12n
0502
(K12n
0502
)
A knot diagram
1
Linearized knot diagam
3 6 12 9 2 10 11 3 6 7 4 8
Solving Sequence
6,9
10 7
3,11
2 1 5 4 8 12
c
9
c
6
c
10
c
2
c
1
c
5
c
4
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
9
2u
8
+ 5u
7
+ 11u
6
2u
5
14u
4
15u
3
6u
2
+ 2b u 1,
u
9
2u
8
+ 7u
7
+ 15u
6
14u
5
38u
4
+ u
3
+ 32u
2
+ 4a + 11u 3,
u
10
+ 4u
9
2u
8
24u
7
16u
6
+ 35u
5
+ 44u
4
+ 11u
3
u
2
+ 3u + 1i
I
u
2
= hb, a
3
+ a
2
u a
2
2u + 3, u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 16 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
9
2u
8
+· · ·+2b1, u
9
2u
8
+· · ·+4a3, u
10
+4u
9
+· · ·+3u+1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
7
=
u
u
3
+ u
a
3
=
1
4
u
9
+
1
2
u
8
+ ···
11
4
u +
3
4
1
2
u
9
+ u
8
+ ··· +
1
2
u +
1
2
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
1
4
u
9
+
1
2
u
8
+ ···
11
4
u +
3
4
1
4
u
9
1
4
u
8
+ ··· +
7
2
u
2
3
4
u
a
1
=
7
4
u
9
13
4
u
8
+ ···
7
4
u +
1
2
25
4
u
9
45
4
u
8
+ ···
35
4
u 3
a
5
=
1
4
u
8
3
4
u
7
+ ··· 3u
3
4
1
4
u
9
1
2
u
8
+ ··· +
5
4
u
1
4
a
4
=
1
4
u
9
3
4
u
8
+ ···
7
4
u 1
1
4
u
9
1
2
u
8
+ ··· +
5
4
u
1
4
a
8
=
u
3
2u
u
5
3u
3
+ u
a
12
=
1
2
u
8
u
7
+ ··· +
1
2
u +
3
2
3
4
u
9
+
7
4
u
8
+ ··· +
5
2
u
2
3
4
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
9
5u
8
+
61
2
u
6
+ 29u
5
91
2
u
4
68u
3
15u
2
+
15
2
u
29
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ 29u
9
+ ··· 19u + 4
c
2
, c
5
u
10
+ 3u
9
10u
8
34u
7
17u
6
+ 7u
5
+ 59u
4
55u
3
11u
2
5u 2
c
3
, c
11
u
10
3u
9
+ 8u
8
13u
7
+ 18u
6
20u
5
+ 16u
4
11u
3
+ 3u
2
2u 1
c
4
u
10
25u
9
+ ··· 1689u 389
c
6
, c
7
, c
9
c
10
u
10
+ 4u
9
2u
8
24u
7
16u
6
+ 35u
5
+ 44u
4
+ 11u
3
u
2
+ 3u + 1
c
8
u
10
+ u
9
+ ··· 160u 64
c
12
u
10
2u
9
11u
8
+ 16u
7
+ 23u
6
+ 10u
5
u
4
+ 5u
3
+ 6u
2
+ 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
301y
9
+ ··· 5681y + 16
c
2
, c
5
y
10
29y
9
+ ··· + 19y + 4
c
3
, c
11
y
10
+ 7y
9
+ 22y
8
+ 31y
7
76y
5
144y
4
141y
3
67y
2
10y + 1
c
4
y
10
169y
9
+ ··· 1357405y + 151321
c
6
, c
7
, c
9
c
10
y
10
20y
9
+ ··· 11y + 1
c
8
y
10
35y
9
+ ··· 5120y + 4096
c
12
y
10
26y
9
+ ··· 4y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.770282 + 0.350441I
a = 0.175699 + 0.338848I
b = 0.722401 + 0.709455I
0.295773 + 0.495817I 13.91306 1.36095I
u = 0.770282 0.350441I
a = 0.175699 0.338848I
b = 0.722401 0.709455I
0.295773 0.495817I 13.91306 + 1.36095I
u = 0.238689 + 0.328179I
a = 0.29003 2.34120I
b = 0.187083 + 0.681344I
2.64731 + 2.28565I 6.52151 0.97940I
u = 0.238689 0.328179I
a = 0.29003 + 2.34120I
b = 0.187083 0.681344I
2.64731 2.28565I 6.52151 + 0.97940I
u = 0.293390
a = 0.935254
b = 0.468829
0.595897 16.6550
u = 1.78423 + 0.22622I
a = 0.335255 + 0.782997I
b = 1.44386 + 1.68806I
9.27245 2.54510I 15.8897 + 2.0711I
u = 1.78423 0.22622I
a = 0.335255 0.782997I
b = 1.44386 1.68806I
9.27245 + 2.54510I 15.8897 2.0711I
u = 2.03029 + 0.17685I
a = 1.52970 + 0.03504I
b = 3.31663 1.27082I
15.1518 + 6.6636I 15.1690 2.5369I
u = 2.03029 0.17685I
a = 1.52970 0.03504I
b = 3.31663 + 1.27082I
15.1518 6.6636I 15.1690 + 2.5369I
u = 2.15130
a = 1.55281
b = 4.28499
10.4531 17.3580
5
II. I
u
2
= hb, a
3
+ a
2
u a
2
2u + 3, u
2
u 1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u + 1
a
7
=
u
u 1
a
3
=
a
0
a
11
=
u
u
a
2
=
a
au a
a
1
=
a
2
u + a u + 1
au a
a
5
=
a
2
u
2a
2
u a
2
+ u
a
4
=
a
2
u a
2
+ u
2a
2
u a
2
+ u
a
8
=
1
0
a
12
=
a
2
u au u + 1
au a
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
2
2au + a + u 17
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
3
(u
3
+ u
2
+ 2u + 1)
2
c
4
u
6
+ 2u
5
+ 5u
4
2u
3
+ 3u
2
+ 3u 1
c
5
(u
3
u
2
+ 1)
2
c
6
, c
7
(u
2
+ u 1)
3
c
8
u
6
c
9
, c
10
(u
2
u 1)
3
c
12
u
6
+ u
5
u
4
4u
3
+ 3u
2
1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
c
4
y
6
+ 6y
5
+ 39y
4
+ 12y
3
+ 11y
2
15y + 1
c
6
, c
7
, c
9
c
10
(y
2
3y + 1)
3
c
8
y
6
c
12
y
6
3y
5
+ 15y
4
24y
3
+ 11y
2
6y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.22142
b = 0
2.10041 18.8570
u = 0.618034
a = 1.41973 + 1.20521I
b = 0
2.03717 2.82812I 13.8803 + 6.1171I
u = 0.618034
a = 1.41973 1.20521I
b = 0
2.03717 + 2.82812I 13.8803 6.1171I
u = 1.61803
a = 0.542287 + 0.460350I
b = 0
5.85852 + 2.82812I 14.0872 1.5287I
u = 1.61803
a = 0.542287 0.460350I
b = 0
5.85852 2.82812I 14.0872 + 1.5287I
u = 1.61803
a = 0.466540
b = 0
9.99610 16.2080
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
u
2
+ 2u 1)
2
)(u
10
+ 29u
9
+ ··· 19u + 4)
c
2
(u
3
+ u
2
1)
2
· (u
10
+ 3u
9
10u
8
34u
7
17u
6
+ 7u
5
+ 59u
4
55u
3
11u
2
5u 2)
c
3
(u
3
+ u
2
+ 2u + 1)
2
· (u
10
3u
9
+ 8u
8
13u
7
+ 18u
6
20u
5
+ 16u
4
11u
3
+ 3u
2
2u 1)
c
4
(u
6
+ 2u
5
+ ··· + 3u 1)(u
10
25u
9
+ ··· 1689u 389)
c
5
(u
3
u
2
+ 1)
2
· (u
10
+ 3u
9
10u
8
34u
7
17u
6
+ 7u
5
+ 59u
4
55u
3
11u
2
5u 2)
c
6
, c
7
(u
2
+ u 1)
3
· (u
10
+ 4u
9
2u
8
24u
7
16u
6
+ 35u
5
+ 44u
4
+ 11u
3
u
2
+ 3u + 1)
c
8
u
6
(u
10
+ u
9
+ ··· 160u 64)
c
9
, c
10
(u
2
u 1)
3
· (u
10
+ 4u
9
2u
8
24u
7
16u
6
+ 35u
5
+ 44u
4
+ 11u
3
u
2
+ 3u + 1)
c
11
(u
3
u
2
+ 2u 1)
2
· (u
10
3u
9
+ 8u
8
13u
7
+ 18u
6
20u
5
+ 16u
4
11u
3
+ 3u
2
2u 1)
c
12
(u
6
+ u
5
u
4
4u
3
+ 3u
2
1)
· (u
10
2u
9
11u
8
+ 16u
7
+ 23u
6
+ 10u
5
u
4
+ 5u
3
+ 6u
2
+ 4u + 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
3
+ 3y
2
+ 2y 1)
2
)(y
10
301y
9
+ ··· 5681y + 16)
c
2
, c
5
((y
3
y
2
+ 2y 1)
2
)(y
10
29y
9
+ ··· + 19y + 4)
c
3
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
· (y
10
+ 7y
9
+ 22y
8
+ 31y
7
76y
5
144y
4
141y
3
67y
2
10y + 1)
c
4
(y
6
+ 6y
5
+ 39y
4
+ 12y
3
+ 11y
2
15y + 1)
· (y
10
169y
9
+ ··· 1357405y + 151321)
c
6
, c
7
, c
9
c
10
((y
2
3y + 1)
3
)(y
10
20y
9
+ ··· 11y + 1)
c
8
y
6
(y
10
35y
9
+ ··· 5120y + 4096)
c
12
(y
6
3y
5
+ ··· 6y + 1)(y
10
26y
9
+ ··· 4y + 1)
11