12n
0500
(K12n
0500
)
A knot diagram
1
Linearized knot diagam
3 6 12 8 2 10 11 3 6 7 4 9
Solving Sequence
6,9
10 7
3,11
2 1 5 8 4 12
c
9
c
6
c
10
c
2
c
1
c
5
c
8
c
4
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h5u
30
14u
29
+ ··· + 2b + 5, u
30
+ 2u
29
+ ··· + 4a + 5, u
31
4u
30
+ ··· 2u 1i
I
u
2
= hb, a
3
+ a
2
u + a
2
2u 3, u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 37 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h5u
30
14u
29
+· · ·+2b+5, u
30
+2u
29
+· · ·+4a+5, u
31
4u
30
+· · ·2u1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
7
=
u
u
3
+ u
a
3
=
1
4
u
30
1
2
u
29
+ ···
5
2
u
5
4
5
2
u
30
+ 7u
29
+ ··· 6u
5
2
a
11
=
u
2
+ 1
u
4
2u
2
a
2
=
1
4
u
30
1
2
u
29
+ ···
5
2
u
5
4
13
4
u
30
+
33
4
u
29
+ ···
29
4
u 3
a
1
=
9
4
u
30
15
4
u
29
+ ··· +
21
4
u +
5
2
5
4
u
30
+
13
4
u
29
+ ···
9
4
u 1
a
5
=
1
4
u
29
+
3
4
u
28
+ ···
17
4
u +
3
4
1
4
u
30
1
2
u
29
+ ··· +
1
2
u +
1
4
a
8
=
u
3
+ 2u
u
5
3u
3
+ u
a
4
=
1
4
u
30
+
1
4
u
29
+ ···
19
4
u +
1
2
1
4
u
30
1
2
u
29
+ ··· +
1
2
u +
1
4
a
12
=
7
2
u
30
7u
29
+ ··· +
15
2
u +
7
2
5
4
u
30
+
13
4
u
29
+ ···
9
4
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
30
+ 29u
29
+ ··· 16u
2
15
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
31
+ 35u
30
+ ··· + 177u + 4
c
2
, c
5
u
31
+ 3u
30
+ ··· 15u + 2
c
3
, c
11
u
31
3u
30
+ ··· 9u + 1
c
4
u
31
3u
30
+ ··· 2916u + 243
c
6
, c
7
, c
9
c
10
u
31
4u
30
+ ··· 2u 1
c
8
u
31
+ u
30
+ ··· 32u + 64
c
12
u
31
+ 22u
29
+ ··· 2095u + 2071
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
31
75y
30
+ ··· + 52609y 16
c
2
, c
5
y
31
35y
30
+ ··· + 177y 4
c
3
, c
11
y
31
+ 25y
30
+ ··· + 65y 1
c
4
y
31
+ 5y
30
+ ··· + 3359232y 59049
c
6
, c
7
, c
9
c
10
y
31
34y
30
+ ··· 2y 1
c
8
y
31
+ 35y
30
+ ··· + 1024y 4096
c
12
y
31
+ 44y
30
+ ··· 9225729y 4289041
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.602350 + 0.764489I
a = 0.96517 1.53953I
b = 0.35606 1.75288I
5.83199 7.50635I 2.66894 + 5.59456I
u = 0.602350 0.764489I
a = 0.96517 + 1.53953I
b = 0.35606 + 1.75288I
5.83199 + 7.50635I 2.66894 5.59456I
u = 0.543360 + 0.792514I
a = 0.91165 + 1.54215I
b = 0.17449 + 1.80984I
10.03040 2.62343I 1.03684 + 2.68072I
u = 0.543360 0.792514I
a = 0.91165 1.54215I
b = 0.17449 1.80984I
10.03040 + 2.62343I 1.03684 2.68072I
u = 0.473452 + 0.802011I
a = 0.85502 1.55001I
b = 0.03027 1.79370I
6.21873 + 2.31735I 1.87364 0.58111I
u = 0.473452 0.802011I
a = 0.85502 + 1.55001I
b = 0.03027 + 1.79370I
6.21873 2.31735I 1.87364 + 0.58111I
u = 0.751448 + 0.311977I
a = 0.131566 0.324454I
b = 0.652866 + 0.653689I
3.50508 + 0.49905I 6.93091 1.38994I
u = 0.751448 0.311977I
a = 0.131566 + 0.324454I
b = 0.652866 0.653689I
3.50508 0.49905I 6.93091 + 1.38994I
u = 1.34946
a = 0.997928
b = 1.24408
2.46733 3.43490
u = 1.366810 + 0.074394I
a = 0.234215 0.622051I
b = 0.045603 1.264260I
3.50947 + 1.97376I 4.13605 3.59471I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.366810 0.074394I
a = 0.234215 + 0.622051I
b = 0.045603 + 1.264260I
3.50947 1.97376I 4.13605 + 3.59471I
u = 1.375110 + 0.092603I
a = 0.939498 + 0.219836I
b = 1.276320 0.062520I
6.34649 4.23203I 7.34906 + 3.43500I
u = 1.375110 0.092603I
a = 0.939498 0.219836I
b = 1.276320 + 0.062520I
6.34649 + 4.23203I 7.34906 3.43500I
u = 0.527133
a = 0.257315
b = 0.358345
0.784642 13.1720
u = 1.47433 + 0.08812I
a = 0.497026 + 0.970443I
b = 0.186128 + 1.163550I
9.65588 + 4.45983I 7.97346 3.71466I
u = 1.47433 0.08812I
a = 0.497026 0.970443I
b = 0.186128 1.163550I
9.65588 4.45983I 7.97346 + 3.71466I
u = 0.146677 + 0.492597I
a = 0.018556 + 1.292810I
b = 0.836447 + 0.454443I
1.62298 + 2.35384I 1.82470 4.53214I
u = 0.146677 0.492597I
a = 0.018556 1.292810I
b = 0.836447 0.454443I
1.62298 2.35384I 1.82470 + 4.53214I
u = 1.49116 + 0.29858I
a = 0.877997 0.367679I
b = 0.35046 1.70481I
0.10746 + 1.69492I 0
u = 1.49116 0.29858I
a = 0.877997 + 0.367679I
b = 0.35046 + 1.70481I
0.10746 1.69492I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.54074 + 0.28653I
a = 0.983728 + 0.406676I
b = 0.52058 + 1.68308I
3.24464 + 6.59865I 0
u = 1.54074 0.28653I
a = 0.983728 0.406676I
b = 0.52058 1.68308I
3.24464 6.59865I 0
u = 0.369500 + 0.215346I
a = 0.63729 + 2.88917I
b = 0.010339 + 0.599954I
3.53058 3.26263I 0.32878 + 7.06957I
u = 0.369500 0.215346I
a = 0.63729 2.88917I
b = 0.010339 0.599954I
3.53058 + 3.26263I 0.32878 7.06957I
u = 1.57119 + 0.26571I
a = 1.058660 0.452456I
b = 0.63708 1.61140I
1.31297 + 11.33500I 0
u = 1.57119 0.26571I
a = 1.058660 + 0.452456I
b = 0.63708 + 1.61140I
1.31297 11.33500I 0
u = 1.59573
a = 0.257600
b = 0.497580
8.24985 15.5880
u = 1.63289 + 0.05265I
a = 0.234203 0.321554I
b = 0.531375 + 0.618506I
11.78470 1.72102I 0
u = 1.63289 0.05265I
a = 0.234203 + 0.321554I
b = 0.531375 0.618506I
11.78470 + 1.72102I 0
u = 0.136671 + 0.320613I
a = 0.02478 2.19557I
b = 0.305592 0.594543I
1.239080 0.576153I 5.00436 + 2.78236I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.136671 0.320613I
a = 0.02478 + 2.19557I
b = 0.305592 + 0.594543I
1.239080 + 0.576153I 5.00436 2.78236I
8
II. I
u
2
= hb, a
3
+ a
2
u + a
2
2u 3, u
2
+ u 1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u 1
a
7
=
u
u + 1
a
3
=
a
0
a
11
=
u
u
a
2
=
a
au a
a
1
=
a
2
u + a u 1
au a
a
5
=
a
2
u
2a
2
u + a
2
+ u
a
8
=
1
0
a
4
=
3a
2
u a
2
u
2a
2
u + a
2
+ u
a
12
=
a
2
u au + 2a u 1
au a
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
2
6au + a + u + 5
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
3
(u
3
+ u
2
+ 2u + 1)
2
c
4
u
6
2u
5
+ 5u
4
+ 2u
3
+ 3u
2
3u 1
c
5
(u
3
u
2
+ 1)
2
c
6
, c
7
(u
2
u 1)
3
c
8
u
6
c
9
, c
10
(u
2
+ u 1)
3
c
12
u
6
u
5
u
4
+ 4u
3
+ 3u
2
1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
c
4
y
6
+ 6y
5
+ 39y
4
+ 12y
3
+ 11y
2
15y + 1
c
6
, c
7
, c
9
c
10
(y
2
3y + 1)
3
c
8
y
6
c
12
y
6
3y
5
+ 15y
4
24y
3
+ 11y
2
6y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.22142
b = 0
0.126494 0.818320
u = 0.618034
a = 1.41973 + 1.20521I
b = 0
4.01109 + 2.82812I 8.89985 + 0.15818I
u = 0.618034
a = 1.41973 1.20521I
b = 0
4.01109 2.82812I 8.89985 0.15818I
u = 1.61803
a = 0.542287 + 0.460350I
b = 0
11.90680 2.82812I 9.10673 + 4.43024I
u = 1.61803
a = 0.542287 0.460350I
b = 0
11.90680 + 2.82812I 9.10673 4.43024I
u = 1.61803
a = 0.466540
b = 0
7.76919 1.83150
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
u
2
+ 2u 1)
2
)(u
31
+ 35u
30
+ ··· + 177u + 4)
c
2
((u
3
+ u
2
1)
2
)(u
31
+ 3u
30
+ ··· 15u + 2)
c
3
((u
3
+ u
2
+ 2u + 1)
2
)(u
31
3u
30
+ ··· 9u + 1)
c
4
(u
6
2u
5
+ ··· 3u 1)(u
31
3u
30
+ ··· 2916u + 243)
c
5
((u
3
u
2
+ 1)
2
)(u
31
+ 3u
30
+ ··· 15u + 2)
c
6
, c
7
((u
2
u 1)
3
)(u
31
4u
30
+ ··· 2u 1)
c
8
u
6
(u
31
+ u
30
+ ··· 32u + 64)
c
9
, c
10
((u
2
+ u 1)
3
)(u
31
4u
30
+ ··· 2u 1)
c
11
((u
3
u
2
+ 2u 1)
2
)(u
31
3u
30
+ ··· 9u + 1)
c
12
(u
6
u
5
u
4
+ 4u
3
+ 3u
2
1)(u
31
+ 22u
29
+ ··· 2095u + 2071)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
3
+ 3y
2
+ 2y 1)
2
)(y
31
75y
30
+ ··· + 52609y 16)
c
2
, c
5
((y
3
y
2
+ 2y 1)
2
)(y
31
35y
30
+ ··· + 177y 4)
c
3
, c
11
((y
3
+ 3y
2
+ 2y 1)
2
)(y
31
+ 25y
30
+ ··· + 65y 1)
c
4
(y
6
+ 6y
5
+ 39y
4
+ 12y
3
+ 11y
2
15y + 1)
· (y
31
+ 5y
30
+ ··· + 3359232y 59049)
c
6
, c
7
, c
9
c
10
((y
2
3y + 1)
3
)(y
31
34y
30
+ ··· 2y 1)
c
8
y
6
(y
31
+ 35y
30
+ ··· + 1024y 4096)
c
12
(y
6
3y
5
+ 15y
4
24y
3
+ 11y
2
6y + 1)
· (y
31
+ 44y
30
+ ··· 9225729y 4289041)
14