12n
0498
(K12n
0498
)
A knot diagram
1
Linearized knot diagam
3 5 8 12 2 9 11 3 5 4 7 10
Solving Sequence
7,11
8
4,12
5 3 2 6 10 1 9
c
7
c
11
c
4
c
3
c
2
c
5
c
10
c
12
c
9
c
1
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.28050 × 10
86
u
56
+ 4.68989 × 10
86
u
55
+ ··· + 2.10970 × 10
86
b + 1.03141 × 10
87
,
3.61697 × 10
87
u
56
+ 1.86009 × 10
88
u
55
+ ··· + 4.43037 × 10
87
a 5.59465 × 10
88
,
u
57
4u
56
+ ··· 62u 21i
I
u
2
= h−15113u
17
4096u
16
+ ··· + 48267b + 50891, 57716u
17
93541u
16
+ ··· + 48267a 66022,
u
18
+ u
17
+ ··· 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.28 × 10
86
u
56
+ 4.69 × 10
86
u
55
+ · · · + 2.11 × 10
86
b + 1.03 ×
10
87
, 3.62 × 10
87
u
56
+ 1.86 × 10
88
u
55
+ · · · + 4.43 × 10
87
a 5.59 ×
10
88
, u
57
4u
56
+ · · · 62u 21i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
0.816403u
56
4.19849u
55
+ ··· + 20.7488u + 12.6279
0.606959u
56
2.22301u
55
+ ··· 20.5606u 4.88890
a
12
=
u
u
a
5
=
2.30955u
56
11.2943u
55
+ ··· + 35.9973u + 27.9170
0.886184u
56
+ 4.87279u
55
+ ··· 35.8091u 20.1780
a
3
=
1.99634u
56
9.90547u
55
+ ··· + 40.8820u + 27.3294
0.548286u
56
+ 3.70956u
55
+ ··· 56.9911u 25.6210
a
2
=
3.51044u
56
14.4661u
55
+ ··· 81.7519u 6.53532
2.08388u
56
+ 9.47088u
55
+ ··· + 4.37789u 13.5178
a
6
=
1.97921u
56
6.06505u
55
+ ··· 142.339u 41.3394
1.76709u
56
+ 5.94502u
55
+ ··· + 103.790u + 27.5904
a
10
=
1.72233u
56
+ 5.91243u
55
+ ··· + 107.267u + 26.4979
1.60637u
56
5.58082u
55
+ ··· 93.6083u 22.6130
a
1
=
2.28317u
56
6.62101u
55
+ ··· 179.695u 51.6320
1.95007u
56
+ 6.01101u
55
+ ··· + 139.623u + 39.1357
a
9
=
0.693372u
56
3.19613u
55
+ ··· 2.95802u + 4.39385
0.216527u
56
0.0576321u
55
+ ··· 40.4916u 13.8044
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.42071u
56
+ 9.29216u
55
+ ··· + 95.3134u + 10.7280
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
57
+ 75u
56
+ ··· 178u 1
c
2
, c
5
u
57
u
56
+ ··· 16u + 1
c
3
, c
8
u
57
u
56
+ ··· 493u + 451
c
4
u
57
+ 3u
56
+ ··· 7u + 3
c
6
u
57
+ u
56
+ ··· + 117087u + 163159
c
7
, c
11
u
57
+ 4u
56
+ ··· 62u + 21
c
9
u
57
2u
56
+ ··· + 1465u + 32979
c
10
u
57
+ 7u
55
+ ··· + 397u + 97
c
12
u
57
14u
56
+ ··· + 669u + 151
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
57
177y
56
+ ··· + 14174y 1
c
2
, c
5
y
57
+ 75y
56
+ ··· 178y 1
c
3
, c
8
y
57
+ 31y
56
+ ··· 4225459y 203401
c
4
y
57
9y
56
+ ··· + 91y 9
c
6
y
57
+ 107y
56
+ ··· 82651034559y 26620859281
c
7
, c
11
y
57
+ 44y
56
+ ··· 6698y 441
c
9
y
57
+ 78y
56
+ ··· + 20424721765y 1087614441
c
10
y
57
+ 14y
56
+ ··· 194501y 9409
c
12
y
57
40y
56
+ ··· + 3746609y 22801
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.590251 + 0.816756I
a = 0.317194 0.867682I
b = 0.851232 + 0.408615I
0.92370 2.38461I 6.78715 4.77142I
u = 0.590251 0.816756I
a = 0.317194 + 0.867682I
b = 0.851232 0.408615I
0.92370 + 2.38461I 6.78715 + 4.77142I
u = 0.386358 + 0.881902I
a = 1.004400 0.119570I
b = 1.290360 0.133007I
0.66188 1.95236I 7.77812 + 3.23861I
u = 0.386358 0.881902I
a = 1.004400 + 0.119570I
b = 1.290360 + 0.133007I
0.66188 + 1.95236I 7.77812 3.23861I
u = 0.113138 + 1.043540I
a = 0.010650 + 1.316020I
b = 0.398262 0.207554I
1.52820 + 3.04852I 2.09627 4.89869I
u = 0.113138 1.043540I
a = 0.010650 1.316020I
b = 0.398262 + 0.207554I
1.52820 3.04852I 2.09627 + 4.89869I
u = 0.054065 + 1.061160I
a = 0.673299 0.339769I
b = 1.23289 1.36328I
4.35464 + 0.41270I 0. + 2.93923I
u = 0.054065 1.061160I
a = 0.673299 + 0.339769I
b = 1.23289 + 1.36328I
4.35464 0.41270I 0. 2.93923I
u = 0.135302 + 1.081390I
a = 0.86661 2.26881I
b = 1.29656 + 1.44749I
7.16107 + 4.13510I 0
u = 0.135302 1.081390I
a = 0.86661 + 2.26881I
b = 1.29656 1.44749I
7.16107 4.13510I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.563215 + 0.991464I
a = 0.95892 + 1.31146I
b = 1.68040 0.81381I
6.73101 1.00486I 0
u = 0.563215 0.991464I
a = 0.95892 1.31146I
b = 1.68040 + 0.81381I
6.73101 + 1.00486I 0
u = 0.076850 + 1.138320I
a = 0.774845 0.307436I
b = 1.84851 + 0.66895I
2.81588 1.84751I 0
u = 0.076850 1.138320I
a = 0.774845 + 0.307436I
b = 1.84851 0.66895I
2.81588 + 1.84751I 0
u = 0.210776 + 1.134080I
a = 0.376842 + 0.250683I
b = 1.62012 + 0.80598I
1.73829 + 3.89054I 0
u = 0.210776 1.134080I
a = 0.376842 0.250683I
b = 1.62012 0.80598I
1.73829 3.89054I 0
u = 0.758593 + 0.355885I
a = 0.642976 + 0.011129I
b = 0.033112 + 0.742505I
0.664386 0.689297I 6.71036 0.11936I
u = 0.758593 0.355885I
a = 0.642976 0.011129I
b = 0.033112 0.742505I
0.664386 + 0.689297I 6.71036 + 0.11936I
u = 0.778647 + 0.303273I
a = 1.16942 0.93924I
b = 0.147887 0.411465I
12.42110 2.33478I 9.22240 + 0.68624I
u = 0.778647 0.303273I
a = 1.16942 + 0.93924I
b = 0.147887 + 0.411465I
12.42110 + 2.33478I 9.22240 0.68624I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.179050 + 0.038215I
a = 0.705861 0.743030I
b = 0.185989 + 0.148446I
9.92606 9.08178I 0
u = 1.179050 0.038215I
a = 0.705861 + 0.743030I
b = 0.185989 0.148446I
9.92606 + 9.08178I 0
u = 0.413385 + 1.107260I
a = 0.654823 + 0.404099I
b = 2.11452 1.09525I
9.95724 + 6.72104I 0
u = 0.413385 1.107260I
a = 0.654823 0.404099I
b = 2.11452 + 1.09525I
9.95724 6.72104I 0
u = 0.039564 + 1.190590I
a = 0.613863 0.424692I
b = 1.80875 0.41422I
3.76883 1.63591I 0
u = 0.039564 1.190590I
a = 0.613863 + 0.424692I
b = 1.80875 + 0.41422I
3.76883 + 1.63591I 0
u = 1.218100 + 0.242266I
a = 0.507438 + 0.284538I
b = 0.1171880 0.0218347I
1.64373 3.94719I 0
u = 1.218100 0.242266I
a = 0.507438 0.284538I
b = 0.1171880 + 0.0218347I
1.64373 + 3.94719I 0
u = 0.254408 + 1.227690I
a = 0.823428 + 0.385148I
b = 2.00617 + 0.66223I
4.08404 6.16672I 0
u = 0.254408 1.227690I
a = 0.823428 0.385148I
b = 2.00617 0.66223I
4.08404 + 6.16672I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.727598 + 0.137352I
a = 0.875509 + 0.961139I
b = 0.173507 0.506822I
2.46442 + 1.93449I 2.24278 3.17004I
u = 0.727598 0.137352I
a = 0.875509 0.961139I
b = 0.173507 + 0.506822I
2.46442 1.93449I 2.24278 + 3.17004I
u = 0.392456 + 1.219230I
a = 1.257630 0.153845I
b = 2.26538 + 0.66065I
1.90935 + 6.56503I 0
u = 0.392456 1.219230I
a = 1.257630 + 0.153845I
b = 2.26538 0.66065I
1.90935 6.56503I 0
u = 0.010268 + 0.689208I
a = 2.53605 + 1.22720I
b = 2.04707 1.45230I
8.64761 3.10440I 7.56449 2.31310I
u = 0.010268 0.689208I
a = 2.53605 1.22720I
b = 2.04707 + 1.45230I
8.64761 + 3.10440I 7.56449 + 2.31310I
u = 0.618158 + 0.162095I
a = 0.81252 + 1.47630I
b = 0.266464 0.032773I
1.35954 2.62834I 9.01490 + 3.76676I
u = 0.618158 0.162095I
a = 0.81252 1.47630I
b = 0.266464 + 0.032773I
1.35954 + 2.62834I 9.01490 3.76676I
u = 0.427624 + 1.306800I
a = 1.316570 + 0.287086I
b = 2.05986 0.58492I
6.77585 + 6.29606I 0
u = 0.427624 1.306800I
a = 1.316570 0.287086I
b = 2.05986 + 0.58492I
6.77585 6.29606I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.540765 + 0.298006I
a = 1.21617 + 1.81557I
b = 1.173460 0.320334I
8.36689 3.37214I 6.78658 + 1.79216I
u = 0.540765 0.298006I
a = 1.21617 1.81557I
b = 1.173460 + 0.320334I
8.36689 + 3.37214I 6.78658 1.79216I
u = 0.565613
a = 1.21094
b = 0.0986015
1.05400 9.48580
u = 0.55473 + 1.39062I
a = 1.170690 0.365984I
b = 2.11486 + 0.87983I
5.4571 15.1423I 0
u = 0.55473 1.39062I
a = 1.170690 + 0.365984I
b = 2.11486 0.87983I
5.4571 + 15.1423I 0
u = 0.38131 + 1.45291I
a = 0.713409 0.306037I
b = 1.46415 + 0.57342I
4.12609 3.19316I 0
u = 0.38131 1.45291I
a = 0.713409 + 0.306037I
b = 1.46415 0.57342I
4.12609 + 3.19316I 0
u = 0.51803 + 1.42333I
a = 0.910861 + 0.309333I
b = 1.80097 0.72599I
3.42580 9.91933I 0
u = 0.51803 1.42333I
a = 0.910861 0.309333I
b = 1.80097 + 0.72599I
3.42580 + 9.91933I 0
u = 0.55233 + 1.42025I
a = 0.872585 0.293555I
b = 1.270760 + 0.462620I
5.06769 + 4.73436I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.55233 1.42025I
a = 0.872585 + 0.293555I
b = 1.270760 0.462620I
5.06769 4.73436I 0
u = 0.150198 + 0.275358I
a = 1.53020 + 0.49740I
b = 0.487442 + 0.712451I
0.19079 1.54094I 2.12423 + 2.96705I
u = 0.150198 0.275358I
a = 1.53020 0.49740I
b = 0.487442 0.712451I
0.19079 + 1.54094I 2.12423 2.96705I
u = 0.84030 + 1.60146I
a = 0.248588 0.091885I
b = 0.286209 + 0.417616I
5.54252 + 2.13223I 0
u = 0.84030 1.60146I
a = 0.248588 + 0.091885I
b = 0.286209 0.417616I
5.54252 2.13223I 0
u = 0.10374 + 1.81764I
a = 0.162358 + 0.545197I
b = 0.343904 0.804109I
5.52482 + 1.18551I 0
u = 0.10374 1.81764I
a = 0.162358 0.545197I
b = 0.343904 + 0.804109I
5.52482 1.18551I 0
10
II. I
u
2
= h−15113u
17
4096u
16
+ · · · + 48267b + 50891, 57716u
17
93541u
16
+ · · · + 48267a 66022, u
18
+ u
17
+ · · · 2u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
1.19577u
17
+ 1.93799u
16
+ ··· + 10.2808u + 1.36785
0.313112u
17
+ 0.0848613u
16
+ ··· + 4.67019u 1.05436
a
12
=
u
u
a
5
=
1.18369u
17
+ 2.40398u
16
+ ··· + 10.7617u + 1.88182
0.325191u
17
0.381130u
16
+ ··· + 4.18926u 1.56834
a
3
=
1.31137u
17
+ 2.05938u
16
+ ··· + 14.6623u + 1.05571
0.463401u
17
+ 0.142665u
16
+ ··· + 4.56614u 1.06014
a
2
=
2.41569u
17
+ 2.94400u
16
+ ··· + 11.5997u + 3.70775
1.22525u
17
1.72683u
16
+ ··· + 2.12120u + 0.246877
a
6
=
1.10968u
17
2.46319u
16
+ ··· 3.71177u + 1.43736
1.01954u
17
+ 0.0710630u
16
+ ··· 5.12433u + 2.98573
a
10
=
1.26256u
17
0.630348u
16
+ ··· 10.0123u 0.143058
1.38287u
17
+ 0.606315u
16
+ ··· + 3.73659u 2.21655
a
1
=
0.336669u
17
0.784490u
16
+ ··· 1.40154u + 0.205689
1.59461u
17
0.706777u
16
+ ··· 4.69698u + 2.60903
a
9
=
1.58433u
17
+ 0.984876u
16
+ ··· + 9.50751u 3.95906
0.464023u
17
1.00891u
16
+ ··· + 0.216753u 1.40054
(ii) Obstruction class = 1
(iii) Cusp Shapes =
90767
16089
u
17
105175
16089
u
16
+ ···
268616
16089
u
63094
16089
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
18
20u
17
+ ··· 74u + 9
c
2
u
18
+ 2u
17
+ ··· + 10u + 3
c
3
u
18
+ 8u
16
+ ··· 3u + 9
c
4
u
18
2u
17
+ ··· 5u + 1
c
5
u
18
2u
17
+ ··· 10u + 3
c
6
u
18
2u
17
+ ··· 5u + 3
c
7
u
18
+ u
17
+ ··· 2u + 1
c
8
u
18
+ 8u
16
+ ··· + 3u + 9
c
9
u
18
+ u
17
+ ··· + u + 1
c
10
u
18
+ u
17
+ ··· 7u + 3
c
11
u
18
u
17
+ ··· + 2u + 1
c
12
u
18
5u
17
+ ··· + 15u + 9
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
36y
17
+ ··· + 1454y + 81
c
2
, c
5
y
18
+ 20y
17
+ ··· + 74y + 9
c
3
, c
8
y
18
+ 16y
17
+ ··· + 1035y + 81
c
4
y
18
4y
17
+ ··· 7y + 1
c
6
y
18
+ 20y
17
+ ··· + 131y + 9
c
7
, c
11
y
18
+ 17y
17
+ ··· + 22y + 1
c
9
y
18
+ 11y
17
+ ··· 9y + 1
c
10
y
18
+ 7y
17
+ ··· + 53y + 9
c
12
y
18
15y
17
+ ··· + 495y + 81
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.955128 + 0.028468I
a = 0.470624 + 0.928452I
b = 0.378740 0.352785I
1.45067 + 2.23926I 5.74852 4.22019I
u = 0.955128 0.028468I
a = 0.470624 0.928452I
b = 0.378740 + 0.352785I
1.45067 2.23926I 5.74852 + 4.22019I
u = 0.588467 + 0.644672I
a = 0.004247 + 0.886743I
b = 0.771830 0.597373I
0.77892 2.83224I 2.15898 + 10.71484I
u = 0.588467 0.644672I
a = 0.004247 0.886743I
b = 0.771830 + 0.597373I
0.77892 + 2.83224I 2.15898 10.71484I
u = 0.157250 + 1.129630I
a = 0.747231 + 0.158603I
b = 2.20016 + 0.80914I
2.38693 3.66478I 3.78363 + 3.00827I
u = 0.157250 1.129630I
a = 0.747231 0.158603I
b = 2.20016 0.80914I
2.38693 + 3.66478I 3.78363 3.00827I
u = 0.104673 + 1.160730I
a = 0.526573 0.204291I
b = 1.35939 1.31112I
4.61635 + 1.06986I 5.50666 5.36656I
u = 0.104673 1.160730I
a = 0.526573 + 0.204291I
b = 1.35939 + 1.31112I
4.61635 1.06986I 5.50666 + 5.36656I
u = 0.193538 + 0.774845I
a = 1.28604 2.17413I
b = 2.12934 + 1.50102I
8.58566 3.82241I 7.48775 + 7.44013I
u = 0.193538 0.774845I
a = 1.28604 + 2.17413I
b = 2.12934 1.50102I
8.58566 + 3.82241I 7.48775 7.44013I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.53247 + 1.34251I
a = 1.188420 + 0.044021I
b = 1.97913 0.43683I
5.61740 + 7.69065I 2.00686 6.54591I
u = 0.53247 1.34251I
a = 1.188420 0.044021I
b = 1.97913 + 0.43683I
5.61740 7.69065I 2.00686 + 6.54591I
u = 0.38473 + 1.43619I
a = 0.912804 0.458239I
b = 1.56484 + 0.58036I
6.11112 + 4.38817I 1.91777 2.70230I
u = 0.38473 1.43619I
a = 0.912804 + 0.458239I
b = 1.56484 0.58036I
6.11112 4.38817I 1.91777 + 2.70230I
u = 0.109990 + 0.279939I
a = 0.67048 + 2.80242I
b = 0.062626 + 0.797311I
0.15418 + 2.05102I 3.58795 2.95582I
u = 0.109990 0.279939I
a = 0.67048 2.80242I
b = 0.062626 0.797311I
0.15418 2.05102I 3.58795 + 2.95582I
u = 0.42776 + 1.69552I
a = 0.414340 + 0.265180I
b = 0.338917 0.418197I
5.72891 + 1.72338I 11.71800 0.30191I
u = 0.42776 1.69552I
a = 0.414340 0.265180I
b = 0.338917 + 0.418197I
5.72891 1.72338I 11.71800 + 0.30191I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
18
20u
17
+ ··· 74u + 9)(u
57
+ 75u
56
+ ··· 178u 1)
c
2
(u
18
+ 2u
17
+ ··· + 10u + 3)(u
57
u
56
+ ··· 16u + 1)
c
3
(u
18
+ 8u
16
+ ··· 3u + 9)(u
57
u
56
+ ··· 493u + 451)
c
4
(u
18
2u
17
+ ··· 5u + 1)(u
57
+ 3u
56
+ ··· 7u + 3)
c
5
(u
18
2u
17
+ ··· 10u + 3)(u
57
u
56
+ ··· 16u + 1)
c
6
(u
18
2u
17
+ ··· 5u + 3)(u
57
+ u
56
+ ··· + 117087u + 163159)
c
7
(u
18
+ u
17
+ ··· 2u + 1)(u
57
+ 4u
56
+ ··· 62u + 21)
c
8
(u
18
+ 8u
16
+ ··· + 3u + 9)(u
57
u
56
+ ··· 493u + 451)
c
9
(u
18
+ u
17
+ ··· + u + 1)(u
57
2u
56
+ ··· + 1465u + 32979)
c
10
(u
18
+ u
17
+ ··· 7u + 3)(u
57
+ 7u
55
+ ··· + 397u + 97)
c
11
(u
18
u
17
+ ··· + 2u + 1)(u
57
+ 4u
56
+ ··· 62u + 21)
c
12
(u
18
5u
17
+ ··· + 15u + 9)(u
57
14u
56
+ ··· + 669u + 151)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
18
36y
17
+ ··· + 1454y + 81)(y
57
177y
56
+ ··· + 14174y 1)
c
2
, c
5
(y
18
+ 20y
17
+ ··· + 74y + 9)(y
57
+ 75y
56
+ ··· 178y 1)
c
3
, c
8
(y
18
+ 16y
17
+ ··· + 1035y + 81)
· (y
57
+ 31y
56
+ ··· 4225459y 203401)
c
4
(y
18
4y
17
+ ··· 7y + 1)(y
57
9y
56
+ ··· + 91y 9)
c
6
(y
18
+ 20y
17
+ ··· + 131y + 9)
· (y
57
+ 107y
56
+ ··· 82651034559y 26620859281)
c
7
, c
11
(y
18
+ 17y
17
+ ··· + 22y + 1)(y
57
+ 44y
56
+ ··· 6698y 441)
c
9
(y
18
+ 11y
17
+ ··· 9y + 1)
· (y
57
+ 78y
56
+ ··· + 20424721765y 1087614441)
c
10
(y
18
+ 7y
17
+ ··· + 53y + 9)(y
57
+ 14y
56
+ ··· 194501y 9409)
c
12
(y
18
15y
17
+ ··· + 495y + 81)
· (y
57
40y
56
+ ··· + 3746609y 22801)
19