11a
9
(K11a
9
)
A knot diagram
1
Linearized knot diagam
5 1 9 2 3 10 11 4 6 7 8
Solving Sequence
7,10
11 8
1,3
2 6 5 9 4
c
10
c
7
c
11
c
2
c
6
c
5
c
9
c
3
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
35
+ u
34
+ ··· + 2b 1, 3u
35
+ 4u
34
+ ··· + 2a 2, u
36
+ 3u
35
+ ··· 3u
2
1i
I
u
2
= h−au + b, a
2
+ a + 1, u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 40 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
35
+u
34
+· · ·+2b1, 3u
35
+4u
34
+· · ·+2a2, u
36
+3u
35
+· · ·3u
2
1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
8
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
3
2
u
35
2u
34
+ ···
5
2
u + 1
1
2
u
35
1
2
u
34
+ ··· + 4u
2
+
1
2
a
2
=
5u
35
+
13
2
u
34
+ ··· +
1
2
u
5
2
8u
35
+ 10u
34
+ ··· + 3u 5
a
6
=
u
u
a
5
=
1
2
u
35
u
34
+ ··· +
11
2
u + 1
1
2
u
35
1
2
u
34
+ ··· 2u
2
+
1
2
a
9
=
u
2
+ 1
u
2
a
4
=
11
2
u
35
+ 7u
34
+ ···
1
2
u 3
19
2
u
35
+
23
2
u
34
+ ··· + 3u
11
2
a
4
=
11
2
u
35
+ 7u
34
+ ···
1
2
u 3
19
2
u
35
+
23
2
u
34
+ ··· + 3u
11
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5
2
u
35
3u
34
+ ··· +
23
2
u
2
+
5
2
u
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
36
+ 3u
35
+ ··· + 2u + 1
c
2
u
36
+ 19u
35
+ ··· + 2u + 1
c
3
, c
8
u
36
+ u
35
+ ··· 32u 16
c
5
u
36
3u
35
+ ··· 156u + 41
c
6
, c
7
, c
9
c
10
, c
11
u
36
+ 3u
35
+ ··· 3u
2
1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
36
+ 19y
35
+ ··· + 2y + 1
c
2
y
36
y
35
+ ··· 46y + 1
c
3
, c
8
y
36
+ 25y
35
+ ··· + 896y + 256
c
5
y
36
21y
35
+ ··· + 12482y + 1681
c
6
, c
7
, c
9
c
10
, c
11
y
36
49y
35
+ ··· + 6y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.025520 + 0.116463I
a = 1.031170 + 0.432608I
b = 2.09741 + 0.72386I
4.16025 + 3.63915I 10.15018 4.27650I
u = 1.025520 0.116463I
a = 1.031170 0.432608I
b = 2.09741 0.72386I
4.16025 3.63915I 10.15018 + 4.27650I
u = 0.917325 + 0.063901I
a = 0.133059 1.056750I
b = 0.317589 + 0.408768I
2.00047 2.57631I 10.63302 + 4.45192I
u = 0.917325 0.063901I
a = 0.133059 + 1.056750I
b = 0.317589 0.408768I
2.00047 + 2.57631I 10.63302 4.45192I
u = 1.065990 + 0.299185I
a = 0.322094 0.440855I
b = 1.56593 0.19350I
5.13782 4.39791I 8.11131 + 3.98843I
u = 1.065990 0.299185I
a = 0.322094 + 0.440855I
b = 1.56593 + 0.19350I
5.13782 + 4.39791I 8.11131 3.98843I
u = 1.082360 + 0.370781I
a = 0.558691 + 0.183985I
b = 2.00888 + 0.15748I
8.00799 9.41273I 10.73207 + 7.33022I
u = 1.082360 0.370781I
a = 0.558691 0.183985I
b = 2.00888 0.15748I
8.00799 + 9.41273I 10.73207 7.33022I
u = 0.852163
a = 0.572389
b = 1.20255
1.51344 5.97070
u = 1.178870 + 0.253014I
a = 0.540902 + 0.868497I
b = 1.39570 + 0.91291I
9.53106 0.77090I 13.03537 + 0.66876I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.178870 0.253014I
a = 0.540902 0.868497I
b = 1.39570 0.91291I
9.53106 + 0.77090I 13.03537 0.66876I
u = 0.465838 + 0.569982I
a = 0.135891 0.713585I
b = 0.582474 + 0.680739I
4.25762 2.03075I 9.39588 + 0.30706I
u = 0.465838 0.569982I
a = 0.135891 + 0.713585I
b = 0.582474 0.680739I
4.25762 + 2.03075I 9.39588 0.30706I
u = 0.680312 + 0.218264I
a = 0.215818 0.256120I
b = 0.392517 0.767490I
1.43730 + 0.46103I 9.15571 0.89205I
u = 0.680312 0.218264I
a = 0.215818 + 0.256120I
b = 0.392517 + 0.767490I
1.43730 0.46103I 9.15571 + 0.89205I
u = 0.294050 + 0.635512I
a = 0.93728 1.18603I
b = 0.435962 + 0.264963I
3.72424 + 5.98943I 7.50022 6.65502I
u = 0.294050 0.635512I
a = 0.93728 + 1.18603I
b = 0.435962 0.264963I
3.72424 5.98943I 7.50022 + 6.65502I
u = 0.300828 + 0.511616I
a = 0.900271 + 0.580279I
b = 0.322840 0.451012I
0.88449 + 1.61128I 3.96504 4.05315I
u = 0.300828 0.511616I
a = 0.900271 0.580279I
b = 0.322840 + 0.451012I
0.88449 1.61128I 3.96504 + 4.05315I
u = 1.60354 + 0.03866I
a = 0.577687 1.062600I
b = 0.73772 1.35775I
9.29333 1.36083I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.60354 0.03866I
a = 0.577687 + 1.062600I
b = 0.73772 + 1.35775I
9.29333 + 1.36083I 0
u = 0.003501 + 0.334247I
a = 2.06412 0.29075I
b = 0.222553 0.457483I
0.57956 + 1.37320I 1.27470 4.45868I
u = 0.003501 0.334247I
a = 2.06412 + 0.29075I
b = 0.222553 + 0.457483I
0.57956 1.37320I 1.27470 + 4.45868I
u = 0.220883 + 0.210533I
a = 2.72148 + 0.23613I
b = 0.536583 + 0.437480I
0.27564 2.47765I 1.24066 + 5.09366I
u = 0.220883 0.210533I
a = 2.72148 0.23613I
b = 0.536583 0.437480I
0.27564 + 2.47765I 1.24066 5.09366I
u = 1.70560
a = 2.31988
b = 2.94838
10.7808 0
u = 1.71389 + 0.01340I
a = 0.457517 + 0.775429I
b = 0.66586 + 1.78211I
11.48460 + 2.85990I 0
u = 1.71389 0.01340I
a = 0.457517 0.775429I
b = 0.66586 1.78211I
11.48460 2.85990I 0
u = 1.73373 + 0.02857I
a = 2.85868 + 0.56360I
b = 3.62671 + 0.70465I
14.0947 4.2255I 0
u = 1.73373 0.02857I
a = 2.85868 0.56360I
b = 3.62671 0.70465I
14.0947 + 4.2255I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.74040 + 0.07931I
a = 2.19385 0.26897I
b = 3.06657 + 0.17165I
15.1592 + 5.9753I 0
u = 1.74040 0.07931I
a = 2.19385 + 0.26897I
b = 3.06657 0.17165I
15.1592 5.9753I 0
u = 1.74533 + 0.09973I
a = 2.64626 + 0.43864I
b = 3.66599 + 0.11964I
18.0669 + 11.3850I 0
u = 1.74533 0.09973I
a = 2.64626 0.43864I
b = 3.66599 0.11964I
18.0669 11.3850I 0
u = 1.76676 + 0.06022I
a = 1.65403 + 0.87991I
b = 2.26669 + 0.61564I
19.3219 + 2.0938I 0
u = 1.76676 0.06022I
a = 1.65403 0.87991I
b = 2.26669 0.61564I
19.3219 2.0938I 0
8
II. I
u
2
= h−au + b, a
2
+ a + 1, u
2
u 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u + 1
a
8
=
u
u 1
a
1
=
u
u
a
3
=
a
au
a
2
=
au + a
2au
a
6
=
u
u
a
5
=
a + u + 1
au + 2u
a
9
=
u
u 1
a
4
=
a
au
a
4
=
a
au
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2au 3a u 8
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
2
c
3
, c
8
u
4
c
4
(u
2
u + 1)
2
c
6
, c
7
(u
2
+ u 1)
2
c
9
, c
10
, c
11
(u
2
u 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
2
c
3
, c
8
y
4
c
6
, c
7
, c
9
c
10
, c
11
(y
2
3y + 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.500000 + 0.866025I
b = 0.309017 0.535233I
0.98696 + 2.02988I 6.50000 1.52761I
u = 0.618034
a = 0.500000 0.866025I
b = 0.309017 + 0.535233I
0.98696 2.02988I 6.50000 + 1.52761I
u = 1.61803
a = 0.500000 + 0.866025I
b = 0.80902 + 1.40126I
8.88264 + 2.02988I 6.50000 5.40059I
u = 1.61803
a = 0.500000 0.866025I
b = 0.80902 1.40126I
8.88264 2.02988I 6.50000 + 5.40059I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
2
)(u
36
+ 3u
35
+ ··· + 2u + 1)
c
2
((u
2
+ u + 1)
2
)(u
36
+ 19u
35
+ ··· + 2u + 1)
c
3
, c
8
u
4
(u
36
+ u
35
+ ··· 32u 16)
c
4
((u
2
u + 1)
2
)(u
36
+ 3u
35
+ ··· + 2u + 1)
c
5
((u
2
+ u + 1)
2
)(u
36
3u
35
+ ··· 156u + 41)
c
6
, c
7
((u
2
+ u 1)
2
)(u
36
+ 3u
35
+ ··· 3u
2
1)
c
9
, c
10
, c
11
((u
2
u 1)
2
)(u
36
+ 3u
35
+ ··· 3u
2
1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
2
)(y
36
+ 19y
35
+ ··· + 2y + 1)
c
2
((y
2
+ y + 1)
2
)(y
36
y
35
+ ··· 46y + 1)
c
3
, c
8
y
4
(y
36
+ 25y
35
+ ··· + 896y + 256)
c
5
((y
2
+ y + 1)
2
)(y
36
21y
35
+ ··· + 12482y + 1681)
c
6
, c
7
, c
9
c
10
, c
11
((y
2
3y + 1)
2
)(y
36
49y
35
+ ··· + 6y + 1)
14