 + 0.516125I
a = 1.53275 + 0.59230I
b = 0.14998 + 1.42541I
6.39239 + 2.05870I 6.76486 3.26008I
u = 0.802317 0.516125I
a = 1.53275 0.59230I
b = 0.14998 1.42541I
6.39239 2.05870I 6.76486 + 3.26008I
u = 0.681279 + 0.639801I
a = 0.355489 0.164381I
b = 1.136570 0.305208I
2.72340 + 1.00029I 0.33756 + 1.68143I
u = 0.681279 0.639801I
a = 0.355489 + 0.164381I
b = 1.136570 + 0.305208I
2.72340 1.00029I 0.33756 1.68143I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.855118 + 0.666348I
a = 0.79912 1.53720I
b = 0.044913 1.261780I
1.78842 + 2.57888I 3.59230 3.67922I
u = 0.855118 0.666348I
a = 0.79912 + 1.53720I
b = 0.044913 + 1.261780I
1.78842 2.57888I 3.59230 + 3.67922I
u = 0.830799 + 0.768291I
a = 0.040905 0.410536I
b = 0.438873 0.240508I
0.20731 + 2.69693I 1.60164 3.85142I
u = 0.830799 0.768291I
a = 0.040905 + 0.410536I
b = 0.438873 + 0.240508I
0.20731 2.69693I 1.60164 + 3.85142I
u = 1.132350 + 0.015313I
a = 0.529981 0.317231I
b = 0.499234 0.170729I
2.57618 + 0.03241I 6.83473 + 2.23858I
u = 1.132350 0.015313I
a = 0.529981 + 0.317231I
b = 0.499234 + 0.170729I
2.57618 0.03241I 6.83473 2.23858I
u = 0.797110 + 0.332880I
a = 0.93154 2.92490I
b = 0.573126 0.489509I
1.86824 4.30118I 1.43694 + 7.83913I
u = 0.797110 0.332880I
a = 0.93154 + 2.92490I
b = 0.573126 + 0.489509I
1.86824 + 4.30118I 1.43694 7.83913I
u = 1.005330 + 0.593094I
a = 0.285708 1.177370I
b = 0.222145 0.767554I
0.86882 + 2.72261I 4.26405 + 0.I
u = 1.005330 0.593094I
a = 0.285708 + 1.177370I
b = 0.222145 + 0.767554I
0.86882 2.72261I 4.26405 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.778504 + 0.873488I
a = 0.212728 + 0.508358I
b = 0.949362 + 0.147769I
4.30301 0.06144I 4.49581 + 0.I
u = 0.778504 0.873488I
a = 0.212728 0.508358I
b = 0.949362 0.147769I
4.30301 + 0.06144I 4.49581 + 0.I
u = 0.760268 + 0.241047I
a = 0.398024 + 1.076770I
b = 1.232000 + 0.398283I
1.36337 + 3.68980I 4.58791 6.16767I
u = 0.760268 0.241047I
a = 0.398024 1.076770I
b = 1.232000 0.398283I
1.36337 3.68980I 4.58791 + 6.16767I
u = 0.876318 + 0.829854I
a = 0.77583 1.74978I
b = 1.21040 1.31023I
7.73388 + 0.14159I 0
u = 0.876318 0.829854I
a = 0.77583 + 1.74978I
b = 1.21040 + 1.31023I
7.73388 0.14159I 0
u = 1.001920 + 0.674098I
a = 0.35058 1.68445I
b = 1.048960 0.498864I
1.72001 6.24237I 0
u = 1.001920 0.674098I
a = 0.35058 + 1.68445I
b = 1.048960 + 0.498864I
1.72001 + 6.24237I 0
u = 0.859996 + 0.852993I
a = 0.505439 + 0.295038I
b = 1.21247 + 1.10581I
9.10418 0.98120I 0
u = 0.859996 0.852993I
a = 0.505439 0.295038I
b = 1.21247 1.10581I
9.10418 + 0.98120I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.743198 + 0.258578I
a = 1.14961 + 2.70783I
b = 0.02378 + 1.65985I
7.66046 1.07355I 0.63774 + 8.35173I
u = 0.743198 0.258578I
a = 1.14961 2.70783I
b = 0.02378 1.65985I
7.66046 + 1.07355I 0.63774 8.35173I
u = 0.985859 + 0.708002I
a = 1.18958 + 1.16281I
b = 0.603722 + 0.517705I
1.33700 + 8.12439I 0. 11.41912I
u = 0.985859 0.708002I
a = 1.18958 1.16281I
b = 0.603722 0.517705I
1.33700 8.12439I 0. + 11.41912I
u = 0.747298 + 0.958094I
a = 0.384523 0.093109I
b = 1.27040 1.04462I
8.45288 9.12237I 0
u = 0.747298 0.958094I
a = 0.384523 + 0.093109I
b = 1.27040 + 1.04462I
8.45288 + 9.12237I 0
u = 0.513333 + 0.577329I
a = 0.147645 0.303415I
b = 1.097740 0.294525I
2.71819 + 1.05648I 1.23406 + 1.60799I
u = 0.513333 0.577329I
a = 0.147645 + 0.303415I
b = 1.097740 + 0.294525I
2.71819 1.05648I 1.23406 1.60799I
u = 0.920582 + 0.813292I
a = 0.834573 0.068760I
b = 1.38008 1.21627I
7.59405 6.27627I 0
u = 0.920582 0.813292I
a = 0.834573 + 0.068760I
b = 1.38008 + 1.21627I
7.59405 + 6.27627I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.188700 + 0.367540I
a = 0.51935 + 1.50281I
b = 0.734725 + 0.839423I
0.58425 9.12112I 0
u = 1.188700 0.367540I
a = 0.51935 1.50281I
b = 0.734725 0.839423I
0.58425 + 9.12112I 0
u = 0.943245 + 0.820348I
a = 0.77128 + 1.86248I
b = 1.05879 + 1.19926I
8.84141 + 7.20713I 0
u = 0.943245 0.820348I
a = 0.77128 1.86248I
b = 1.05879 1.19926I
8.84141 7.20713I 0
u = 0.816581 + 0.959000I
a = 0.543543 + 0.025883I
b = 1.20038 + 0.96984I
9.60140 + 1.01873I 0
u = 0.816581 0.959000I
a = 0.543543 0.025883I
b = 1.20038 0.96984I
9.60140 1.01873I 0
u = 0.729689 + 0.092257I
a = 2.17992 1.30658I
b = 0.296181 0.865356I
4.76315 0.37609I 6.92192 3.20821I
u = 0.729689 0.092257I
a = 2.17992 + 1.30658I
b = 0.296181 + 0.865356I
4.76315 + 0.37609I 6.92192 + 3.20821I
u = 0.958783 + 0.851896I
a = 0.574031 0.735538I
b = 0.272425 0.985135I
0.94086 + 3.29997I 0
u = 0.958783 0.851896I
a = 0.574031 + 0.735538I
b = 0.272425 + 0.985135I
0.94086 3.29997I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.008090 + 0.801211I
a = 0.049974 0.714510I
b = 1.004090 0.082477I
3.59655 6.16597I 0
u = 1.008090 0.801211I
a = 0.049974 + 0.714510I
b = 1.004090 + 0.082477I
3.59655 + 6.16597I 0
u = 0.634593 + 0.305711I
a = 1.70511 + 2.78485I
b = 0.475869 + 0.583891I
1.76589 1.46394I 2.18428 1.39749I
u = 0.634593 0.305711I
a = 1.70511 2.78485I
b = 0.475869 0.583891I
1.76589 + 1.46394I 2.18428 + 1.39749I
u = 1.32936
a = 0.425742
b = 0.130836
2.35229 0
u = 1.022890 + 0.850141I
a = 0.46632 + 1.56053I
b = 1.17031 + 1.15196I
8.93314 7.65090I 0
u = 1.022890 0.850141I
a = 0.46632 1.56053I
b = 1.17031 1.15196I
8.93314 + 7.65090I 0
u = 1.054050 + 0.811352I
a = 0.55964 1.79633I
b = 1.23639 1.18766I
7.4752 + 15.6144I 0
u = 1.054050 0.811352I
a = 0.55964 + 1.79633I
b = 1.23639 + 1.18766I
7.4752 15.6144I 0
u = 0.200523 + 0.477929I
a = 0.745281 0.474801I
b = 0.274077 0.499104I
0.075701 + 1.180500I 0.98721 5.73205I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.200523 0.477929I
a = 0.745281 + 0.474801I
b = 0.274077 + 0.499104I
0.075701 1.180500I 0.98721 + 5.73205I
11
II.
I
u
2
= hu
15
+ u
14
+ · · · + b 1, u
14
+ 2u
13
+ · · · + a u, u
17
+ u
16
+ · · · + u + 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
u
14
2u
13
+ ··· 3u
2
+ u
u
15
u
14
+ ··· + 2u + 1
a
7
=
2u
16
+ u
15
+ ··· 11u
2
+ 3
u
13
+ u
12
+ ··· u
2
+ u
a
10
=
2u
16
2u
15
+ ··· + u + 1
u
16
u
15
+ ··· 2u
2
+ 1
a
1
=
u
3
u
5
u
3
+ u
a
4
=
u
16
+ 3u
15
+ ··· 6u 2
u
16
+ u
15
+ ··· 5u
2
2u
a
8
=
u
15
4u
13
+ ··· u 1
u
15
u
14
+ ··· + 2u + 1
a
12
=
u
16
+ u
15
+ ··· + 8u
2
2
2u
16
+ 2u
15
+ ··· 3u
2
u
a
11
=
u
16
+ 3u
14
+ ··· 2u
2
+ 2
u
16
+ u
15
+ ··· 6u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
16
+ u
15
+ 11u
14
10u
13
33u
12
+ 26u
11
+ 60u
10
63u
9
83u
8
+ 74u
7
+ 83u
6
77u
5
57u
4
+ 42u
3
+ 26u
2
16u 13
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
7u
16
+ ··· + 7u 1
c
2
u
17
u
16
+ ··· + u 1
c
3
u
17
+ u
16
+ ··· + u 1
c
4
u
17
+ 8u
15
+ ··· + u + 1
c
5
u
17
+ u
16
+ ··· + u + 1
c
6
u
17
+ u
16
+ ··· 2u + 3
c
7
u
17
4u
16
+ ··· + u 1
c
8
u
17
+ 6u
15
+ ··· + u + 1
c
9
u
17
u
16
+ ··· 2u 3
c
10
u
17
+ 8u
15
+ ··· + u 1
c
11
, c
12
u
17
+ 4u
16
+ ··· + u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 13y
16
+ ··· 13y 1
c
2
, c
5
y
17
7y
16
+ ··· + 7y 1
c
3
y
17
y
16
+ ··· + 23y 1
c
4
, c
10
y
17
+ 16y
16
+ ··· 15y 1
c
6
, c
9
y
17
17y
16
+ ··· + 76y 9
c
7
, c
11
, c
12
y
17
16y
16
+ ··· + 9y 1
c
8
y
17
+ 12y
16
+ ··· + 3y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.671850 + 0.699249I
a = 0.841267 0.388532I
b = 0.903817 0.063102I
3.25147 + 1.97750I 4.64322 3.77889I
u = 0.671850 0.699249I
a = 0.841267 + 0.388532I
b = 0.903817 + 0.063102I
3.25147 1.97750I 4.64322 + 3.77889I
u = 0.866153 + 0.652957I
a = 0.59645 + 1.79019I
b = 0.053159 + 1.090200I
2.38366 2.53905I 11.16316 + 2.70355I
u = 0.866153 0.652957I
a = 0.59645 1.79019I
b = 0.053159 1.090200I
2.38366 + 2.53905I 11.16316 2.70355I
u = 0.866800 + 0.682644I
a = 1.38670 1.09683I
b = 0.04620 1.82956I
5.11635 + 2.63302I 0.67661 3.79445I
u = 0.866800 0.682644I
a = 1.38670 + 1.09683I
b = 0.04620 + 1.82956I
5.11635 2.63302I 0.67661 + 3.79445I
u = 0.841839 + 0.249282I
a = 1.80507 + 0.60352I
b = 0.142712 + 0.798548I
4.69017 + 1.10526I 5.39958 6.02313I
u = 0.841839 0.249282I
a = 1.80507 0.60352I
b = 0.142712 0.798548I
4.69017 1.10526I 5.39958 + 6.02313I
u = 0.790910 + 0.155131I
a = 1.28257 2.60669I
b = 0.14748 1.56229I
8.03189 0.67257I 11.87928 2.66967I
u = 0.790910 0.155131I
a = 1.28257 + 2.60669I
b = 0.14748 + 1.56229I
8.03189 + 0.67257I 11.87928 + 2.66967I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.015230 + 0.682788I
a = 0.35180 1.41265I
b = 0.848573 0.216469I
2.19989 7.34377I 1.56348 + 8.60649I
u = 1.015230 0.682788I
a = 0.35180 + 1.41265I
b = 0.848573 + 0.216469I
2.19989 + 7.34377I 1.56348 8.60649I
u = 1.30846
a = 0.668334
b = 0.491899
2.10341 15.5530
u = 0.448167 + 0.451140I
a = 1.27164 + 1.39509I
b = 0.799335 + 0.224628I
2.24044 + 2.96010I 2.17241 2.41528I
u = 0.448167 0.451140I
a = 1.27164 1.39509I
b = 0.799335 0.224628I
2.24044 2.96010I 2.17241 + 2.41528I
u = 1.033110 + 0.897117I
a = 0.447483 + 0.628029I
b = 0.219084 + 0.822435I
1.22245 + 3.54950I 12.5372 14.2971I
u = 1.033110 0.897117I
a = 0.447483 0.628029I
b = 0.219084 0.822435I
1.22245 3.54950I 12.5372 + 14.2971I
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
7u
16
+ ··· + 7u 1)(u
61
+ 18u
60
+ ··· + 5229u + 361)
c
2
(u
17
u
16
+ ··· + u 1)(u
61
+ 2u
60
+ ··· + 17u + 19)
c
3
(u
17
+ u
16
+ ··· + u 1)(u
61
+ 2u
60
+ ··· + 82113u + 15047)
c
4
(u
17
+ 8u
15
+ ··· + u + 1)(u
61
+ 3u
60
+ ··· + 21u + 1)
c
5
(u
17
+ u
16
+ ··· + u + 1)(u
61
+ 2u
60
+ ··· + 17u + 19)
c
6
(u
17
+ u
16
+ ··· 2u + 3)(u
61
28u
59
+ ··· 4u + 1)
c
7
(u
17
4u
16
+ ··· + u 1)(u
61
+ u
60
+ ··· + 15u 1)
c
8
(u
17
+ 6u
15
+ ··· + u + 1)(u
61
u
60
+ ··· + 5u 11)
c
9
(u
17
u
16
+ ··· 2u 3)(u
61
28u
59
+ ··· 4u + 1)
c
10
(u
17
+ 8u
15
+ ··· + u 1)(u
61
+ 3u
60
+ ··· + 21u + 1)
c
11
, c
12
(u
17
+ 4u
16
+ ··· + u + 1)(u
61
+ u
60
+ ··· + 15u 1)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
17
+ 13y
16
+ ··· 13y 1)
· (y
61
+ 58y
60
+ ··· 1648747y 130321)
c
2
, c
5
(y
17
7y
16
+ ··· + 7y 1)(y
61
18y
60
+ ··· + 5229y 361)
c
3
(y
17
y
16
+ ··· + 23y 1)
· (y
61
72y
60
+ ··· + 15660841481y 226412209)
c
4
, c
10
(y
17
+ 16y
16
+ ··· 15y 1)(y
61
+ 17y
60
+ ··· + 63y 1)
c
6
, c
9
(y
17
17y
16
+ ··· + 76y 9)(y
61
56y
60
+ ··· + 94y 1)
c
7
, c
11
, c
12
(y
17
16y
16
+ ··· + 9y 1)(y
61
15y
60
+ ··· + 31y 1)
c
8
(y
17
+ 12y
16
+ ··· + 3y 1)(y
61
+ y
60
+ ··· + 7945y 121)
18