12n
0496
(K12n
0496
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 12 4 7 5 9 6 7
Solving Sequence
4,7
8
9,12
1 3 6 2 5 11 10
c
7
c
8
c
12
c
3
c
6
c
2
c
5
c
11
c
10
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h3u
12
+ u
11
+ 4u
10
5u
9
+ 3u
8
u
7
+ 3u
6
5u
5
7u
4
+ 2u
2
+ 8b + 8u + 6,
u
11
2u
9
+ u
8
4u
7
+ u
6
4u
5
+ 5u
4
2u
3
+ 4u
2
+ 4a 2u + 2,
u
13
+ 3u
11
3u
10
+ 6u
9
6u
8
+ 10u
7
10u
6
+ 8u
5
9u
4
+ 6u
3
2u
2
+ 2u + 2i
I
u
2
= h−12498270u
19
27347075u
18
+ ··· + 27481697b 99369926,
80173179u
19
177871512u
18
+ ··· + 274816970a 993207167, u
20
+ 3u
19
+ ··· + 18u + 5i
I
u
3
= h−u
6
2u
4
u
2
a u
3
2u
2
+ b a u,
2u
6
a + 2u
5
a + 3u
6
+ 6u
4
a + u
5
+ 4u
3
a + 5u
4
+ 8u
2
a + 4u
3
+ 2a
2
+ 4au + 6u
2
+ 2a + u 1,
u
7
+ 2u
5
+ u
4
+ 2u
3
+ u
2
+ 1i
I
u
4
= hb + 1, u
2
+ 2a + u + 2, u
4
+ u
2
+ 2i
I
u
5
= h−u
11
+ u
10
4u
9
+ 4u
8
7u
7
+ 7u
6
5u
5
+ 5u
4
u
2
a u
3
+ u
2
+ b a, 2u
11
u
10
+ ··· + a
2
+ 2,
u
12
u
11
+ 4u
10
4u
9
+ 7u
8
7u
7
+ 5u
6
5u
5
+ u
4
u
3
+ 1i
I
u
6
= hb + u, 2a u + 1, u
2
+ 1i
I
u
7
= hb 1, u
3
+ u
2
+ 2a + u 3, u
4
+ 1i
I
v
1
= ha, b 1, v + 1i
* 8 irreducible components of dim
C
= 0, with total 82 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
1
I.
I
u
1
= h3u
12
+u
11
+· · ·+8b+6, u
11
2u
9
+· · ·+4a+2, u
13
+3u
11
+· · ·+2u+2i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
1
4
u
11
+
1
2
u
9
+ ··· +
1
2
u
1
2
3
8
u
12
1
8
u
11
+ ··· u
3
4
a
1
=
3
8
u
12
+
3
8
u
11
+ ··· +
3
2
u +
1
4
3
8
u
12
1
8
u
11
+ ··· u
3
4
a
3
=
u
u
3
+ u
a
6
=
1
4
u
11
+
1
2
u
9
+ ···
1
2
u +
1
2
3
8
u
12
+
3
8
u
11
+ ···
5
4
u
2
+
1
4
a
2
=
1
4
u
11
1
2
u
9
+ ··· +
1
2
u
1
2
1
8
u
12
3
8
u
11
+ ···
3
4
u
2
1
4
a
5
=
u
1
2
u
12
+
1
2
u
11
+ ··· + u + 1
a
11
=
u
4
u
2
1
1
2
u
12
1
2
u
11
+ ··· 2u 1
a
10
=
1
1
2
u
12
1
2
u
11
+ ··· 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
1
2
u
12
+
5
2
u
11
+
9
2
u
9
13
2
u
8
+
21
2
u
7
21
2
u
6
+
25
2
u
5
39
2
u
4
+ 10u
3
9u
2
+ 8u 9
in decimal forms when there is not enough margin.
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
+ u
12
+ ··· + 45u + 4
c
2
, c
5
, c
6
c
11
, c
12
u
13
+ 3u
12
+ ··· + 3u + 2
c
3
, c
4
, c
7
c
9
u
13
+ 3u
11
+ ··· + 2u + 2
c
8
, c
10
u
13
6u
12
+ ··· + 12u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
+ 11y
12
+ ··· + 913y 16
c
2
, c
5
, c
6
c
11
, c
12
y
13
y
12
+ ··· + 45y 4
c
3
, c
4
, c
7
c
9
y
13
+ 6y
12
+ ··· + 12y 4
c
8
, c
10
y
13
+ 6y
12
+ ··· + 592y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.929226 + 0.280059I
a = 1.57901 + 0.35078I
b = 1.020380 + 0.665255I
0.97155 + 5.22971I 12.23690 3.97423I
u = 0.929226 0.280059I
a = 1.57901 0.35078I
b = 1.020380 0.665255I
0.97155 5.22971I 12.23690 + 3.97423I
u = 0.167516 + 0.866699I
a = 0.245529 + 0.584083I
b = 0.173060 1.267070I
4.28319 0.90080I 9.45658 + 7.47152I
u = 0.167516 0.866699I
a = 0.245529 0.584083I
b = 0.173060 + 1.267070I
4.28319 + 0.90080I 9.45658 7.47152I
u = 0.796399 + 0.915905I
a = 1.57817 0.32207I
b = 0.871377 + 0.416192I
3.44917 7.30520I 10.1022 + 10.2949I
u = 0.796399 0.915905I
a = 1.57817 + 0.32207I
b = 0.871377 0.416192I
3.44917 + 7.30520I 10.1022 10.2949I
u = 0.369074 + 1.182800I
a = 0.137445 + 0.036300I
b = 0.850920 1.124830I
8.13648 + 2.11284I 3.39753 3.18179I
u = 0.369074 1.182800I
a = 0.137445 0.036300I
b = 0.850920 + 1.124830I
8.13648 2.11284I 3.39753 + 3.18179I
u = 0.741404 + 0.995026I
a = 1.037390 + 0.553915I
b = 0.730597 + 0.204654I
2.95235 + 4.56373I 7.10603 0.26574I
u = 0.741404 0.995026I
a = 1.037390 0.553915I
b = 0.730597 0.204654I
2.95235 4.56373I 7.10603 + 0.26574I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.577273 + 1.253670I
a = 1.44865 1.14989I
b = 1.22052 + 0.78529I
5.1437 + 16.4022I 7.06197 9.59363I
u = 0.577273 1.253670I
a = 1.44865 + 1.14989I
b = 1.22052 0.78529I
5.1437 16.4022I 7.06197 + 9.59363I
u = 0.410781
a = 0.959635
b = 0.366431
0.641398 15.2780
6
II.
I
u
2
= h−1.25 × 10
7
u
19
2.73 × 10
7
u
18
+ · · · + 2.75 × 10
7
b 9.94 × 10
7
, 8.02 ×
10
7
u
19
1.78×10
8
u
18
+· · ·+2.75×10
8
a9.93×10
8
, u
20
+3u
19
+· · ·+18u+5i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
0.291733u
19
+ 0.647236u
18
+ ··· + 4.92689u + 3.61407
0.454785u
19
+ 0.995101u
18
+ ··· + 7.42465u + 3.61586
a
1
=
0.163052u
19
0.347865u
18
+ ··· 2.49775u 0.00179062
0.454785u
19
+ 0.995101u
18
+ ··· + 7.42465u + 3.61586
a
3
=
u
u
3
+ u
a
6
=
0.864463u
19
1.98643u
18
+ ··· 16.6818u 6.40771
0.595689u
19
1.29703u
18
+ ··· 9.53604u 3.85004
a
2
=
0.653089u
19
1.43379u
18
+ ··· 9.37011u 2.98023
0.349978u
19
0.737864u
18
+ ··· 3.91291u 1.28352
a
5
=
0.821168u
19
2.00657u
18
+ ··· 18.8114u 8.21548
0.621168u
19
1.40657u
18
+ ··· 10.8114u 4.61548
a
11
=
0.361356u
19
0.786551u
18
+ ··· 5.44322u + 0.633834
0.104807u
19
+ 0.257238u
18
+ ··· + 2.51174u + 2.33233
a
10
=
0.923097u
19
2.14812u
18
+ ··· 14.5205u 4.80434
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
7065492
27481697
u
19
31839998
27481697
u
18
+ ··· +
103205694
27481697
u
125331692
27481697
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
10
+ 3u
9
+ 11u
8
+ 18u
7
+ 33u
6
+ 32u
5
+ 34u
4
+ 18u
3
+ 8u
2
+ u + 1)
2
c
2
, c
5
, c
6
c
11
, c
12
(u
10
u
9
u
8
+ 2u
7
+ 3u
6
4u
5
+ 4u
3
u + 1)
2
c
3
, c
4
, c
7
c
9
u
20
+ 3u
19
+ ··· + 18u + 5
c
8
, c
10
u
20
11u
19
+ ··· 76u + 25
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
10
+ 13y
9
+ ··· + 15y + 1)
2
c
2
, c
5
, c
6
c
11
, c
12
(y
10
3y
9
+ 11y
8
18y
7
+ 33y
6
32y
5
+ 34y
4
18y
3
+ 8y
2
y + 1)
2
c
3
, c
4
, c
7
c
9
y
20
+ 11y
19
+ ··· + 76y + 25
c
8
, c
10
y
20
5y
19
+ ··· 2276y + 625
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.979461 + 0.188210I
a = 1.59751 + 0.26897I
b = 1.142330 + 0.733576I
1.87405 10.79660I 9.84814 + 6.97307I
u = 0.979461 0.188210I
a = 1.59751 0.26897I
b = 1.142330 0.733576I
1.87405 + 10.79660I 9.84814 6.97307I
u = 0.843090 + 0.709533I
a = 1.51303 0.11033I
b = 0.773203 + 0.317670I
3.82303 + 1.33139I 9.94848 5.33149I
u = 0.843090 0.709533I
a = 1.51303 + 0.11033I
b = 0.773203 0.317670I
3.82303 1.33139I 9.94848 + 5.33149I
u = 0.813642 + 0.789464I
a = 1.203100 + 0.561936I
b = 0.773203 + 0.317670I
3.82303 + 1.33139I 9.94848 5.33149I
u = 0.813642 0.789464I
a = 1.203100 0.561936I
b = 0.773203 0.317670I
3.82303 1.33139I 9.94848 + 5.33149I
u = 0.004473 + 1.188620I
a = 0.166971 + 0.462136I
b = 0.351677 0.481849I
3.14663 + 1.17971I 5.77268 5.86187I
u = 0.004473 1.188620I
a = 0.166971 0.462136I
b = 0.351677 + 0.481849I
3.14663 1.17971I 5.77268 + 5.86187I
u = 0.709802 + 0.215491I
a = 1.80898 + 0.45664I
b = 0.794058 + 0.823254I
4.23778 1.45588I 7.02190 + 1.71983I
u = 0.709802 0.215491I
a = 1.80898 0.45664I
b = 0.794058 0.823254I
4.23778 + 1.45588I 7.02190 1.71983I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.540050 + 1.155880I
a = 1.79606 1.06825I
b = 1.014860 + 0.798709I
6.90157 + 6.23908I 5.40880 5.42921I
u = 0.540050 1.155880I
a = 1.79606 + 1.06825I
b = 1.014860 0.798709I
6.90157 6.23908I 5.40880 + 5.42921I
u = 0.256269 + 1.270830I
a = 0.0612993 + 0.1044580I
b = 0.794058 0.823254I
4.23778 + 1.45588I 7.02190 1.71983I
u = 0.256269 1.270830I
a = 0.0612993 0.1044580I
b = 0.794058 + 0.823254I
4.23778 1.45588I 7.02190 + 1.71983I
u = 0.242436 + 0.610608I
a = 1.73616 + 1.08804I
b = 0.351677 + 0.481849I
3.14663 1.17971I 5.77268 + 5.86187I
u = 0.242436 0.610608I
a = 1.73616 1.08804I
b = 0.351677 0.481849I
3.14663 + 1.17971I 5.77268 5.86187I
u = 0.595640 + 1.211330I
a = 1.53920 1.03480I
b = 1.142330 + 0.733576I
1.87405 10.79660I 9.84814 + 6.97307I
u = 0.595640 1.211330I
a = 1.53920 + 1.03480I
b = 1.142330 0.733576I
1.87405 + 10.79660I 9.84814 6.97307I
u = 0.340059 + 1.345340I
a = 0.0979292 0.0498685I
b = 1.014860 0.798709I
6.90157 6.23908I 5.40880 + 5.42921I
u = 0.340059 1.345340I
a = 0.0979292 + 0.0498685I
b = 1.014860 + 0.798709I
6.90157 + 6.23908I 5.40880 5.42921I
11
III. I
u
3
= h−u
6
2u
4
u
2
a u
3
2u
2
+ b a u, 2u
6
a + 3u
6
+ · · · + 2a
1, u
7
+ 2u
5
+ u
4
+ 2u
3
+ u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
a
u
6
+ 2u
4
+ u
2
a + u
3
+ 2u
2
+ a + u
a
1
=
u
6
2u
4
u
2
a u
3
2u
2
u
u
6
+ 2u
4
+ u
2
a + u
3
+ 2u
2
+ a + u
a
3
=
u
u
3
+ u
a
6
=
u
6
a + u
6
+ 2u
4
a + 2u
4
+ 2u
2
a + 2u
2
u
u
5
a + u
6
2u
3
a + 2u
4
au + 2u
2
a
2
=
u
6
a u
6
2u
4
a 2u
4
2u
2
a 2u
2
+ u
u
6
a + u
5
a + u
6
u
4
a + u
5
+ u
3
a + 2u
4
+ 4u
3
+ au + 2u
2
+ a + 3u
a
5
=
u
u
6
+ u
5
u
4
+ 1
a
11
=
u
4
u
2
1
u
6
u
5
2u
4
2u
3
2u
2
u 1
a
10
=
1
u
6
u
5
u
4
2u
3
2u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
+ 4u
5
+ 4u
4
+ 8u
3
+ 8u
2
+ 4u 10
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
+ 7u
13
+ ··· + 254u + 121
c
2
, c
5
, c
6
c
11
, c
12
u
14
+ 3u
13
+ ··· + 34u + 11
c
3
, c
4
, c
7
c
9
(u
7
+ 2u
5
+ u
4
+ 2u
3
+ u
2
+ 1)
2
c
8
, c
10
(u
7
4u
6
+ 8u
5
7u
4
+ 2u
3
+ 3u
2
2u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
+ y
13
+ ··· + 56242y + 14641
c
2
, c
5
, c
6
c
11
, c
12
y
14
7y
13
+ ··· 254y + 121
c
3
, c
4
, c
7
c
9
(y
7
+ 4y
6
+ 8y
5
+ 7y
4
+ 2y
3
3y
2
2y 1)
2
c
8
, c
10
(y
7
+ 12y
5
+ 3y
4
+ 22y
3
3y
2
2y 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.468927 + 1.008510I
a = 0.137111 0.945771I
b = 0.543255 + 0.753172I
1.13946 + 6.00484I 7.73392 8.08638I
u = 0.468927 + 1.008510I
a = 1.15206 + 0.83449I
b = 1.402030 0.105113I
1.13946 + 6.00484I 7.73392 8.08638I
u = 0.468927 1.008510I
a = 0.137111 + 0.945771I
b = 0.543255 0.753172I
1.13946 6.00484I 7.73392 + 8.08638I
u = 0.468927 1.008510I
a = 1.15206 0.83449I
b = 1.402030 + 0.105113I
1.13946 6.00484I 7.73392 + 8.08638I
u = 0.824481
a = 1.134300 + 0.394235I
b = 0.692469 + 0.662223I
0.0577569 10.7630
u = 0.824481
a = 1.134300 0.394235I
b = 0.692469 0.662223I
0.0577569 10.7630
u = 0.391915 + 0.631080I
a = 0.915562 0.479802I
b = 1.164390 + 0.328250I
3.69786 1.46776I 13.4123 + 4.8542I
u = 0.391915 + 0.631080I
a = 1.23572 1.87006I
b = 1.148250 + 0.342291I
3.69786 1.46776I 13.4123 + 4.8542I
u = 0.391915 0.631080I
a = 0.915562 + 0.479802I
b = 1.164390 0.328250I
3.69786 + 1.46776I 13.4123 4.8542I
u = 0.391915 0.631080I
a = 1.23572 + 1.87006I
b = 1.148250 0.342291I
3.69786 + 1.46776I 13.4123 4.8542I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.489252 + 1.239920I
a = 1.10571 + 0.94503I
b = 1.09240 0.92531I
7.27584 9.47458I 4.47246 + 6.21855I
u = 0.489252 + 1.239920I
a = 0.404899 + 0.133299I
b = 0.557760 + 1.149380I
7.27584 9.47458I 4.47246 + 6.21855I
u = 0.489252 1.239920I
a = 1.10571 0.94503I
b = 1.09240 + 0.92531I
7.27584 + 9.47458I 4.47246 6.21855I
u = 0.489252 1.239920I
a = 0.404899 0.133299I
b = 0.557760 1.149380I
7.27584 + 9.47458I 4.47246 6.21855I
16
IV. I
u
4
= hb + 1, u
2
+ 2a + u + 2, u
4
+ u
2
+ 2i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
1
2
u
2
1
2
u 1
1
a
1
=
1
2
u
2
1
2
u
1
a
3
=
u
u
3
+ u
a
6
=
1
2
u
2
1
2
u
1
a
2
=
1
2
u
2
+
1
2
u
u
3
+ u 1
a
5
=
u
u
3
u
a
11
=
1
0
a
10
=
1
u
2
+ 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
12
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
11
c
12
(u 1)
4
c
2
, c
6
(u + 1)
4
c
3
, c
4
, c
7
c
9
u
4
+ u
2
+ 2
c
8
, c
10
(u
2
u + 2)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
+ y + 2)
2
c
8
, c
10
(y
2
+ 3y + 4)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.676097 + 0.978318I
a = 1.58805 + 0.17228I
b = 1.00000
4.11234 5.33349I 14.0000 + 5.2915I
u = 0.676097 0.978318I
a = 1.58805 0.17228I
b = 1.00000
4.11234 + 5.33349I 14.0000 5.2915I
u = 0.676097 + 0.978318I
a = 0.91195 1.15060I
b = 1.00000
4.11234 + 5.33349I 14.0000 5.2915I
u = 0.676097 0.978318I
a = 0.91195 + 1.15060I
b = 1.00000
4.11234 5.33349I 14.0000 + 5.2915I
20
V.
I
u
5
= h−u
11
+u
10
+· · ·+b a, 2u
11
u
10
+· · ·+a
2
+2, u
12
u
11
+· · ·u
3
+1i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
a
u
11
u
10
+ 4u
9
4u
8
+ 7u
7
7u
6
+ 5u
5
5u
4
+ u
2
a + u
3
u
2
+ a
a
1
=
u
11
+ u
10
4u
9
+ 4u
8
7u
7
+ 7u
6
5u
5
+ 5u
4
u
2
a u
3
+ u
2
u
11
u
10
+ 4u
9
4u
8
+ 7u
7
7u
6
+ 5u
5
5u
4
+ u
2
a + u
3
u
2
+ a
a
3
=
u
u
3
+ u
a
6
=
u
11
a u
10
a + ··· + u + 2
u
5
a + u
6
2u
3
a + 2u
4
au + 2u
2
a
2
=
u
11
+ u
10
+ ··· + u
2
+ 2u
u
11
u
10
+ ··· + a + 2u
a
5
=
u
10
+ 3u
8
+ 4u
6
+ u
4
u
2
1
u
11
+ 4u
9
u
8
+ 7u
7
3u
6
+ 5u
5
4u
4
+ u
3
2u
2
1
a
11
=
u
7
+ 2u
5
+ 2u
3
u
9
+ 3u
7
+ 3u
5
u
a
10
=
u
11
4u
9
6u
7
2u
5
+ 3u
3
+ 2u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
9
12u
7
12u
5
+ 4u
3
+ 8u 6
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
12
+ 5u
11
+ ··· + 40u + 9)
2
c
2
, c
5
, c
6
c
11
, c
12
(u
12
u
11
2u
10
+ 4u
9
+ u
8
5u
7
u
6
+ 7u
5
u
4
9u
3
+ 6u
2
+ 2u 3)
2
c
3
, c
4
, c
7
c
9
(u
12
u
11
+ 4u
10
4u
9
+ 7u
8
7u
7
+ 5u
6
5u
5
+ u
4
u
3
+ 1)
2
c
8
, c
10
(u
12
7u
11
+ ··· + 2u
2
+ 1)
2
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
12
+ 3y
11
+ ··· 196y + 81)
2
c
2
, c
5
, c
6
c
11
, c
12
(y
12
5y
11
+ ··· 40y + 9)
2
c
3
, c
4
, c
7
c
9
(y
12
+ 7y
11
+ ··· + 2y
2
+ 1)
2
c
8
, c
10
(y
12
5y
11
+ ··· + 4y + 1)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.386547 + 0.899125I
a = 1.49862 + 0.55245I
b = 1.298590 + 0.085372I
2.96024 1.97241I 11.42428 + 3.68478I
u = 0.386547 + 0.899125I
a = 0.16732 1.65718I
b = 0.805413 + 0.489916I
2.96024 1.97241I 11.42428 + 3.68478I
u = 0.386547 0.899125I
a = 1.49862 0.55245I
b = 1.298590 0.085372I
2.96024 + 1.97241I 11.42428 3.68478I
u = 0.386547 0.899125I
a = 0.16732 + 1.65718I
b = 0.805413 0.489916I
2.96024 + 1.97241I 11.42428 3.68478I
u = 0.206575 + 1.062080I
a = 2.35205 1.46291I
b = 0.666209
0.738851 2.58322 + 0.I
u = 0.206575 + 1.062080I
a = 1.57640 + 2.52499I
b = 1.14988
0.738851 2.58322 + 0.I
u = 0.206575 1.062080I
a = 2.35205 + 1.46291I
b = 0.666209
0.738851 2.58322 + 0.I
u = 0.206575 1.062080I
a = 1.57640 2.52499I
b = 1.14988
0.738851 2.58322 + 0.I
u = 0.869654 + 0.049931I
a = 0.988080 + 0.457240I
b = 0.547085 + 0.953523I
3.69558 + 4.59213I 7.41886 3.20482I
u = 0.869654 + 0.049931I
a = 1.181660 0.546728I
b = 0.973781 0.790428I
3.69558 + 4.59213I 7.41886 3.20482I
24
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.869654 0.049931I
a = 0.988080 0.457240I
b = 0.547085 0.953523I
3.69558 4.59213I 7.41886 + 3.20482I
u = 0.869654 0.049931I
a = 1.181660 + 0.546728I
b = 0.973781 + 0.790428I
3.69558 4.59213I 7.41886 + 3.20482I
u = 0.460851 + 1.226450I
a = 1.09714 + 0.90713I
b = 0.973781 0.790428I
3.69558 + 4.59213I 7.41886 3.20482I
u = 0.460851 + 1.226450I
a = 0.257899 + 0.179897I
b = 0.547085 + 0.953523I
3.69558 + 4.59213I 7.41886 3.20482I
u = 0.460851 1.226450I
a = 1.09714 0.90713I
b = 0.973781 + 0.790428I
3.69558 4.59213I 7.41886 + 3.20482I
u = 0.460851 1.226450I
a = 0.257899 0.179897I
b = 0.547085 0.953523I
3.69558 4.59213I 7.41886 + 3.20482I
u = 0.436607 + 1.253750I
a = 1.14929 + 0.87685I
b = 0.769522 0.881187I
7.66009 3.73050 + 0.I
u = 0.436607 + 1.253750I
a = 0.286388 + 0.376891I
b = 0.769522 + 0.881187I
7.66009 3.73050 + 0.I
u = 0.436607 1.253750I
a = 1.14929 0.87685I
b = 0.769522 + 0.881187I
7.66009 3.73050 + 0.I
u = 0.436607 1.253750I
a = 0.286388 0.376891I
b = 0.769522 0.881187I
7.66009 3.73050 + 0.I
25
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.525382 + 0.335320I
a = 0.341666 0.424256I
b = 0.805413 + 0.489916I
2.96024 1.97241I 11.42428 + 3.68478I
u = 0.525382 + 0.335320I
a = 1.90157 1.24427I
b = 1.298590 + 0.085372I
2.96024 1.97241I 11.42428 + 3.68478I
u = 0.525382 0.335320I
a = 0.341666 + 0.424256I
b = 0.805413 0.489916I
2.96024 + 1.97241I 11.42428 3.68478I
u = 0.525382 0.335320I
a = 1.90157 + 1.24427I
b = 1.298590 0.085372I
2.96024 + 1.97241I 11.42428 3.68478I
26
VI. I
u
6
= hb + u, 2a u + 1, u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
1
a
9
=
0
1
a
12
=
1
2
u
1
2
u
a
1
=
3
2
u
1
2
u
a
3
=
u
0
a
6
=
1
2
u +
1
2
1
a
2
=
1
2
u
1
2
u
a
5
=
u
2
a
11
=
1
2u
a
10
=
1
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
11
, c
12
u
2
+ 1
c
8
, c
10
(u 1)
2
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
10
(y 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
11
, c
12
(y + 1)
2
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.500000 + 0.500000I
b = 1.000000I
4.93480 0
u = 1.000000I
a = 0.500000 0.500000I
b = 1.000000I
4.93480 0
30
VII. I
u
7
= hb 1, u
3
+ u
2
+ 2a + u 3, u
4
+ 1i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
1
2
u
3
1
2
u
2
1
2
u +
3
2
1
a
1
=
1
2
u
3
1
2
u
2
1
2
u +
1
2
1
a
3
=
u
u
3
+ u
a
6
=
1
2
u
3
+
1
2
u
2
+
1
2
u
1
2
1
a
2
=
1
2
u
3
1
2
u
2
+
1
2
u +
1
2
u
3
+ u + 1
a
5
=
u
u
3
+ u
a
11
=
1
0
a
10
=
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
(u 1)
4
c
3
, c
4
, c
7
c
9
u
4
+ 1
c
5
, c
11
, c
12
(u + 1)
4
c
8
, c
10
(u
2
+ 1)
2
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
+ 1)
2
c
8
, c
10
(y + 1)
4
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.707107 + 0.707107I
a = 1.50000 1.20711I
b = 1.00000
4.93480 16.0000
u = 0.707107 0.707107I
a = 1.50000 + 1.20711I
b = 1.00000
4.93480 16.0000
u = 0.707107 + 0.707107I
a = 1.50000 0.20711I
b = 1.00000
4.93480 16.0000
u = 0.707107 0.707107I
a = 1.50000 + 0.20711I
b = 1.00000
4.93480 16.0000
34
VIII. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
7
=
1
0
a
8
=
1
0
a
9
=
1
0
a
12
=
0
1
a
1
=
1
1
a
3
=
1
0
a
6
=
1
1
a
2
=
2
1
a
5
=
1
0
a
11
=
1
0
a
10
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
u
c
5
, c
11
, c
12
u + 1
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
y 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
y
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
38
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
9
(u + 1)
2
· (u
10
+ 3u
9
+ 11u
8
+ 18u
7
+ 33u
6
+ 32u
5
+ 34u
4
+ 18u
3
+ 8u
2
+ u + 1)
2
· ((u
12
+ 5u
11
+ ··· + 40u + 9)
2
)(u
13
+ u
12
+ ··· + 45u + 4)
· (u
14
+ 7u
13
+ ··· + 254u + 121)
c
2
, c
6
(u 1)
5
(u + 1)
4
(u
2
+ 1)
· (u
10
u
9
u
8
+ 2u
7
+ 3u
6
4u
5
+ 4u
3
u + 1)
2
· (u
12
u
11
2u
10
+ 4u
9
+ u
8
5u
7
u
6
+ 7u
5
u
4
9u
3
+ 6u
2
+ 2u 3)
2
· (u
13
+ 3u
12
+ ··· + 3u + 2)(u
14
+ 3u
13
+ ··· + 34u + 11)
c
3
, c
4
, c
7
c
9
u(u
2
+ 1)(u
4
+ 1)(u
4
+ u
2
+ 2)(u
7
+ 2u
5
+ u
4
+ 2u
3
+ u
2
+ 1)
2
· (u
12
u
11
+ 4u
10
4u
9
+ 7u
8
7u
7
+ 5u
6
5u
5
+ u
4
u
3
+ 1)
2
· (u
13
+ 3u
11
+ ··· + 2u + 2)(u
20
+ 3u
19
+ ··· + 18u + 5)
c
5
, c
11
, c
12
(u 1)
4
(u + 1)
5
(u
2
+ 1)
· (u
10
u
9
u
8
+ 2u
7
+ 3u
6
4u
5
+ 4u
3
u + 1)
2
· (u
12
u
11
2u
10
+ 4u
9
+ u
8
5u
7
u
6
+ 7u
5
u
4
9u
3
+ 6u
2
+ 2u 3)
2
· (u
13
+ 3u
12
+ ··· + 3u + 2)(u
14
+ 3u
13
+ ··· + 34u + 11)
c
8
, c
10
u(u 1)
2
(u
2
+ 1)
2
(u
2
u + 2)
2
· (u
7
4u
6
+ 8u
5
7u
4
+ 2u
3
+ 3u
2
2u + 1)
2
· ((u
12
7u
11
+ ··· + 2u
2
+ 1)
2
)(u
13
6u
12
+ ··· + 12u + 4)
· (u
20
11u
19
+ ··· 76u + 25)
39
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
11
)(y
10
+ 13y
9
+ ··· + 15y + 1)
2
· ((y
12
+ 3y
11
+ ··· 196y + 81)
2
)(y
13
+ 11y
12
+ ··· + 913y 16)
· (y
14
+ y
13
+ ··· + 56242y + 14641)
c
2
, c
5
, c
6
c
11
, c
12
(y 1)
9
(y + 1)
2
· (y
10
3y
9
+ 11y
8
18y
7
+ 33y
6
32y
5
+ 34y
4
18y
3
+ 8y
2
y + 1)
2
· ((y
12
5y
11
+ ··· 40y + 9)
2
)(y
13
y
12
+ ··· + 45y 4)
· (y
14
7y
13
+ ··· 254y + 121)
c
3
, c
4
, c
7
c
9
y(y + 1)
2
(y
2
+ 1)
2
(y
2
+ y + 2)
2
· (y
7
+ 4y
6
+ 8y
5
+ 7y
4
+ 2y
3
3y
2
2y 1)
2
· ((y
12
+ 7y
11
+ ··· + 2y
2
+ 1)
2
)(y
13
+ 6y
12
+ ··· + 12y 4)
· (y
20
+ 11y
19
+ ··· + 76y + 25)
c
8
, c
10
y(y 1)
2
(y + 1)
4
(y
2
+ 3y + 4)
2
· (y
7
+ 12y
5
+ 3y
4
+ 22y
3
3y
2
2y 1)
2
· ((y
12
5y
11
+ ··· + 4y + 1)
2
)(y
13
+ 6y
12
+ ··· + 592y 16)
· (y
20
5y
19
+ ··· 2276y + 625)
40