12n
0493
(K12n
0493
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 9 12 5 7 4 8 7
Solving Sequence
2,6 3,9
7 10 1 5 4 8 12 11
c
2
c
6
c
9
c
1
c
5
c
4
c
8
c
12
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.43760 × 10
104
u
68
+ 2.00230 × 10
105
u
67
+ ··· + 1.22634 × 10
105
b 1.11649 × 10
106
,
4.64010 × 10
105
u
68
1.59745 × 10
106
u
67
+ ··· + 1.34897 × 10
106
a + 7.48313 × 10
106
,
u
69
4u
68
+ ··· + 56u 11i
I
u
2
= h10u
22
+ 5u
21
+ ··· + b 13, 5u
22
+ 2u
21
+ ··· + a 3, u
23
+ u
22
+ ··· u 1i
* 2 irreducible components of dim
C
= 0, with total 92 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5.44 × 10
104
u
68
+ 2.00 × 10
105
u
67
+ · · · + 1.23 × 10
105
b 1.12 ×
10
106
, 4.64 × 10
105
u
68
1.60 × 10
106
u
67
+ · · · + 1.35 × 10
106
a + 7.48 ×
10
106
, u
69
4u
68
+ · · · + 56u 11i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
0.343973u
68
+ 1.18420u
67
+ ··· + 17.5685u 5.54728
0.443401u
68
1.63275u
67
+ ··· 32.3170u + 9.10424
a
7
=
0.576164u
68
+ 1.77245u
67
+ ··· + 24.1892u 5.92136
0.358276u
68
+ 0.999822u
67
+ ··· + 13.4977u 3.58010
a
10
=
0.494384u
68
1.74440u
67
+ ··· 36.5327u + 8.98958
0.165294u
68
0.478041u
67
+ ··· 7.38945u + 2.38124
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
4
=
1.10192u
68
3.35873u
67
+ ··· 47.8714u + 14.8013
0.0132321u
68
0.00521372u
67
+ ··· + 5.24343u 0.0882060
a
8
=
0.311783u
68
+ 1.36760u
67
+ ··· + 27.5302u 9.20533
0.475591u
68
1.44935u
67
+ ··· 22.3553u + 5.44619
a
12
=
0.842075u
68
3.29112u
67
+ ··· 71.9419u + 20.0300
0.344233u
68
+ 0.630033u
67
+ ··· 6.87988u + 4.46895
a
11
=
0.829938u
68
+ 1.76140u
67
+ ··· 4.47063u + 5.32558
1.27286u
68
+ 3.52866u
67
+ ··· + 35.8363u 4.75348
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3.43232u
68
10.6390u
67
+ ··· 136.515u + 28.1198
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
69
+ 36u
68
+ ··· + 474u + 121
c
2
, c
5
u
69
+ 4u
68
+ ··· + 56u + 11
c
3
u
69
+ u
68
+ ··· + 29817u + 6379
c
4
, c
10
u
69
+ 3u
68
+ ··· 1049u + 701
c
6
, c
9
u
69
3u
68
+ ··· + 55u + 193
c
7
, c
11
, c
12
u
69
+ 2u
68
+ ··· + 13u 1
c
8
u
69
u
68
+ ··· + 395u 29
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
69
+ 8y
68
+ ··· 141470y 14641
c
2
, c
5
y
69
36y
68
+ ··· + 474y 121
c
3
y
69
+ 81y
68
+ ··· 1405779003y 40691641
c
4
, c
10
y
69
+ 77y
68
+ ··· 18986053y 491401
c
6
, c
9
y
69
33y
68
+ ··· + 199499y 37249
c
7
, c
11
, c
12
y
69
+ 20y
68
+ ··· + 9y 1
c
8
y
69
23y
68
+ ··· + 200453y 841
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.290552 + 0.976534I
a = 0.662659 + 1.042150I
b = 0.021606 + 0.325176I
3.93320 4.10094I 0. + 7.59043I
u = 0.290552 0.976534I
a = 0.662659 1.042150I
b = 0.021606 0.325176I
3.93320 + 4.10094I 0. 7.59043I
u = 0.170915 + 1.016760I
a = 0.735038 0.888007I
b = 0.122632 + 0.149326I
3.69662 + 2.16087I 0
u = 0.170915 1.016760I
a = 0.735038 + 0.888007I
b = 0.122632 0.149326I
3.69662 2.16087I 0
u = 0.845794 + 0.445199I
a = 1.042270 0.541687I
b = 1.05454 1.32366I
1.75302 + 0.23405I 2.64178 + 0.I
u = 0.845794 0.445199I
a = 1.042270 + 0.541687I
b = 1.05454 + 1.32366I
1.75302 0.23405I 2.64178 + 0.I
u = 0.798359 + 0.685065I
a = 1.103240 0.280353I
b = 0.552794 0.298714I
2.19476 + 0.59175I 0
u = 0.798359 0.685065I
a = 1.103240 + 0.280353I
b = 0.552794 + 0.298714I
2.19476 0.59175I 0
u = 0.611426 + 0.705280I
a = 0.834581 + 0.752090I
b = 0.413709 0.331884I
6.87382 + 1.62388I 8.32922 2.64435I
u = 0.611426 0.705280I
a = 0.834581 0.752090I
b = 0.413709 + 0.331884I
6.87382 1.62388I 8.32922 + 2.64435I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.673306 + 0.638312I
a = 1.45289 0.49248I
b = 0.339907 + 0.110846I
2.72164 0.99882I 0. 1.55232I
u = 0.673306 0.638312I
a = 1.45289 + 0.49248I
b = 0.339907 0.110846I
2.72164 + 0.99882I 0. + 1.55232I
u = 0.828451 + 0.406795I
a = 1.37279 0.90899I
b = 0.076668 0.891427I
1.87674 3.82550I 0. + 7.69744I
u = 0.828451 0.406795I
a = 1.37279 + 0.90899I
b = 0.076668 + 0.891427I
1.87674 + 3.82550I 0. 7.69744I
u = 1.011290 + 0.463825I
a = 0.817036 1.011240I
b = 1.21636 1.85408I
1.46489 + 5.12150I 0
u = 1.011290 0.463825I
a = 0.817036 + 1.011240I
b = 1.21636 + 1.85408I
1.46489 5.12150I 0
u = 1.048530 + 0.378591I
a = 0.491834 0.900948I
b = 0.00957 1.57580I
2.49072 + 3.79882I 0
u = 1.048530 0.378591I
a = 0.491834 + 0.900948I
b = 0.00957 + 1.57580I
2.49072 3.79882I 0
u = 0.398655 + 1.050660I
a = 0.931521 + 0.797871I
b = 0.157270 + 0.032104I
2.97736 + 9.69199I 0
u = 0.398655 1.050660I
a = 0.931521 0.797871I
b = 0.157270 0.032104I
2.97736 9.69199I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.843195 + 0.221726I
a = 0.93965 + 1.06792I
b = 0.52957 + 1.58476I
1.18583 1.43148I 3.84710 6.37744I
u = 0.843195 0.221726I
a = 0.93965 1.06792I
b = 0.52957 1.58476I
1.18583 + 1.43148I 3.84710 + 6.37744I
u = 0.592910 + 0.619767I
a = 1.42026 0.66221I
b = 0.267942 + 0.039618I
2.72523 1.00845I 1.13200 1.33542I
u = 0.592910 0.619767I
a = 1.42026 + 0.66221I
b = 0.267942 0.039618I
2.72523 + 1.00845I 1.13200 + 1.33542I
u = 0.937541 + 0.663875I
a = 0.369232 1.125340I
b = 0.23643 1.79333I
1.73480 5.81339I 0
u = 0.937541 0.663875I
a = 0.369232 + 1.125340I
b = 0.23643 + 1.79333I
1.73480 + 5.81339I 0
u = 1.095940 + 0.350670I
a = 0.474582 + 0.632682I
b = 1.72631 + 1.19121I
3.07674 3.26894I 0
u = 1.095940 0.350670I
a = 0.474582 0.632682I
b = 1.72631 1.19121I
3.07674 + 3.26894I 0
u = 1.081310 + 0.487072I
a = 0.659733 0.708574I
b = 0.62165 1.72240I
7.58609 + 6.42641I 0
u = 1.081310 0.487072I
a = 0.659733 + 0.708574I
b = 0.62165 + 1.72240I
7.58609 6.42641I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.105510 + 0.431642I
a = 1.004780 + 0.584794I
b = 0.26453 + 1.61847I
7.94202 0.79088I 0
u = 1.105510 0.431642I
a = 1.004780 0.584794I
b = 0.26453 1.61847I
7.94202 + 0.79088I 0
u = 1.147280 + 0.304107I
a = 0.550803 + 0.761091I
b = 0.31435 + 1.82784I
9.68321 0.62268I 0
u = 1.147280 0.304107I
a = 0.550803 0.761091I
b = 0.31435 1.82784I
9.68321 + 0.62268I 0
u = 0.993265 + 0.683955I
a = 0.282845 1.144910I
b = 0.76540 1.96652I
1.75235 + 6.29447I 0
u = 0.993265 0.683955I
a = 0.282845 + 1.144910I
b = 0.76540 + 1.96652I
1.75235 6.29447I 0
u = 1.207420 + 0.035311I
a = 0.069551 + 0.357262I
b = 0.526334 + 0.627810I
2.81273 0.16209I 0
u = 1.207420 0.035311I
a = 0.069551 0.357262I
b = 0.526334 0.627810I
2.81273 + 0.16209I 0
u = 1.033920 + 0.650381I
a = 0.381960 + 0.552392I
b = 1.18877 + 1.43009I
5.59026 + 3.61321I 0
u = 1.033920 0.650381I
a = 0.381960 0.552392I
b = 1.18877 1.43009I
5.59026 3.61321I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.117680 + 0.556781I
a = 0.890564 0.750983I
b = 0.37281 1.65828I
7.95415 8.38570I 0
u = 1.117680 0.556781I
a = 0.890564 + 0.750983I
b = 0.37281 + 1.65828I
7.95415 + 8.38570I 0
u = 1.085710 + 0.625989I
a = 0.503128 + 0.612693I
b = 0.287588 + 1.243300I
1.07599 2.78600I 0
u = 1.085710 0.625989I
a = 0.503128 0.612693I
b = 0.287588 1.243300I
1.07599 + 2.78600I 0
u = 0.798698 + 0.974655I
a = 0.432695 + 0.595898I
b = 0.166512 + 0.361764I
0.24985 3.26069I 0
u = 0.798698 0.974655I
a = 0.432695 0.595898I
b = 0.166512 0.361764I
0.24985 + 3.26069I 0
u = 0.319351 + 0.663934I
a = 1.11830 + 1.01941I
b = 0.155956 + 1.246900I
5.68469 + 3.59684I 0.14375 2.17339I
u = 0.319351 0.663934I
a = 1.11830 1.01941I
b = 0.155956 1.246900I
5.68469 3.59684I 0.14375 + 2.17339I
u = 0.961426 + 0.848715I
a = 0.426077 + 0.482317I
b = 0.077045 + 1.197380I
0.94415 3.29961I 0
u = 0.961426 0.848715I
a = 0.426077 0.482317I
b = 0.077045 1.197380I
0.94415 + 3.29961I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.687662 + 0.185413I
a = 1.79140 0.10939I
b = 0.487312 1.099210I
4.79965 + 0.76507I 0.89012 1.45079I
u = 0.687662 0.185413I
a = 1.79140 + 0.10939I
b = 0.487312 + 1.099210I
4.79965 0.76507I 0.89012 + 1.45079I
u = 1.196820 + 0.622088I
a = 0.667975 + 0.833159I
b = 0.97633 + 1.75198I
1.19205 + 9.84022I 0
u = 1.196820 0.622088I
a = 0.667975 0.833159I
b = 0.97633 1.75198I
1.19205 9.84022I 0
u = 1.258550 + 0.582507I
a = 0.452188 0.889836I
b = 1.10957 1.91755I
7.04483 7.85806I 0
u = 1.258550 0.582507I
a = 0.452188 + 0.889836I
b = 1.10957 + 1.91755I
7.04483 + 7.85806I 0
u = 1.213600 + 0.688126I
a = 0.517780 + 0.965581I
b = 1.02405 + 2.11674I
5.5104 15.9437I 0
u = 1.213600 0.688126I
a = 0.517780 0.965581I
b = 1.02405 2.11674I
5.5104 + 15.9437I 0
u = 0.499390 + 0.340618I
a = 0.919752 0.049244I
b = 0.05015 2.33868I
5.61165 2.54761I 5.30359 + 0.02313I
u = 0.499390 0.340618I
a = 0.919752 + 0.049244I
b = 0.05015 + 2.33868I
5.61165 + 2.54761I 5.30359 0.02313I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.43623
a = 0.433547
b = 0.479698
2.53296 0
u = 1.41770 + 0.37374I
a = 0.534463 + 0.162015I
b = 1.213010 + 0.496378I
8.86518 + 2.79325I 0
u = 1.41770 0.37374I
a = 0.534463 0.162015I
b = 1.213010 0.496378I
8.86518 2.79325I 0
u = 1.46407 + 0.12048I
a = 0.606194 0.353781I
b = 1.12078 0.89971I
9.73214 5.62474I 0
u = 1.46407 0.12048I
a = 0.606194 + 0.353781I
b = 1.12078 + 0.89971I
9.73214 + 5.62474I 0
u = 0.262574 + 0.365414I
a = 1.05942 1.83282I
b = 0.95586 1.50255I
5.45507 2.87217I 0.41122 + 5.66898I
u = 0.262574 0.365414I
a = 1.05942 + 1.83282I
b = 0.95586 + 1.50255I
5.45507 + 2.87217I 0.41122 5.66898I
u = 0.093022 + 0.383439I
a = 0.920079 0.537348I
b = 0.133968 + 0.391648I
0.152285 1.032960I 2.47400 + 6.54310I
u = 0.093022 0.383439I
a = 0.920079 + 0.537348I
b = 0.133968 0.391648I
0.152285 + 1.032960I 2.47400 6.54310I
11
II.
I
u
2
= h10u
22
+5u
21
+· · ·+b13, 5u
22
+2u
21
+· · ·+a3, u
23
+u
22
+· · ·u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
5u
22
2u
21
+ ··· + u + 3
10u
22
5u
21
+ ··· 5u + 13
a
7
=
2u
22
3u
21
+ ··· 2u + 3
4u
22
3u
21
+ ··· 6u + 4
a
10
=
u
22
+ 5u
20
+ ··· u
2
4u
8u
22
2u
21
+ ··· 4u + 11
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
4
=
5u
22
3u
21
+ ··· 6u + 9
7u
22
4u
21
+ ··· 14u + 16
a
8
=
5u
22
u
21
+ ··· + 4u + 1
10u
22
4u
21
+ ··· 2u + 11
a
12
=
3u
22
+ u
21
+ ··· u 7
4u
22
+ 2u
21
+ ··· + 5u 9
a
11
=
2u
22
2u
21
+ ··· + 9u
2
3u
5u
22
+ u
21
+ ··· + u 7
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 10u
21
+ 6u
20
52u
19
29u
18
+ 158u
17
+ 88u
16
345u
15
211u
14
+ 537u
13
+ 359u
12
638u
11
465u
10
+ 558u
9
+ 395u
8
397u
7
259u
6
+ 220u
5
+ 99u
4
84u
3
22u
2
+ 29u
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
23
13u
22
+ ··· + 13u 1
c
2
u
23
+ u
22
+ ··· u 1
c
3
u
23
+ 2u
21
+ ··· + 2u 1
c
4
u
23
+ 12u
21
+ ··· + 19u
2
+ 1
c
5
u
23
u
22
+ ··· u + 1
c
6
u
23
+ 4u
22
+ ··· + 4u + 1
c
7
u
23
+ u
22
+ ··· 6u
2
1
c
8
u
23
8u
21
+ ··· + 8u
2
+ 1
c
9
u
23
4u
22
+ ··· + 4u 1
c
10
u
23
+ 12u
21
+ ··· 19u
2
1
c
11
, c
12
u
23
u
22
+ ··· + 6u
2
+ 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
23
+ 7y
22
+ ··· 7y 1
c
2
, c
5
y
23
13y
22
+ ··· + 13y 1
c
3
y
23
+ 4y
22
+ ··· 28y 1
c
4
, c
10
y
23
+ 24y
22
+ ··· 38y 1
c
6
, c
9
y
23
14y
22
+ ··· 2y 1
c
7
, c
11
, c
12
y
23
+ 19y
22
+ ··· 12y 1
c
8
y
23
16y
22
+ ··· 16y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.727530 + 0.675450I
a = 1.56715 0.40087I
b = 0.658564 + 0.037949I
3.36055 1.47768I 8.91324 + 4.94896I
u = 0.727530 0.675450I
a = 1.56715 + 0.40087I
b = 0.658564 0.037949I
3.36055 + 1.47768I 8.91324 4.94896I
u = 0.714405 + 0.569856I
a = 1.342420 + 0.352259I
b = 0.106804 0.755904I
5.87840 0.07399I 4.63766 1.08939I
u = 0.714405 0.569856I
a = 1.342420 0.352259I
b = 0.106804 + 0.755904I
5.87840 + 0.07399I 4.63766 + 1.08939I
u = 0.873281 + 0.058843I
a = 0.641877 + 1.056520I
b = 0.66167 + 1.39799I
1.38657 + 1.89044I 3.01798 8.02298I
u = 0.873281 0.058843I
a = 0.641877 1.056520I
b = 0.66167 1.39799I
1.38657 1.89044I 3.01798 + 8.02298I
u = 0.682792 + 0.510727I
a = 1.015220 + 0.899830I
b = 0.801359 + 0.100013I
5.58168 2.30519I 2.87757 + 4.60257I
u = 0.682792 0.510727I
a = 1.015220 0.899830I
b = 0.801359 0.100013I
5.58168 + 2.30519I 2.87757 4.60257I
u = 1.013700 + 0.592894I
a = 0.385259 + 0.861396I
b = 1.35384 + 1.59496I
4.88003 + 4.72768I 2.32962 6.66073I
u = 1.013700 0.592894I
a = 0.385259 0.861396I
b = 1.35384 1.59496I
4.88003 4.72768I 2.32962 + 6.66073I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.966870 + 0.667630I
a = 0.395637 1.302340I
b = 0.71928 2.04019I
2.61955 + 6.69998I 6.96792 9.85887I
u = 0.966870 0.667630I
a = 0.395637 + 1.302340I
b = 0.71928 + 2.04019I
2.61955 6.69998I 6.96792 + 9.85887I
u = 1.075530 + 0.534802I
a = 0.628727 + 0.324551I
b = 1.44754 + 1.17940I
4.23211 1.97181I 3.03479 + 1.17838I
u = 1.075530 0.534802I
a = 0.628727 0.324551I
b = 1.44754 1.17940I
4.23211 + 1.97181I 3.03479 1.17838I
u = 1.303880 + 0.187284I
a = 0.064693 0.287125I
b = 0.366099 + 0.386969I
8.98729 + 3.97495I 2.00222 3.71380I
u = 1.303880 0.187284I
a = 0.064693 + 0.287125I
b = 0.366099 0.386969I
8.98729 3.97495I 2.00222 + 3.71380I
u = 0.490623 + 0.440201I
a = 1.30058 1.63355I
b = 0.139386 0.970644I
2.16809 2.83861I 2.59802 + 1.74039I
u = 0.490623 0.440201I
a = 1.30058 + 1.63355I
b = 0.139386 + 0.970644I
2.16809 + 2.83861I 2.59802 1.74039I
u = 0.616125 + 0.120813I
a = 0.586870 + 0.956582I
b = 0.61338 + 2.92957I
6.13496 2.58789I 11.43780 + 1.43765I
u = 0.616125 0.120813I
a = 0.586870 0.956582I
b = 0.61338 2.92957I
6.13496 + 2.58789I 11.43780 1.43765I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.012970 + 0.928867I
a = 0.352126 0.506370I
b = 0.042965 1.016720I
1.20499 3.62050I 8.5555 + 14.1463I
u = 1.012970 0.928867I
a = 0.352126 + 0.506370I
b = 0.042965 + 1.016720I
1.20499 + 3.62050I 8.5555 14.1463I
u = 1.41461
a = 0.472066
b = 0.824925
2.27398 14.3090
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
23
13u
22
+ ··· + 13u 1)(u
69
+ 36u
68
+ ··· + 474u + 121)
c
2
(u
23
+ u
22
+ ··· u 1)(u
69
+ 4u
68
+ ··· + 56u + 11)
c
3
(u
23
+ 2u
21
+ ··· + 2u 1)(u
69
+ u
68
+ ··· + 29817u + 6379)
c
4
(u
23
+ 12u
21
+ ··· + 19u
2
+ 1)(u
69
+ 3u
68
+ ··· 1049u + 701)
c
5
(u
23
u
22
+ ··· u + 1)(u
69
+ 4u
68
+ ··· + 56u + 11)
c
6
(u
23
+ 4u
22
+ ··· + 4u + 1)(u
69
3u
68
+ ··· + 55u + 193)
c
7
(u
23
+ u
22
+ ··· 6u
2
1)(u
69
+ 2u
68
+ ··· + 13u 1)
c
8
(u
23
8u
21
+ ··· + 8u
2
+ 1)(u
69
u
68
+ ··· + 395u 29)
c
9
(u
23
4u
22
+ ··· + 4u 1)(u
69
3u
68
+ ··· + 55u + 193)
c
10
(u
23
+ 12u
21
+ ··· 19u
2
1)(u
69
+ 3u
68
+ ··· 1049u + 701)
c
11
, c
12
(u
23
u
22
+ ··· + 6u
2
+ 1)(u
69
+ 2u
68
+ ··· + 13u 1)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
23
+ 7y
22
+ ··· 7y 1)(y
69
+ 8y
68
+ ··· 141470y 14641)
c
2
, c
5
(y
23
13y
22
+ ··· + 13y 1)(y
69
36y
68
+ ··· + 474y 121)
c
3
(y
23
+ 4y
22
+ ··· 28y 1)
· (y
69
+ 81y
68
+ ··· 1405779003y 40691641)
c
4
, c
10
(y
23
+ 24y
22
+ ··· 38y 1)
· (y
69
+ 77y
68
+ ··· 18986053y 491401)
c
6
, c
9
(y
23
14y
22
+ ··· 2y 1)(y
69
33y
68
+ ··· + 199499y 37249)
c
7
, c
11
, c
12
(y
23
+ 19y
22
+ ··· 12y 1)(y
69
+ 20y
68
+ ··· + 9y 1)
c
8
(y
23
16y
22
+ ··· 16y 1)(y
69
23y
68
+ ··· + 200453y 841)
19