12n
0505
(K12n
0505
)
A knot diagram
1
Linearized knot diagam
3 6 9 11 7 2 10 11 5 1 5 8
Solving Sequence
2,6
3
7,10
8 1 11 5 4 9 12
c
2
c
6
c
7
c
1
c
10
c
5
c
4
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−19u
31
+ 110u
30
+ ··· + b + 35, 27u
31
+ 170u
30
+ ··· + 2a + 74, u
32
6u
31
+ ··· + 2u + 2i
I
u
2
= h2u
14
+ 4u
12
u
11
+ 9u
10
+ 2u
9
+ 8u
8
+ 2u
7
+ 5u
6
+ 7u
5
+ 2u
4
+ 3u
3
2u
2
+ b + u 1,
3u
14
u
13
+ 5u
12
4u
11
+ 11u
10
3u
9
+ 6u
8
6u
7
u
6
5u
4
4u
3
11u
2
+ 2a 3u 4,
u
15
u
14
+ 3u
13
2u
12
+ 7u
11
3u
10
+ 8u
9
+ 7u
7
+ 4u
6
+ 3u
5
+ 6u
4
+ u
3
+ 5u
2
+ 2i
I
u
3
= h−u
15
u
14
2u
13
u
12
4u
11
2u
10
4u
9
u
8
4u
7
2u
5
+ u
2
a 2u
3
+ au + b + 1,
u
15
a 5u
15
+ ··· 2a + 8,
u
16
+ u
15
+ 3u
14
+ 2u
13
+ 7u
12
+ 4u
11
+ 10u
10
+ 4u
9
+ 11u
8
+ 2u
7
+ 8u
6
+ 4u
4
2u
3
2u 1i
* 3 irreducible components of dim
C
= 0, with total 79 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−19u
31
+ 110u
30
+ · · · + b + 35, 27u
31
+ 170u
30
+ · · · + 2a +
74, u
32
6u
31
+ · · · + 2u + 2i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
10
=
27
2
u
31
85u
30
+ ··· 58u 37
19u
31
110u
30
+ ··· 45u 35
a
8
=
5
2
u
31
15u
30
+ ··· 9u 6
2u
31
13u
30
+ ··· 5u 5
a
1
=
u
2
+ 1
u
4
a
11
=
17
2
u
31
50u
30
+ ··· 23u 16
10u
31
55u
30
+ ··· 19u 15
a
5
=
u
3
u
3
+ u
a
4
=
7
2
u
31
+ 16u
30
+ ··· u + 1
u
31
+ 4u
29
+ ··· 11u 5
a
9
=
7
2
u
31
16u
30
+ ··· + 4u 1
4u
31
+ 19u
30
+ ··· + 2u + 3
a
12
=
21
2
u
31
65u
30
+ ··· 41u 26
16u
31
89u
30
+ ··· 30u 25
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16u
31
+ 83u
30
289u
29
+ 706u
28
1480u
27
+ 2622u
26
4235u
25
+ 6012u
24
7923u
23
+ 9315u
22
10193u
21
+ 9679u
20
8295u
19
+ 5507u
18
2564u
17
852u
16
+ 3101u
15
4711u
14
+ 4654u
13
4018u
12
+ 2292u
11
761u
10
695u
9
+ 1289u
8
1440u
7
+ 990u
6
534u
5
+ 157u
4
23u
3
26u
2
+ 2u + 16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
32
+ 10u
31
+ ··· 12u + 4
c
2
, c
6
u
32
6u
31
+ ··· + 2u + 2
c
3
, c
4
, c
11
u
32
+ u
31
+ ··· 2u + 1
c
7
, c
10
u
32
+ 3u
31
+ ··· 4u + 1
c
8
u
32
15u
31
+ ··· + 330u + 50
c
9
u
32
u
31
+ ··· + 7u + 4
c
12
u
32
+ 30u
31
+ ··· + 983040u + 65536
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
32
+ 26y
31
+ ··· + 336y + 16
c
2
, c
6
y
32
+ 10y
31
+ ··· 12y + 4
c
3
, c
4
, c
11
y
32
+ 45y
31
+ ··· + 10y + 1
c
7
, c
10
y
32
+ 5y
31
+ ··· 12y + 1
c
8
y
32
23y
31
+ ··· 127900y + 2500
c
9
y
32
+ 9y
31
+ ··· + 151y + 16
c
12
y
32
24y
30
+ ··· + 4294967296y + 4294967296
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.683755 + 0.852208I
a = 0.487406 + 0.002344I
b = 0.211885 + 0.982398I
1.307790 0.204998I 8.20443 + 1.69179I
u = 0.683755 0.852208I
a = 0.487406 0.002344I
b = 0.211885 0.982398I
1.307790 + 0.204998I 8.20443 1.69179I
u = 0.779459 + 0.786382I
a = 1.93860 1.52370I
b = 2.20178 0.35212I
4.25545 1.80010I 6.28414 + 0.97881I
u = 0.779459 0.786382I
a = 1.93860 + 1.52370I
b = 2.20178 + 0.35212I
4.25545 + 1.80010I 6.28414 0.97881I
u = 0.015119 + 0.891995I
a = 0.067954 + 0.845861I
b = 0.724294 + 0.722479I
2.42371 + 1.04680I 1.12616 4.02159I
u = 0.015119 0.891995I
a = 0.067954 0.845861I
b = 0.724294 0.722479I
2.42371 1.04680I 1.12616 + 4.02159I
u = 0.127331 + 0.878306I
a = 0.247595 1.216250I
b = 1.49574 0.49081I
1.46153 3.39079I 2.40633 + 1.52334I
u = 0.127331 0.878306I
a = 0.247595 + 1.216250I
b = 1.49574 + 0.49081I
1.46153 + 3.39079I 2.40633 1.52334I
u = 0.755098 + 0.457354I
a = 0.394809 0.506304I
b = 0.037452 0.291658I
1.48779 + 0.53337I 11.99767 5.02878I
u = 0.755098 0.457354I
a = 0.394809 + 0.506304I
b = 0.037452 + 0.291658I
1.48779 0.53337I 11.99767 + 5.02878I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.686701 + 0.891793I
a = 0.391138 0.204261I
b = 0.574304 0.753738I
1.18083 5.07845I 7.57041 + 6.17791I
u = 0.686701 0.891793I
a = 0.391138 + 0.204261I
b = 0.574304 + 0.753738I
1.18083 + 5.07845I 7.57041 6.17791I
u = 0.884596 + 0.702295I
a = 1.55531 + 1.46424I
b = 1.71686 + 0.03149I
2.61872 9.73264I 5.09358 + 3.95758I
u = 0.884596 0.702295I
a = 1.55531 1.46424I
b = 1.71686 0.03149I
2.61872 + 9.73264I 5.09358 3.95758I
u = 0.719909 + 0.881933I
a = 0.89512 + 1.20915I
b = 1.34574 + 0.83709I
1.47719 + 2.75279I 4.12705 2.54789I
u = 0.719909 0.881933I
a = 0.89512 1.20915I
b = 1.34574 0.83709I
1.47719 2.75279I 4.12705 + 2.54789I
u = 0.232859 + 1.122020I
a = 0.327320 + 0.701313I
b = 1.47146 + 0.14327I
10.17100 9.66976I 1.12021 + 6.59590I
u = 0.232859 1.122020I
a = 0.327320 0.701313I
b = 1.47146 0.14327I
10.17100 + 9.66976I 1.12021 6.59590I
u = 0.815946 + 0.102282I
a = 0.523040 0.339256I
b = 0.678199 + 0.639931I
6.02453 6.28492I 4.69674 + 5.01750I
u = 0.815946 0.102282I
a = 0.523040 + 0.339256I
b = 0.678199 0.639931I
6.02453 + 6.28492I 4.69674 5.01750I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.359796 + 1.131210I
a = 0.396826 0.243138I
b = 0.159308 0.964091I
9.40796 + 2.11722I 1.44983 2.28702I
u = 0.359796 1.131210I
a = 0.396826 + 0.243138I
b = 0.159308 + 0.964091I
9.40796 2.11722I 1.44983 + 2.28702I
u = 0.738924 + 0.951964I
a = 1.23531 2.20933I
b = 2.36280 1.86645I
3.74678 + 7.53753I 5.07954 6.16050I
u = 0.738924 0.951964I
a = 1.23531 + 2.20933I
b = 2.36280 + 1.86645I
3.74678 7.53753I 5.07954 + 6.16050I
u = 0.908160 + 0.896082I
a = 0.386593 + 0.792958I
b = 0.922704 + 0.420064I
0.14826 + 3.30667I 11.82122 5.07419I
u = 0.908160 0.896082I
a = 0.386593 0.792958I
b = 0.922704 0.420064I
0.14826 3.30667I 11.82122 + 5.07419I
u = 0.759511 + 1.036240I
a = 1.17713 + 1.86108I
b = 2.47993 + 1.70524I
3.6530 + 15.8290I 3.56651 8.43512I
u = 0.759511 1.036240I
a = 1.17713 1.86108I
b = 2.47993 1.70524I
3.6530 15.8290I 3.56651 + 8.43512I
u = 0.722062 + 1.151000I
a = 0.296051 0.228149I
b = 0.568245 0.196699I
0.61804 + 5.20487I 14.5642 21.0319I
u = 0.722062 1.151000I
a = 0.296051 + 0.228149I
b = 0.568245 + 0.196699I
0.61804 5.20487I 14.5642 + 21.0319I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.346211 + 0.168211I
a = 0.14971 1.47915I
b = 0.486627 + 0.604920I
0.56782 + 1.66520I 4.09705 5.80076I
u = 0.346211 0.168211I
a = 0.14971 + 1.47915I
b = 0.486627 0.604920I
0.56782 1.66520I 4.09705 + 5.80076I
8
II.
I
u
2
= h2u
14
+4u
12
+· · ·+b1, 3u
14
u
13
+· · ·+2a4, u
15
u
14
+· · ·+5u
2
+2i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
10
=
3
2
u
14
+
1
2
u
13
+ ··· +
3
2
u + 2
2u
14
4u
12
+ ··· u + 1
a
8
=
1
2
u
14
+
1
2
u
13
+ ···
1
2
u 1
u
14
+ u
13
+ ··· + u + 1
a
1
=
u
2
+ 1
u
4
a
11
=
1
2
u
14
1
2
u
13
+ ··· +
1
2
u 1
u
14
2u
12
+ ··· u 1
a
5
=
u
3
u
3
+ u
a
4
=
1
2
u
14
3
2
u
13
+ ···
11
2
u 4
u
14
2u
12
+ ··· 3u 1
a
9
=
1
2
u
14
3
2
u
13
+ ··· +
3
2
u 2
u
9
u
7
2u
5
u
4
u
2
1
a
12
=
3
2
u
14
+
1
2
u
13
+ ··· +
1
2
u + 1
2u
14
4u
12
+ ··· 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
14
6u
13
+12u
12
12u
11
+24u
10
24u
9
+22u
8
14u
7
+8u
6
8u
5
8u
4
u
3
12u
2
+2u4
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
15
5u
14
+ ··· 20u + 4
c
2
u
15
u
14
+ ··· + 5u
2
+ 2
c
3
, c
11
u
15
u
14
+ ··· 3u + 1
c
4
u
15
+ u
14
+ ··· 3u 1
c
6
u
15
+ u
14
+ ··· 5u
2
2
c
7
, c
10
u
15
+ 3u
14
+ ··· + 3u + 1
c
8
u
15
12u
14
+ ··· + 12u 2
c
9
u
15
+ u
14
+ ··· + u 1
c
12
u
15
+ 3u
14
+ ··· + 3u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
15
+ 13y
14
+ ··· + 8y 16
c
2
, c
6
y
15
+ 5y
14
+ ··· 20y 4
c
3
, c
4
, c
11
y
15
+ 9y
14
+ ··· + y 1
c
7
, c
10
y
15
7y
14
+ ··· y 1
c
8
y
15
16y
14
+ ··· 12y 4
c
9
y
15
+ 13y
14
+ ··· + 9y 1
c
12
y
15
+ y
14
+ ··· + 7y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.280327 + 0.923287I
a = 0.052905 0.728078I
b = 1.075220 0.283109I
0.70220 4.00075I 5.18084 + 7.73675I
u = 0.280327 0.923287I
a = 0.052905 + 0.728078I
b = 1.075220 + 0.283109I
0.70220 + 4.00075I 5.18084 7.73675I
u = 0.571277 + 0.761420I
a = 0.483935 0.067367I
b = 0.043929 + 0.810898I
0.370462 + 0.285171I 1.32756 0.80118I
u = 0.571277 0.761420I
a = 0.483935 + 0.067367I
b = 0.043929 0.810898I
0.370462 0.285171I 1.32756 + 0.80118I
u = 0.692893 + 0.869031I
a = 2.38866 + 2.52848I
b = 3.15994 + 1.64676I
4.59955 + 2.66562I 7.43536 3.52497I
u = 0.692893 0.869031I
a = 2.38866 2.52848I
b = 3.15994 1.64676I
4.59955 2.66562I 7.43536 + 3.52497I
u = 0.877263
a = 0.247126
b = 0.406981
1.99799 22.9980
u = 0.852657 + 0.760960I
a = 1.19418 1.44954I
b = 1.61952 0.38054I
6.57862 2.60076I 11.64016 + 2.05519I
u = 0.852657 0.760960I
a = 1.19418 + 1.44954I
b = 1.61952 + 0.38054I
6.57862 + 2.60076I 11.64016 2.05519I
u = 0.142705 + 0.800687I
a = 1.76224 + 0.77168I
b = 1.78689 0.41916I
7.67025 + 0.63840I 0.866787 + 0.877859I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.142705 0.800687I
a = 1.76224 0.77168I
b = 1.78689 + 0.41916I
7.67025 0.63840I 0.866787 0.877859I
u = 0.769086 + 0.992896I
a = 1.22437 1.54363I
b = 2.24931 1.14168I
5.85838 + 8.64297I 10.04873 7.11633I
u = 0.769086 0.992896I
a = 1.22437 + 1.54363I
b = 2.24931 + 1.14168I
5.85838 8.64297I 10.04873 + 7.11633I
u = 0.667106 + 1.077180I
a = 0.121148 0.106125I
b = 0.261000 0.309723I
0.83445 4.97703I 3.26494 + 1.29068I
u = 0.667106 1.077180I
a = 0.121148 + 0.106125I
b = 0.261000 + 0.309723I
0.83445 + 4.97703I 3.26494 1.29068I
13
III.
I
u
3
= h−u
15
u
14
+· · ·+b+1, u
15
a5u
15
+· · ·2a+8, u
16
+u
15
+· · ·2u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
10
=
a
u
15
+ u
14
+ ··· au 1
a
8
=
u
15
+ u
14
+ ··· a + 2
u
13
a + 2u
13
+ ··· + au + 1
a
1
=
u
2
+ 1
u
4
a
11
=
u
15
u
14
+ ··· + a 1
2u
13
2u
12
+ ··· + u 1
a
5
=
u
3
u
3
+ u
a
4
=
3u
15
+ u
14
+ ··· + a 5
u
15
+ u
14
+ ··· + au 1
a
9
=
u
15
u
14
+ ··· + u
3
+ a
2u
13
2u
12
+ ··· + u 1
a
12
=
u
15
u
14
+ ··· + a 1
u
13
a 2u
13
+ ··· au 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4u
15
8u
13
+4u
12
20u
11
+8u
10
24u
9
+16u
8
28u
7
+20u
6
20u
5
+16u
4
12u
3
+12u
2
+2
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
16
+ 5u
15
+ ··· 4u + 1)
2
c
2
, c
6
(u
16
+ u
15
+ ··· 2u 1)
2
c
3
, c
4
, c
11
u
32
+ u
31
+ ··· 27u + 286
c
7
, c
10
u
32
+ 13u
31
+ ··· 41u 2
c
8
(u
16
+ 13u
15
+ ··· + 44u 7)
2
c
9
u
32
u
31
+ ··· 5662u 169
c
12
(u 1)
32
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
16
+ 13y
15
+ ··· 48y + 1)
2
c
2
, c
6
(y
16
+ 5y
15
+ ··· 4y + 1)
2
c
3
, c
4
, c
11
y
32
+ 39y
31
+ ··· + 1346331y + 81796
c
7
, c
10
y
32
9y
31
+ ··· 53y + 4
c
8
(y
16
31y
15
+ ··· 704y + 49)
2
c
9
y
32
+ 19y
31
+ ··· 25101866y + 28561
c
12
(y 1)
32
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.254861 + 1.023380I
a = 0.166841 + 0.823281I
b = 0.776440 + 0.691048I
1.88017 + 3.12434I 2.05940 3.66013I
u = 0.254861 + 1.023380I
a = 0.013723 0.175484I
b = 0.878070 + 0.201017I
1.88017 + 3.12434I 2.05940 3.66013I
u = 0.254861 1.023380I
a = 0.166841 0.823281I
b = 0.776440 0.691048I
1.88017 3.12434I 2.05940 + 3.66013I
u = 0.254861 1.023380I
a = 0.013723 + 0.175484I
b = 0.878070 0.201017I
1.88017 3.12434I 2.05940 + 3.66013I
u = 0.750689 + 0.759364I
a = 0.24992 + 1.51155I
b = 0.196588 + 0.591384I
2.97876 0.48968I 2.35607 + 1.43137I
u = 0.750689 + 0.759364I
a = 0.69577 + 1.84479I
b = 1.13391 + 2.14189I
2.97876 0.48968I 2.35607 + 1.43137I
u = 0.750689 0.759364I
a = 0.24992 1.51155I
b = 0.196588 0.591384I
2.97876 + 0.48968I 2.35607 1.43137I
u = 0.750689 0.759364I
a = 0.69577 1.84479I
b = 1.13391 2.14189I
2.97876 + 0.48968I 2.35607 1.43137I
u = 0.099165 + 0.920214I
a = 0.057858 + 1.349270I
b = 0.976760 0.554322I
8.46679 1.52971I 6.72737 + 5.08772I
u = 0.099165 + 0.920214I
a = 1.95590 1.06565I
b = 2.68988 1.32943I
8.46679 1.52971I 6.72737 + 5.08772I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.099165 0.920214I
a = 0.057858 1.349270I
b = 0.976760 + 0.554322I
8.46679 + 1.52971I 6.72737 5.08772I
u = 0.099165 0.920214I
a = 1.95590 + 1.06565I
b = 2.68988 + 1.32943I
8.46679 + 1.52971I 6.72737 5.08772I
u = 0.665350 + 0.873267I
a = 2.10683 2.08817I
b = 2.12567 2.22461I
5.56244 2.57669I 3.30756 + 2.71681I
u = 0.665350 + 0.873267I
a = 2.36347 + 2.91711I
b = 3.72419 + 1.41589I
5.56244 2.57669I 3.30756 + 2.71681I
u = 0.665350 0.873267I
a = 2.10683 + 2.08817I
b = 2.12567 + 2.22461I
5.56244 + 2.57669I 3.30756 2.71681I
u = 0.665350 0.873267I
a = 2.36347 2.91711I
b = 3.72419 1.41589I
5.56244 + 2.57669I 3.30756 2.71681I
u = 0.847960 + 0.745397I
a = 1.07862 + 1.20524I
b = 1.287070 + 0.510746I
5.32084 + 2.28357I 3.92472 0.30826I
u = 0.847960 + 0.745397I
a = 1.17114 1.41311I
b = 1.61121 0.11458I
5.32084 + 2.28357I 3.92472 0.30826I
u = 0.847960 0.745397I
a = 1.07862 1.20524I
b = 1.287070 0.510746I
5.32084 2.28357I 3.92472 + 0.30826I
u = 0.847960 0.745397I
a = 1.17114 + 1.41311I
b = 1.61121 + 0.11458I
5.32084 2.28357I 3.92472 + 0.30826I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.716556 + 0.957138I
a = 1.273310 0.043889I
b = 2.08123 + 0.26719I
3.57736 + 6.07197I 0.61575 7.02814I
u = 0.716556 + 0.957138I
a = 2.17649 0.07224I
b = 1.73170 1.82727I
3.57736 + 6.07197I 0.61575 7.02814I
u = 0.716556 0.957138I
a = 1.273310 + 0.043889I
b = 2.08123 0.26719I
3.57736 6.07197I 0.61575 + 7.02814I
u = 0.716556 0.957138I
a = 2.17649 + 0.07224I
b = 1.73170 + 1.82727I
3.57736 6.07197I 0.61575 + 7.02814I
u = 0.761782 + 1.000110I
a = 1.07483 + 1.36444I
b = 1.75138 + 1.17047I
4.53468 8.28859I 2.57708 + 5.27135I
u = 0.761782 + 1.000110I
a = 1.03895 1.57028I
b = 2.28316 1.19066I
4.53468 8.28859I 2.57708 + 5.27135I
u = 0.761782 1.000110I
a = 1.07483 1.36444I
b = 1.75138 1.17047I
4.53468 + 8.28859I 2.57708 5.27135I
u = 0.761782 1.000110I
a = 1.03895 + 1.57028I
b = 2.28316 + 1.19066I
4.53468 + 8.28859I 2.57708 5.27135I
u = 0.689113
a = 0.757498
b = 0.278882
1.42684 4.14780
u = 0.689113
a = 0.117305
b = 0.466296
1.42684 4.14780
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.384812
a = 1.47613 + 2.83234I
b = 0.786617 + 0.670506I
5.81564 5.09360
u = 0.384812
a = 1.47613 2.83234I
b = 0.786617 0.670506I
5.81564 5.09360
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
15
5u
14
+ ··· 20u + 4)(u
16
+ 5u
15
+ ··· 4u + 1)
2
· (u
32
+ 10u
31
+ ··· 12u + 4)
c
2
(u
15
u
14
+ ··· + 5u
2
+ 2)(u
16
+ u
15
+ ··· 2u 1)
2
· (u
32
6u
31
+ ··· + 2u + 2)
c
3
, c
11
(u
15
u
14
+ ··· 3u + 1)(u
32
+ u
31
+ ··· 27u + 286)
· (u
32
+ u
31
+ ··· 2u + 1)
c
4
(u
15
+ u
14
+ ··· 3u 1)(u
32
+ u
31
+ ··· 27u + 286)
· (u
32
+ u
31
+ ··· 2u + 1)
c
6
(u
15
+ u
14
+ ··· 5u
2
2)(u
16
+ u
15
+ ··· 2u 1)
2
· (u
32
6u
31
+ ··· + 2u + 2)
c
7
, c
10
(u
15
+ 3u
14
+ ··· + 3u + 1)(u
32
+ 3u
31
+ ··· 4u + 1)
· (u
32
+ 13u
31
+ ··· 41u 2)
c
8
(u
15
12u
14
+ ··· + 12u 2)(u
16
+ 13u
15
+ ··· + 44u 7)
2
· (u
32
15u
31
+ ··· + 330u + 50)
c
9
(u
15
+ u
14
+ ··· + u 1)(u
32
u
31
+ ··· + 7u + 4)
· (u
32
u
31
+ ··· 5662u 169)
c
12
((u 1)
32
)(u
15
+ 3u
14
+ ··· + 3u + 1)
· (u
32
+ 30u
31
+ ··· + 983040u + 65536)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
15
+ 13y
14
+ ··· + 8y 16)(y
16
+ 13y
15
+ ··· 48y + 1)
2
· (y
32
+ 26y
31
+ ··· + 336y + 16)
c
2
, c
6
(y
15
+ 5y
14
+ ··· 20y 4)(y
16
+ 5y
15
+ ··· 4y + 1)
2
· (y
32
+ 10y
31
+ ··· 12y + 4)
c
3
, c
4
, c
11
(y
15
+ 9y
14
+ ··· + y 1)(y
32
+ 39y
31
+ ··· + 1346331y + 81796)
· (y
32
+ 45y
31
+ ··· + 10y + 1)
c
7
, c
10
(y
15
7y
14
+ ··· y 1)(y
32
9y
31
+ ··· 53y + 4)
· (y
32
+ 5y
31
+ ··· 12y + 1)
c
8
(y
15
16y
14
+ ··· 12y 4)(y
16
31y
15
+ ··· 704y + 49)
2
· (y
32
23y
31
+ ··· 127900y + 2500)
c
9
(y
15
+ 13y
14
+ ··· + 9y 1)(y
32
+ 9y
31
+ ··· + 151y + 16)
· (y
32
+ 19y
31
+ ··· 25101866y + 28561)
c
12
((y 1)
32
)(y
15
+ y
14
+ ··· + 7y 1)
· (y
32
24y
30
+ ··· + 4294967296y + 4294967296)
22