12n
0504
(K12n
0504
)
A knot diagram
1
Linearized knot diagam
3 6 11 9 7 2 12 3 7 8 4 10
Solving Sequence
3,11 4,8
9 5 12 7 6 2 10 1
c
3
c
8
c
4
c
11
c
7
c
5
c
2
c
10
c
12
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h1.23441 × 10
152
u
80
+ 1.03277 × 10
152
u
79
+ ··· + 7.12803 × 10
149
b + 1.45911 × 10
152
,
1.08125 × 10
152
u
80
9.29614 × 10
151
u
79
+ ··· + 7.12803 × 10
149
a 1.25045 × 10
152
,
u
81
25u
79
+ ··· u 1i
I
u
2
= h−u
19
u
18
+ ··· + b 1, 7529u
20
+ 16576u
19
+ ··· + 4369a + 66551, u
21
+ u
20
+ ··· + u 1i
* 2 irreducible components of dim
C
= 0, with total 102 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.23 × 10
152
u
80
+ 1.03 × 10
152
u
79
+ · · · + 7.13 × 10
149
b + 1.46 ×
10
152
, 1.08 × 10
152
u
80
9.30 × 10
151
u
79
+ · · · + 7.13 × 10
149
a 1.25 ×
10
152
, u
81
25u
79
+ · · · u 1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
151.690u
80
+ 130.417u
79
+ ··· + 384.512u + 175.426
173.177u
80
144.889u
79
+ ··· 450.511u 204.700
a
9
=
324.867u
80
+ 275.305u
79
+ ··· + 835.023u + 380.126
173.177u
80
144.889u
79
+ ··· 450.511u 204.700
a
5
=
217.115u
80
183.775u
79
+ ··· 589.240u 262.760
83.8333u
80
+ 71.1008u
79
+ ··· + 215.196u + 102.506
a
12
=
u
u
3
+ u
a
7
=
303.584u
80
+ 259.429u
79
+ ··· + 777.896u + 355.169
130.110u
80
108.535u
79
+ ··· 338.033u 153.969
a
6
=
290.200u
80
249.523u
79
+ ··· 729.435u 337.494
85.7527u
80
+ 71.4068u
79
+ ··· + 225.793u + 102.293
a
2
=
264.895u
80
226.810u
79
+ ··· 666.097u 306.595
95.4427u
80
+ 78.6904u
79
+ ··· + 251.393u + 112.450
a
10
=
183.583u
80
+ 153.132u
79
+ ··· + 480.308u + 219.882
72.9647u
80
64.8472u
79
+ ··· 178.991u 84.6969
a
1
=
169.452u
80
148.120u
79
+ ··· 414.704u 194.145
95.4427u
80
+ 78.6904u
79
+ ··· + 251.393u + 112.450
(ii) Obstruction class = 1
(iii) Cusp Shapes = 134.434u
80
107.850u
79
+ ··· 374.672u 167.881
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
81
+ 48u
80
+ ··· 46u 1
c
2
, c
6
u
81
4u
80
+ ··· 10u + 1
c
3
, c
11
u
81
25u
79
+ ··· u 1
c
4
u
81
40u
79
+ ··· 67990u + 12769
c
7
u
81
3u
80
+ ··· + 24u + 1
c
8
u
81
u
80
+ ··· 3486u 4531
c
9
u
81
+ 10u
80
+ ··· + 31415u + 24751
c
10
u
81
+ 9u
80
+ ··· + 26u + 1
c
12
u
81
13u
80
+ ··· + 136052u 20201
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
81
24y
80
+ ··· 770y 1
c
2
, c
6
y
81
+ 48y
80
+ ··· 46y 1
c
3
, c
11
y
81
50y
80
+ ··· + 13y 1
c
4
y
81
80y
80
+ ··· + 9648824956y 163047361
c
7
y
81
y
80
+ ··· + 68y 1
c
8
y
81
23y
80
+ ··· + 1638264662y 20529961
c
9
y
81
78y
80
+ ··· + 90529436459y 612612001
c
10
y
81
5y
80
+ ··· + 92y 1
c
12
y
81
37y
80
+ ··· 298277160y 408080401
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.902305 + 0.379132I
a = 0.541466 + 0.988112I
b = 1.32681 1.87079I
6.54251 + 2.36585I 0
u = 0.902305 0.379132I
a = 0.541466 0.988112I
b = 1.32681 + 1.87079I
6.54251 2.36585I 0
u = 0.960722 + 0.366305I
a = 0.43622 1.63083I
b = 0.460770 + 0.120247I
2.14981 3.01376I 0
u = 0.960722 0.366305I
a = 0.43622 + 1.63083I
b = 0.460770 0.120247I
2.14981 + 3.01376I 0
u = 1.011240 + 0.299411I
a = 0.436443 + 0.645111I
b = 1.21365 2.14492I
1.46165 + 2.09415I 0
u = 1.011240 0.299411I
a = 0.436443 0.645111I
b = 1.21365 + 2.14492I
1.46165 2.09415I 0
u = 1.009510 + 0.325728I
a = 0.54837 2.02019I
b = 0.737204 + 0.175634I
5.81489 + 7.27123I 0
u = 1.009510 0.325728I
a = 0.54837 + 2.02019I
b = 0.737204 0.175634I
5.81489 7.27123I 0
u = 0.964311 + 0.454853I
a = 0.210966 + 0.098303I
b = 1.009290 + 0.240162I
1.62903 2.11796I 0
u = 0.964311 0.454853I
a = 0.210966 0.098303I
b = 1.009290 0.240162I
1.62903 + 2.11796I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.648411 + 0.654308I
a = 0.695906 + 0.027482I
b = 0.355885 + 1.177700I
1.75332 + 2.51421I 0
u = 0.648411 0.654308I
a = 0.695906 0.027482I
b = 0.355885 1.177700I
1.75332 2.51421I 0
u = 1.09655
a = 0.468450
b = 0.654070
1.81674 0
u = 1.013360 + 0.419477I
a = 0.79390 1.50335I
b = 0.506195 0.174838I
5.33253 1.57015I 0
u = 1.013360 0.419477I
a = 0.79390 + 1.50335I
b = 0.506195 + 0.174838I
5.33253 + 1.57015I 0
u = 0.886429 + 0.150741I
a = 0.71362 1.59397I
b = 0.277004 + 0.899802I
0.26570 4.55441I 0
u = 0.886429 0.150741I
a = 0.71362 + 1.59397I
b = 0.277004 0.899802I
0.26570 + 4.55441I 0
u = 1.088310 + 0.200271I
a = 1.125980 0.191011I
b = 0.925517 0.209416I
2.44803 + 1.62087I 0
u = 1.088310 0.200271I
a = 1.125980 + 0.191011I
b = 0.925517 + 0.209416I
2.44803 1.62087I 0
u = 0.315200 + 0.827015I
a = 0.985815 + 0.065165I
b = 0.573644 + 0.998964I
3.44192 2.58172I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.315200 0.827015I
a = 0.985815 0.065165I
b = 0.573644 0.998964I
3.44192 + 2.58172I 0
u = 0.767732 + 0.423882I
a = 0.205242 0.622535I
b = 0.380848 + 0.219729I
1.39485 1.84663I 0
u = 0.767732 0.423882I
a = 0.205242 + 0.622535I
b = 0.380848 0.219729I
1.39485 + 1.84663I 0
u = 0.013086 + 1.134480I
a = 0.213787 0.203235I
b = 0.247143 + 0.087637I
0.64631 + 2.82490I 0
u = 0.013086 1.134480I
a = 0.213787 + 0.203235I
b = 0.247143 0.087637I
0.64631 2.82490I 0
u = 1.076550 + 0.360738I
a = 0.635040 + 0.553652I
b = 1.23910 2.13479I
4.75622 7.90439I 0
u = 1.076550 0.360738I
a = 0.635040 0.553652I
b = 1.23910 + 2.13479I
4.75622 + 7.90439I 0
u = 0.183779 + 1.122460I
a = 0.802444 0.673376I
b = 1.306840 0.417115I
9.90972 0.66625I 0
u = 0.183779 1.122460I
a = 0.802444 + 0.673376I
b = 1.306840 + 0.417115I
9.90972 + 0.66625I 0
u = 0.170398 + 1.126680I
a = 0.689681 0.781080I
b = 1.106720 0.668721I
5.19483 + 5.53843I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.170398 1.126680I
a = 0.689681 + 0.781080I
b = 1.106720 + 0.668721I
5.19483 5.53843I 0
u = 1.065720 + 0.407914I
a = 1.189530 0.619382I
b = 1.72330 + 0.89309I
0.68423 + 7.22736I 0
u = 1.065720 0.407914I
a = 1.189530 + 0.619382I
b = 1.72330 0.89309I
0.68423 7.22736I 0
u = 0.165603 + 1.132270I
a = 0.726014 0.887409I
b = 1.19140 0.88628I
8.76483 11.09010I 0
u = 0.165603 1.132270I
a = 0.726014 + 0.887409I
b = 1.19140 + 0.88628I
8.76483 + 11.09010I 0
u = 0.852441 + 0.001116I
a = 0.658643 + 1.180880I
b = 0.044733 1.206010I
1.046830 0.649414I 5.50516 + 0.I
u = 0.852441 0.001116I
a = 0.658643 1.180880I
b = 0.044733 + 1.206010I
1.046830 + 0.649414I 5.50516 + 0.I
u = 0.597478 + 0.470710I
a = 0.292709 + 0.767245I
b = 0.478827 + 0.650933I
0.13061 + 2.12477I 1.60050 2.94701I
u = 0.597478 0.470710I
a = 0.292709 0.767245I
b = 0.478827 0.650933I
0.13061 2.12477I 1.60050 + 2.94701I
u = 1.192220 + 0.350482I
a = 1.217880 0.419708I
b = 0.805797 + 0.821329I
3.57269 4.92095I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.192220 0.350482I
a = 1.217880 + 0.419708I
b = 0.805797 0.821329I
3.57269 + 4.92095I 0
u = 1.169650 + 0.444904I
a = 1.370680 0.316177I
b = 0.86662 + 1.45089I
3.36884 5.55592I 0
u = 1.169650 0.444904I
a = 1.370680 + 0.316177I
b = 0.86662 1.45089I
3.36884 + 5.55592I 0
u = 1.236580 + 0.299380I
a = 1.247280 0.439033I
b = 0.527525 + 0.682155I
3.49137 4.92888I 0
u = 1.236580 0.299380I
a = 1.247280 + 0.439033I
b = 0.527525 0.682155I
3.49137 + 4.92888I 0
u = 1.169700 + 0.502563I
a = 1.159140 + 0.011019I
b = 0.388968 + 1.350540I
3.00360 + 2.72726I 0
u = 1.169700 0.502563I
a = 1.159140 0.011019I
b = 0.388968 1.350540I
3.00360 2.72726I 0
u = 0.724961
a = 0.141553
b = 3.03101
3.09176 12.2130
u = 0.666916 + 0.195048I
a = 0.156382 0.607093I
b = 2.72346 0.31841I
7.46556 5.35134I 7.82165 + 7.22544I
u = 0.666916 0.195048I
a = 0.156382 + 0.607093I
b = 2.72346 + 0.31841I
7.46556 + 5.35134I 7.82165 7.22544I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.978674 + 0.931902I
a = 0.280037 + 0.224847I
b = 0.074527 + 0.737144I
1.13541 + 2.26803I 0
u = 0.978674 0.931902I
a = 0.280037 0.224847I
b = 0.074527 0.737144I
1.13541 2.26803I 0
u = 1.301260 + 0.414651I
a = 0.580151 + 0.104656I
b = 0.952867 0.457869I
5.36895 + 2.14990I 0
u = 1.301260 0.414651I
a = 0.580151 0.104656I
b = 0.952867 + 0.457869I
5.36895 2.14990I 0
u = 1.305270 + 0.493311I
a = 0.662219 + 0.141141I
b = 1.024370 0.588649I
4.77612 8.26020I 0
u = 1.305270 0.493311I
a = 0.662219 0.141141I
b = 1.024370 + 0.588649I
4.77612 + 8.26020I 0
u = 0.032146 + 0.601351I
a = 0.704884 + 1.212550I
b = 0.396728 + 0.822881I
0.20204 + 1.49826I 1.38934 4.06041I
u = 0.032146 0.601351I
a = 0.704884 1.212550I
b = 0.396728 0.822881I
0.20204 1.49826I 1.38934 + 4.06041I
u = 0.589104 + 0.077999I
a = 3.02288 + 0.38505I
b = 1.43654 + 0.15109I
7.40845 4.70430I 8.71870 + 1.25287I
u = 0.589104 0.077999I
a = 3.02288 0.38505I
b = 1.43654 0.15109I
7.40845 + 4.70430I 8.71870 1.25287I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.28056 + 0.60613I
a = 0.936300 + 0.444957I
b = 1.49356 1.15454I
6.48713 + 6.72299I 0
u = 1.28056 0.60613I
a = 0.936300 0.444957I
b = 1.49356 + 1.15454I
6.48713 6.72299I 0
u = 1.35655 + 0.41748I
a = 1.011780 0.542288I
b = 0.462888 + 1.153850I
1.69314 + 7.01569I 0
u = 1.35655 0.41748I
a = 1.011780 + 0.542288I
b = 0.462888 1.153850I
1.69314 7.01569I 0
u = 1.29675 + 0.60148I
a = 1.036220 + 0.360848I
b = 1.29084 1.29622I
1.66431 11.60560I 0
u = 1.29675 0.60148I
a = 1.036220 0.360848I
b = 1.29084 + 1.29622I
1.66431 + 11.60560I 0
u = 1.30382 + 0.60686I
a = 1.123340 + 0.392064I
b = 1.29633 1.46900I
5.2024 + 17.2034I 0
u = 1.30382 0.60686I
a = 1.123340 0.392064I
b = 1.29633 + 1.46900I
5.2024 17.2034I 0
u = 0.368457 + 0.423875I
a = 0.70058 + 2.15721I
b = 1.144710 0.026537I
1.34736 3.65138I 6.40050 + 3.27750I
u = 0.368457 0.423875I
a = 0.70058 2.15721I
b = 1.144710 + 0.026537I
1.34736 + 3.65138I 6.40050 3.27750I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.002369 + 0.507248I
a = 1.31039 + 1.21972I
b = 0.441129 + 0.625857I
0.12904 + 1.47742I 0.85859 4.88287I
u = 0.002369 0.507248I
a = 1.31039 1.21972I
b = 0.441129 0.625857I
0.12904 1.47742I 0.85859 + 4.88287I
u = 1.61293
a = 0.420426
b = 0.170339
1.22427 0
u = 0.378742 + 0.055619I
a = 3.23578 0.29152I
b = 1.335370 0.015602I
3.66407 + 0.00055I 3.29899 + 0.32726I
u = 0.378742 0.055619I
a = 3.23578 + 0.29152I
b = 1.335370 + 0.015602I
3.66407 0.00055I 3.29899 0.32726I
u = 1.67266 + 0.23707I
a = 0.403242 0.141145I
b = 0.422530 0.302754I
2.75985 + 5.35327I 0
u = 1.67266 0.23707I
a = 0.403242 + 0.141145I
b = 0.422530 + 0.302754I
2.75985 5.35327I 0
u = 0.067184 + 0.302298I
a = 1.13766 3.28658I
b = 1.54834 0.44871I
7.40668 + 4.90606I 5.02431 3.21161I
u = 0.067184 0.302298I
a = 1.13766 + 3.28658I
b = 1.54834 + 0.44871I
7.40668 4.90606I 5.02431 + 3.21161I
u = 1.56337 + 0.79423I
a = 0.246662 0.263030I
b = 0.605441 + 0.629873I
4.14648 5.92038I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.56337 0.79423I
a = 0.246662 + 0.263030I
b = 0.605441 0.629873I
4.14648 + 5.92038I 0
13
II. I
u
2
= h−u
19
u
18
+ · · · + b 1, 7529u
20
+ 16576u
19
+ · · · + 4369a +
66551, u
21
+ u
20
+ · · · + u 1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
1.72328u
20
3.79400u
19
+ ··· + 7.36301u 15.2325
u
19
+ u
18
+ ··· 6u
2
+ 1
a
9
=
1.72328u
20
4.79400u
19
+ ··· + 7.36301u 16.2325
u
19
+ u
18
+ ··· 6u
2
+ 1
a
5
=
8.57542u
20
1.45502u
19
+ ··· 26.2774u + 12.2559
4.44610u
20
+ 0.689403u
19
+ ··· 18.0385u + 8.07507
a
12
=
u
u
3
+ u
a
7
=
2.57679u
20
5.24079u
19
+ ··· + 10.3401u 19.4260
0.0691234u
20
+ 0.310826u
19
+ ··· 0.176699u 0.893111
a
6
=
6.02930u
20
+ 0.489357u
19
+ ··· + 14.0046u 12.9613
9.33257u
20
+ 1.16434u
19
+ ··· + 26.5207u 15.3500
a
2
=
8.32982u
20
+ 7.55596u
19
+ ··· + 22.3953u + 4.99016
11.4024u
20
+ 5.12726u
19
+ ··· + 30.3754u 9.82811
a
10
=
17.6077u
20
10.1035u
19
+ ··· 38.7512u + 9.75235
8.07507u
20
2.62898u
19
+ ··· 19.7617u + 10.9634
a
1
=
19.7322u
20
+ 12.6832u
19
+ ··· + 52.7707u 4.83795
11.4024u
20
+ 5.12726u
19
+ ··· + 30.3754u 9.82811
(ii) Obstruction class = 1
(iii) Cusp Shapes =
142174
4369
u
20
43479
4369
u
19
+ ···
429897
4369
u +
119686
4369
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
21
11u
20
+ ··· 4u + 1
c
2
u
21
u
20
+ ··· 2u 1
c
3
u
21
+ u
20
+ ··· + u 1
c
4
u
21
+ u
20
+ ··· + 6u 1
c
6
u
21
+ u
20
+ ··· 2u + 1
c
7
u
21
2u
20
+ ··· 2u + 1
c
8
u
21
4u
19
+ ··· + 2u + 1
c
9
u
21
+ 11u
20
+ ··· + 7u + 1
c
10
u
21
10u
20
+ ··· 8u + 1
c
11
u
21
u
20
+ ··· + u + 1
c
12
u
21
2u
20
+ ··· 2u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
21
+ 3y
20
+ ··· 4y 1
c
2
, c
6
y
21
+ 11y
20
+ ··· 4y 1
c
3
, c
11
y
21
15y
20
+ ··· + 15y 1
c
4
y
21
5y
20
+ ··· 14y 1
c
7
y
21
6y
20
+ ··· + 6y 1
c
8
y
21
8y
20
+ ··· 12y 1
c
9
y
21
7y
20
+ ··· 11y 1
c
10
y
21
6y
20
+ ··· 2y 1
c
12
y
21
6y
20
+ ··· + 6y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.888681 + 0.424494I
a = 0.320823 0.407542I
b = 0.037005 + 1.158720I
0.01292 + 1.95369I 2.10409 3.40241I
u = 0.888681 0.424494I
a = 0.320823 + 0.407542I
b = 0.037005 1.158720I
0.01292 1.95369I 2.10409 + 3.40241I
u = 0.807708
a = 0.989331
b = 2.32361
2.65595 8.30830
u = 0.780642 + 0.008696I
a = 1.47938 0.67723I
b = 1.99501 + 0.09159I
6.71198 4.94074I 3.19350 + 3.55851I
u = 0.780642 0.008696I
a = 1.47938 + 0.67723I
b = 1.99501 0.09159I
6.71198 + 4.94074I 3.19350 3.55851I
u = 1.171510 + 0.413563I
a = 1.41786 0.22856I
b = 0.650009 + 1.073900I
2.50065 3.95422I 0.25209 + 3.41763I
u = 1.171510 0.413563I
a = 1.41786 + 0.22856I
b = 0.650009 1.073900I
2.50065 + 3.95422I 0.25209 3.41763I
u = 1.199990 + 0.355792I
a = 1.27775 0.66921I
b = 0.821752 + 1.103720I
2.38428 + 5.99565I 1.10633 7.42127I
u = 1.199990 0.355792I
a = 1.27775 + 0.66921I
b = 0.821752 1.103720I
2.38428 5.99565I 1.10633 + 7.42127I
u = 0.193620 + 1.274390I
a = 0.178684 + 0.310534I
b = 0.018473 + 0.489168I
0.97197 + 2.90581I 14.3385 11.9690I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.193620 1.274390I
a = 0.178684 0.310534I
b = 0.018473 0.489168I
0.97197 2.90581I 14.3385 + 11.9690I
u = 1.321630 + 0.400034I
a = 0.771560 0.180940I
b = 0.819522 + 0.795198I
5.96726 + 2.57833I 8.01202 3.81094I
u = 1.321630 0.400034I
a = 0.771560 + 0.180940I
b = 0.819522 0.795198I
5.96726 2.57833I 8.01202 + 3.81094I
u = 1.305240 + 0.463057I
a = 0.877968 0.064829I
b = 0.704657 + 0.794595I
5.59416 8.12880I 7.29693 + 6.03982I
u = 1.305240 0.463057I
a = 0.877968 + 0.064829I
b = 0.704657 0.794595I
5.59416 + 8.12880I 7.29693 6.03982I
u = 0.312750 + 0.395125I
a = 0.41319 + 2.25464I
b = 0.197554 + 0.419489I
0.253263 + 0.438961I 2.82903 + 1.96774I
u = 0.312750 0.395125I
a = 0.41319 2.25464I
b = 0.197554 0.419489I
0.253263 0.438961I 2.82903 1.96774I
u = 0.486254 + 0.103220I
a = 0.39298 + 2.58099I
b = 0.600680 + 0.211205I
0.41271 3.61050I 1.11773 + 4.65529I
u = 0.486254 0.103220I
a = 0.39298 2.58099I
b = 0.600680 0.211205I
0.41271 + 3.61050I 1.11773 4.65529I
u = 1.42389 + 0.49409I
a = 0.043877 0.381971I
b = 0.698149 + 0.623289I
3.79051 5.69804I 2.75371 + 3.99925I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.42389 0.49409I
a = 0.043877 + 0.381971I
b = 0.698149 0.623289I
3.79051 + 5.69804I 2.75371 3.99925I
19
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
21
11u
20
+ ··· 4u + 1)(u
81
+ 48u
80
+ ··· 46u 1)
c
2
(u
21
u
20
+ ··· 2u 1)(u
81
4u
80
+ ··· 10u + 1)
c
3
(u
21
+ u
20
+ ··· + u 1)(u
81
25u
79
+ ··· u 1)
c
4
(u
21
+ u
20
+ ··· + 6u 1)(u
81
40u
79
+ ··· 67990u + 12769)
c
6
(u
21
+ u
20
+ ··· 2u + 1)(u
81
4u
80
+ ··· 10u + 1)
c
7
(u
21
2u
20
+ ··· 2u + 1)(u
81
3u
80
+ ··· + 24u + 1)
c
8
(u
21
4u
19
+ ··· + 2u + 1)(u
81
u
80
+ ··· 3486u 4531)
c
9
(u
21
+ 11u
20
+ ··· + 7u + 1)(u
81
+ 10u
80
+ ··· + 31415u + 24751)
c
10
(u
21
10u
20
+ ··· 8u + 1)(u
81
+ 9u
80
+ ··· + 26u + 1)
c
11
(u
21
u
20
+ ··· + u + 1)(u
81
25u
79
+ ··· u 1)
c
12
(u
21
2u
20
+ ··· 2u + 1)(u
81
13u
80
+ ··· + 136052u 20201)
20
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
21
+ 3y
20
+ ··· 4y 1)(y
81
24y
80
+ ··· 770y 1)
c
2
, c
6
(y
21
+ 11y
20
+ ··· 4y 1)(y
81
+ 48y
80
+ ··· 46y 1)
c
3
, c
11
(y
21
15y
20
+ ··· + 15y 1)(y
81
50y
80
+ ··· + 13y 1)
c
4
(y
21
5y
20
+ ··· 14y 1)
· (y
81
80y
80
+ ··· + 9648824956y 163047361)
c
7
(y
21
6y
20
+ ··· + 6y 1)(y
81
y
80
+ ··· + 68y 1)
c
8
(y
21
8y
20
+ ··· 12y 1)
· (y
81
23y
80
+ ··· + 1638264662y 20529961)
c
9
(y
21
7y
20
+ ··· 11y 1)
· (y
81
78y
80
+ ··· + 90529436459y 612612001)
c
10
(y
21
6y
20
+ ··· 2y 1)(y
81
5y
80
+ ··· + 92y 1)
c
12
(y
21
6y
20
+ ··· + 6y 1)
· (y
81
37y
80
+ ··· 298277160y 408080401)
21