12n
0507
(K12n
0507
)
A knot diagram
1
Linearized knot diagam
3 5 11 7 2 9 12 3 5 8 4 10
Solving Sequence
4,11
12
3,8
7 5 2 6 10 1 9
c
11
c
3
c
7
c
4
c
2
c
5
c
10
c
12
c
9
c
1
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h1.00284 × 10
74
u
51
5.06570 × 10
74
u
50
+ ··· + 2.45946 × 10
74
b 5.12443 × 10
75
,
1.96421 × 10
74
u
51
1.03477 × 10
75
u
50
+ ··· + 5.81327 × 10
74
a 1.34829 × 10
76
,
u
52
6u
51
+ ··· 168u + 52i
I
u
2
= h117054u
17
360970u
16
+ ··· + 246977b + 230480,
207914u
17
537859u
16
+ ··· + 740931a 581924, u
18
2u
17
+ ··· + 8u + 3i
I
u
3
= h7a
4
+ 16a
3
4a
2
+ 11b 40a + 8, a
5
+ 2a
4
a
3
6a
2
+ 3a 1, u + 1i
I
v
1
= ha, b
2
b + 1, v 1i
* 4 irreducible components of dim
C
= 0, with total 77 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.00×10
74
u
51
5.07×10
74
u
50
+· · ·+2.46×10
74
b5.12×10
75
, 1.96×10
74
u
51
1.03 × 10
75
u
50
+ · · · + 5.81 × 10
74
a 1.35 × 10
76
, u
52
6u
51
+ · · · 168u + 52i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
3
=
u
u
a
8
=
0.337885u
51
+ 1.78002u
50
+ ··· 47.5713u + 23.1933
0.407746u
51
+ 2.05968u
50
+ ··· 49.5998u + 20.8356
a
7
=
0.231416u
51
1.16982u
50
+ ··· + 26.0026u 10.5013
0.746564u
51
+ 3.90831u
50
+ ··· 98.2781u + 45.0657
a
5
=
0.483569u
51
+ 2.46254u
50
+ ··· 59.1117u + 30.0174
0.138554u
51
+ 0.761537u
50
+ ··· 19.4741u + 10.6533
a
2
=
0.136698u
51
0.735393u
50
+ ··· + 21.0106u 6.84353
0.189414u
51
0.720852u
50
+ ··· + 9.10899u + 1.55169
a
6
=
0.924358u
51
+ 4.32805u
50
+ ··· 89.5677u + 26.2032
2.94505u
51
14.5616u
50
+ ··· + 329.171u 146.279
a
10
=
0.558793u
51
+ 2.71369u
50
+ ··· 59.1474u + 26.7302
0.449141u
51
2.26958u
50
+ ··· + 53.1092u 22.9509
a
1
=
0.805085u
51
3.90019u
50
+ ··· + 88.1248u 32.8658
0.478973u
51
+ 2.44395u
50
+ ··· 58.0052u + 27.5740
a
9
=
0.161202u
51
0.874376u
50
+ ··· + 20.1820u 9.77912
0.906833u
51
+ 4.71408u
50
+ ··· 117.353u + 53.8080
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.43996u
51
+ 6.82741u
50
+ ··· 140.681u + 61.5443
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
52
+ 79u
51
+ ··· + 126u + 1
c
2
, c
5
u
52
+ u
51
+ ··· 16u + 1
c
3
, c
11
u
52
+ 6u
51
+ ··· + 168u + 52
c
4
u
52
7u
51
+ ··· 729u + 449
c
6
u
52
u
51
+ ··· 32223752u + 2811556
c
7
u
52
3u
51
+ ··· 97u + 49
c
8
u
52
u
51
+ ··· 248316u + 85849
c
9
u
52
2u
51
+ ··· + 172169u + 39973
c
10
u
52
+ 11u
51
+ ··· + 560u + 49
c
12
u
52
15u
51
+ ··· 112029u + 100799
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
52
209y
51
+ ··· + 2042y + 1
c
2
, c
5
y
52
+ 79y
51
+ ··· + 126y + 1
c
3
, c
11
y
52
40y
51
+ ··· 11792y + 2704
c
4
y
52
+ 27y
51
+ ··· + 5239107y + 201601
c
6
y
52
+ 93y
51
+ ··· 26572892374864y + 7904847141136
c
7
y
52
15y
51
+ ··· 35575y + 2401
c
8
y
52
15y
51
+ ··· 75223432574y + 7370050801
c
9
y
52
+ 80y
51
+ ··· + 24550030999y + 1597840729
c
10
y
52
+ 7y
51
+ ··· + 23618y + 2401
c
12
y
52
45y
51
+ ··· + 108799403279y + 10160438401
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.072076 + 1.073670I
a = 0.422821 + 0.107445I
b = 0.157151 + 0.717710I
0.08598 3.46440I 0. + 3.76930I
u = 0.072076 1.073670I
a = 0.422821 0.107445I
b = 0.157151 0.717710I
0.08598 + 3.46440I 0. 3.76930I
u = 1.068700 + 0.176322I
a = 0.99400 1.18957I
b = 0.471542 1.119630I
7.77272 + 4.78722I 5.62286 4.46937I
u = 1.068700 0.176322I
a = 0.99400 + 1.18957I
b = 0.471542 + 1.119630I
7.77272 4.78722I 5.62286 + 4.46937I
u = 0.269878 + 0.867397I
a = 0.065611 0.173550I
b = 0.680688 0.688393I
0.88668 2.29079I 4.46889 + 2.66895I
u = 0.269878 0.867397I
a = 0.065611 + 0.173550I
b = 0.680688 + 0.688393I
0.88668 + 2.29079I 4.46889 2.66895I
u = 1.048260 + 0.371285I
a = 1.55261 + 0.09090I
b = 0.733122 0.676797I
0.94506 + 3.54563I 1.62965 5.75409I
u = 1.048260 0.371285I
a = 1.55261 0.09090I
b = 0.733122 + 0.676797I
0.94506 3.54563I 1.62965 + 5.75409I
u = 1.104730 + 0.182136I
a = 0.839035 0.685937I
b = 0.615619 + 1.264700I
3.12675 + 4.09577I 11.1869 8.8133I
u = 1.104730 0.182136I
a = 0.839035 + 0.685937I
b = 0.615619 1.264700I
3.12675 4.09577I 11.1869 + 8.8133I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.132840 + 0.177320I
a = 1.42486 + 0.17109I
b = 1.32434 1.18522I
2.29045 1.02276I 4.00000 + 0.I
u = 1.132840 0.177320I
a = 1.42486 0.17109I
b = 1.32434 + 1.18522I
2.29045 + 1.02276I 4.00000 + 0.I
u = 0.280215 + 0.778839I
a = 0.567039 + 0.203024I
b = 0.80247 1.29034I
12.44140 + 2.96434I 0.898916 0.509328I
u = 0.280215 0.778839I
a = 0.567039 0.203024I
b = 0.80247 + 1.29034I
12.44140 2.96434I 0.898916 + 0.509328I
u = 0.495944 + 0.659946I
a = 0.93403 + 1.16897I
b = 0.782553 + 0.575131I
8.85362 + 2.74417I 1.62020 2.60444I
u = 0.495944 0.659946I
a = 0.93403 1.16897I
b = 0.782553 0.575131I
8.85362 2.74417I 1.62020 + 2.60444I
u = 0.383796 + 0.722249I
a = 0.0394551 + 0.0110081I
b = 0.141872 + 0.858570I
3.00681 + 0.54202I 3.07092 1.78302I
u = 0.383796 0.722249I
a = 0.0394551 0.0110081I
b = 0.141872 0.858570I
3.00681 0.54202I 3.07092 + 1.78302I
u = 1.118520 + 0.405885I
a = 1.99263 0.26808I
b = 0.607693 0.824065I
2.47983 5.59777I 0. + 7.04199I
u = 1.118520 0.405885I
a = 1.99263 + 0.26808I
b = 0.607693 + 0.824065I
2.47983 + 5.59777I 0. 7.04199I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.989819 + 0.690556I
a = 0.738252 1.108280I
b = 0.493528 1.071940I
7.62938 + 2.46347I 0
u = 0.989819 0.690556I
a = 0.738252 + 1.108280I
b = 0.493528 + 1.071940I
7.62938 2.46347I 0
u = 1.209340 + 0.050765I
a = 1.57890 0.62627I
b = 1.37163 + 1.27972I
5.14318 + 1.81368I 18.0333 + 0.I
u = 1.209340 0.050765I
a = 1.57890 + 0.62627I
b = 1.37163 1.27972I
5.14318 1.81368I 18.0333 + 0.I
u = 1.142540 + 0.409057I
a = 1.98363 0.31458I
b = 1.28875 + 1.59470I
9.77699 7.32778I 0
u = 1.142540 0.409057I
a = 1.98363 + 0.31458I
b = 1.28875 1.59470I
9.77699 + 7.32778I 0
u = 0.038697 + 1.225180I
a = 0.060632 0.219112I
b = 0.787773 1.095970I
10.30200 + 8.83554I 0
u = 0.038697 1.225180I
a = 0.060632 + 0.219112I
b = 0.787773 + 1.095970I
10.30200 8.83554I 0
u = 1.298120 + 0.219749I
a = 1.57172 + 0.70746I
b = 2.01283 0.85764I
3.60868 5.39855I 0
u = 1.298120 0.219749I
a = 1.57172 0.70746I
b = 2.01283 + 0.85764I
3.60868 + 5.39855I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.435814 + 0.497980I
a = 0.144770 + 1.329400I
b = 0.406646 + 0.837607I
0.35496 + 1.82856I 2.55368 2.81717I
u = 0.435814 0.497980I
a = 0.144770 1.329400I
b = 0.406646 0.837607I
0.35496 1.82856I 2.55368 + 2.81717I
u = 1.325900 + 0.415407I
a = 1.133880 + 0.064846I
b = 0.593152 + 0.351949I
5.15254 2.08012I 0
u = 1.325900 0.415407I
a = 1.133880 0.064846I
b = 0.593152 0.351949I
5.15254 + 2.08012I 0
u = 0.594624 + 0.117518I
a = 2.93422 1.82812I
b = 0.610865 + 0.355975I
9.27919 3.18450I 2.07898 0.42481I
u = 0.594624 0.117518I
a = 2.93422 + 1.82812I
b = 0.610865 0.355975I
9.27919 + 3.18450I 2.07898 + 0.42481I
u = 1.34204 + 0.52912I
a = 1.308500 0.013301I
b = 0.646221 0.811256I
4.19597 + 9.10494I 0
u = 1.34204 0.52912I
a = 1.308500 + 0.013301I
b = 0.646221 + 0.811256I
4.19597 9.10494I 0
u = 1.38606 + 0.43784I
a = 1.47210 0.00392I
b = 1.21303 + 1.00411I
5.90548 + 7.10957I 0
u = 1.38606 0.43784I
a = 1.47210 + 0.00392I
b = 1.21303 1.00411I
5.90548 7.10957I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.163645 + 0.500729I
a = 1.48155 0.11869I
b = 0.210860 0.434892I
0.61514 1.70536I 3.89799 + 3.77276I
u = 0.163645 0.500729I
a = 1.48155 + 0.11869I
b = 0.210860 + 0.434892I
0.61514 + 1.70536I 3.89799 3.77276I
u = 1.40514 + 0.56979I
a = 1.50502 0.02569I
b = 1.02860 + 1.37422I
5.7801 15.0850I 0
u = 1.40514 0.56979I
a = 1.50502 + 0.02569I
b = 1.02860 1.37422I
5.7801 + 15.0850I 0
u = 0.334164 + 0.327190I
a = 0.80947 1.27346I
b = 0.454762 0.337305I
0.700125 1.067100I 7.65429 + 6.43905I
u = 0.334164 0.327190I
a = 0.80947 + 1.27346I
b = 0.454762 + 0.337305I
0.700125 + 1.067100I 7.65429 6.43905I
u = 1.54216 + 0.53974I
a = 0.817027 + 0.067290I
b = 0.805620 0.732243I
4.04363 5.57601I 0
u = 1.54216 0.53974I
a = 0.817027 0.067290I
b = 0.805620 + 0.732243I
4.04363 + 5.57601I 0
u = 1.82542 + 0.12353I
a = 0.180716 0.464332I
b = 0.529222 + 0.477306I
5.59317 + 0.61259I 0
u = 1.82542 0.12353I
a = 0.180716 + 0.464332I
b = 0.529222 0.477306I
5.59317 0.61259I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.70629 + 0.88313I
a = 0.040681 0.244589I
b = 0.458284 + 0.504879I
5.74740 1.53118I 0
u = 1.70629 0.88313I
a = 0.040681 + 0.244589I
b = 0.458284 0.504879I
5.74740 + 1.53118I 0
10
II. I
u
2
= h1.17 × 10
5
u
17
3.61 × 10
5
u
16
+ · · · + 2.47 × 10
5
b + 2.30 × 10
5
, 2.08 ×
10
5
u
17
5.38×10
5
u
16
+· · · +7.41×10
5
a5.82×10
5
, u
18
2u
17
+· · · +8u +3i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
3
=
u
u
a
8
=
0.280612u
17
+ 0.725923u
16
+ ··· 3.10639u + 0.785396
0.473947u
17
+ 1.46155u
16
+ ··· 2.24939u 0.933204
a
7
=
0.237918u
17
0.825679u
16
+ ··· 0.381241u + 2.21270
0.894460u
17
+ 2.94986u
16
+ ··· 4.81013u 2.47683
a
5
=
0.605086u
17
+ 1.13512u
16
+ ··· 3.56873u 1.00410
0.513671u
17
0.344639u
16
+ ··· 4.46092u 1.91207
a
2
=
0.758081u
17
1.12381u
16
+ ··· 3.30368u 1.75050
0.800844u
17
+ 1.20535u
16
+ ··· + 9.72215u + 2.40419
a
6
=
0.210071u
17
+ 1.20477u
16
+ ··· 7.21760u 1.54346
0.623933u
17
+ 0.206902u
16
+ ··· + 7.78891u + 2.25446
a
10
=
0.457344u
17
0.485917u
16
+ ··· + 1.87185u + 1.65301
0.188467u
17
+ 1.56389u
16
+ ··· 12.1388u 4.59404
a
1
=
0.852110u
17
1.08511u
16
+ ··· 3.14348u 1.73854
0.894873u
17
+ 1.16664u
16
+ ··· + 9.56196u + 2.39223
a
9
=
0.132791u
17
0.992322u
16
+ ··· + 0.0568042u + 2.82047
0.887350u
17
+ 3.17980u
16
+ ··· 5.41258u 2.96828
(ii) Obstruction class = 1
(iii) Cusp Shapes =
39445
246977
u
17
1167483
246977
u
16
+ ··· +
8666107
246977
u +
3104388
246977
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
18
21u
17
+ ··· 23u + 1
c
2
u
18
u
17
+ ··· + u + 1
c
3
u
18
+ 2u
17
+ ··· 8u + 3
c
4
u
18
5u
17
+ ··· 10u + 11
c
5
u
18
+ u
17
+ ··· u + 1
c
6
u
18
+ 4u
17
+ ··· + 8u + 3
c
7
u
18
3u
17
+ ··· 22u + 5
c
8
u
18
u
17
+ ··· + u + 5
c
9
u
18
+ 5u
16
+ ··· 4u + 1
c
10
u
18
9u
17
+ ··· u + 1
c
11
u
18
2u
17
+ ··· + 8u + 3
c
12
u
18
7u
17
+ ··· 14u + 11
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
47y
17
+ ··· 89y + 1
c
2
, c
5
y
18
+ 21y
17
+ ··· + 23y + 1
c
3
, c
11
y
18
20y
17
+ ··· 58y + 9
c
4
y
18
+ 9y
17
+ ··· + 956y + 121
c
6
y
18
+ 18y
17
+ ··· + 68y + 9
c
7
y
18
5y
17
+ ··· 104y + 25
c
8
y
18
+ 7y
17
+ ··· + 29y + 25
c
9
y
18
+ 10y
17
+ ··· 8y + 1
c
10
y
18
3y
17
+ ··· + 3y + 1
c
12
y
18
15y
17
+ ··· + 1256y + 121
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.005450 + 0.295263I
a = 1.203530 + 0.437285I
b = 0.335827 0.487120I
2.17303 3.53081I 4.11221 + 3.61845I
u = 1.005450 0.295263I
a = 1.203530 0.437285I
b = 0.335827 + 0.487120I
2.17303 + 3.53081I 4.11221 3.61845I
u = 0.207208 + 0.849001I
a = 0.282886 + 0.138697I
b = 0.549633 0.563104I
1.17142 3.80180I 6.45298 + 6.93246I
u = 0.207208 0.849001I
a = 0.282886 0.138697I
b = 0.549633 + 0.563104I
1.17142 + 3.80180I 6.45298 6.93246I
u = 1.161860 + 0.107310I
a = 2.23789 0.78537I
b = 2.15942 + 1.58054I
3.02525 + 1.29728I 13.4543 5.0288I
u = 1.161860 0.107310I
a = 2.23789 + 0.78537I
b = 2.15942 1.58054I
3.02525 1.29728I 13.4543 + 5.0288I
u = 0.751188 + 0.315078I
a = 1.51622 2.08382I
b = 0.655881 0.938092I
9.23443 + 4.41108I 1.12625 5.00994I
u = 0.751188 0.315078I
a = 1.51622 + 2.08382I
b = 0.655881 + 0.938092I
9.23443 4.41108I 1.12625 + 5.00994I
u = 1.218070 + 0.029447I
a = 1.184950 + 0.350003I
b = 0.820578 1.114160I
4.34167 2.03661I 7.20835 + 3.90028I
u = 1.218070 0.029447I
a = 1.184950 0.350003I
b = 0.820578 + 1.114160I
4.34167 + 2.03661I 7.20835 3.90028I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.38134 + 0.46176I
a = 1.399010 + 0.094856I
b = 1.182680 + 0.724988I
6.00324 + 8.77263I 8.55851 6.89757I
u = 1.38134 0.46176I
a = 1.399010 0.094856I
b = 1.182680 0.724988I
6.00324 8.77263I 8.55851 + 6.89757I
u = 1.40929 + 0.49254I
a = 1.140630 0.031844I
b = 0.703194 0.839704I
5.15223 3.52976I 7.05597 + 3.81806I
u = 1.40929 0.49254I
a = 1.140630 + 0.031844I
b = 0.703194 + 0.839704I
5.15223 + 3.52976I 7.05597 3.81806I
u = 0.282235 + 0.273085I
a = 2.34179 1.33257I
b = 0.414830 0.603446I
0.0620604 0.0079783I 0.270726 + 0.542760I
u = 0.282235 0.273085I
a = 2.34179 + 1.33257I
b = 0.414830 + 0.603446I
0.0620604 + 0.0079783I 0.270726 0.542760I
u = 1.82787 + 0.56276I
a = 0.149506 0.193772I
b = 0.338633 + 0.304616I
5.99061 1.24449I 6.19786 0.78651I
u = 1.82787 0.56276I
a = 0.149506 + 0.193772I
b = 0.338633 0.304616I
5.99061 + 1.24449I 6.19786 + 0.78651I
17
III.
I
u
3
= h7a
4
+ 16a
3
4a
2
+ 11b 40a + 8, a
5
+ 2a
4
a
3
6a
2
+ 3a 1, u + 1i
(i) Arc colorings
a
4
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
1
1
a
8
=
a
0.636364a
4
1.45455a
3
+ ··· + 3.63636a 0.727273
a
7
=
0.636364a
4
+ 1.45455a
3
+ ··· 3.63636a + 0.727273
1.27273a
4
2.90909a
3
+ ··· + 8.27273a 1.45455
a
5
=
0.181818a
4
0.272727a
3
+ ··· + 1.18182a 1.63636
0.545455a
4
+ 0.818182a
3
+ ··· 3.54545a + 2.90909
a
2
=
0.636364a
4
1.45455a
3
+ ··· + 4.63636a 0.727273
1.27273a
4
+ 2.90909a
3
+ ··· 8.27273a + 1.45455
a
6
=
0.636364a
4
1.45455a
3
+ ··· + 3.63636a 0.727273
1.27273a
4
+ 2.90909a
3
+ ··· 8.27273a + 1.45455
a
10
=
0.181818a
4
0.272727a
3
+ ··· + 1.18182a + 0.363636
0.181818a
4
0.272727a
3
+ ··· + 1.18182a 1.63636
a
1
=
a
0.636364a
4
+ 1.45455a
3
+ ··· 4.63636a + 0.727273
a
9
=
0.636364a
4
+ 1.45455a
3
+ ··· 3.63636a + 0.727273
1.27273a
4
2.90909a
3
+ ··· + 8.27273a 1.45455
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
9
u
5
+ 2u
4
+ 3u
3
+ 2u
2
+ u 1
c
2
, c
5
, c
12
u
5
+ u
3
+ u 1
c
3
, c
11
(u 1)
5
c
6
u
5
c
7
, c
8
u
5
+ u
3
+ 2u
2
u 2
c
10
u
5
2u
4
+ 3u
3
2u
2
+ u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
9
c
10
y
5
+ 2y
4
+ 3y
3
+ 6y
2
+ 5y 1
c
2
, c
5
, c
12
y
5
+ 2y
4
+ 3y
3
+ 2y
2
+ y 1
c
3
, c
11
(y 1)
5
c
6
y
5
c
7
, c
8
y
5
+ 2y
4
y
3
6y
2
+ 9y 4
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.30084
b = 0.405620
1.64493 6.00000
u = 1.00000
a = 0.234877 + 0.318507I
b = 0.208008 + 1.191750I
1.64493 6.00000
u = 1.00000
a = 0.234877 0.318507I
b = 0.208008 1.191750I
1.64493 6.00000
u = 1.00000
a = 1.88529 + 1.16368I
b = 0.994802 0.833601I
1.64493 6.00000
u = 1.00000
a = 1.88529 1.16368I
b = 0.994802 + 0.833601I
1.64493 6.00000
21
IV. I
v
1
= ha, b
2
b + 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
11
=
1
0
a
12
=
1
0
a
3
=
1
0
a
8
=
0
b
a
7
=
b
b
a
5
=
b + 2
b 1
a
2
=
2b
b
a
6
=
b
b
a
10
=
1
b 1
a
1
=
b
b
a
9
=
b
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
10
u
2
u + 1
c
2
, c
7
, c
8
c
9
, c
12
u
2
+ u + 1
c
3
, c
6
, c
11
u
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
9
, c
10
, c
12
y
2
+ y + 1
c
3
, c
6
, c
11
y
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.500000 + 0.866025I
0 0
v = 1.00000
a = 0
b = 0.500000 0.866025I
0 0
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)(u
5
+ 2u
4
+ ··· + u 1)(u
18
21u
17
+ ··· 23u + 1)
· (u
52
+ 79u
51
+ ··· + 126u + 1)
c
2
(u
2
+ u + 1)(u
5
+ u
3
+ u 1)(u
18
u
17
+ ··· + u + 1)
· (u
52
+ u
51
+ ··· 16u + 1)
c
3
u
2
(u 1)
5
(u
18
+ 2u
17
+ ··· 8u + 3)(u
52
+ 6u
51
+ ··· + 168u + 52)
c
4
(u
2
u + 1)(u
5
+ 2u
4
+ ··· + u 1)(u
18
5u
17
+ ··· 10u + 11)
· (u
52
7u
51
+ ··· 729u + 449)
c
5
(u
2
u + 1)(u
5
+ u
3
+ u 1)(u
18
+ u
17
+ ··· u + 1)
· (u
52
+ u
51
+ ··· 16u + 1)
c
6
u
7
(u
18
+ 4u
17
+ ··· + 8u + 3)(u
52
u
51
+ ··· 3.22238 × 10
7
u + 2811556)
c
7
(u
2
+ u + 1)(u
5
+ u
3
+ 2u
2
u 2)(u
18
3u
17
+ ··· 22u + 5)
· (u
52
3u
51
+ ··· 97u + 49)
c
8
(u
2
+ u + 1)(u
5
+ u
3
+ 2u
2
u 2)(u
18
u
17
+ ··· + u + 5)
· (u
52
u
51
+ ··· 248316u + 85849)
c
9
(u
2
+ u + 1)(u
5
+ 2u
4
+ ··· + u 1)(u
18
+ 5u
16
+ ··· 4u + 1)
· (u
52
2u
51
+ ··· + 172169u + 39973)
c
10
(u
2
u + 1)(u
5
2u
4
+ ··· + u + 1)(u
18
9u
17
+ ··· u + 1)
· (u
52
+ 11u
51
+ ··· + 560u + 49)
c
11
u
2
(u 1)
5
(u
18
2u
17
+ ··· + 8u + 3)(u
52
+ 6u
51
+ ··· + 168u + 52)
c
12
(u
2
+ u + 1)(u
5
+ u
3
+ u 1)(u
18
7u
17
+ ··· 14u + 11)
· (u
52
15u
51
+ ··· 112029u + 100799)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)(y
5
+ 2y
4
+ ··· + 5y 1)(y
18
47y
17
+ ··· 89y + 1)
· (y
52
209y
51
+ ··· + 2042y + 1)
c
2
, c
5
(y
2
+ y + 1)(y
5
+ 2y
4
+ ··· + y 1)(y
18
+ 21y
17
+ ··· + 23y + 1)
· (y
52
+ 79y
51
+ ··· + 126y + 1)
c
3
, c
11
y
2
(y 1)
5
(y
18
20y
17
+ ··· 58y + 9)
· (y
52
40y
51
+ ··· 11792y + 2704)
c
4
(y
2
+ y + 1)(y
5
+ 2y
4
+ 3y
3
+ 6y
2
+ 5y 1)
· (y
18
+ 9y
17
+ ··· + 956y + 121)
· (y
52
+ 27y
51
+ ··· + 5239107y + 201601)
c
6
y
7
(y
18
+ 18y
17
+ ··· + 68y + 9)
· (y
52
+ 93y
51
+ ··· 26572892374864y + 7904847141136)
c
7
(y
2
+ y + 1)(y
5
+ 2y
4
+ ··· + 9y 4)(y
18
5y
17
+ ··· 104y + 25)
· (y
52
15y
51
+ ··· 35575y + 2401)
c
8
(y
2
+ y + 1)(y
5
+ 2y
4
+ ··· + 9y 4)(y
18
+ 7y
17
+ ··· + 29y + 25)
· (y
52
15y
51
+ ··· 75223432574y + 7370050801)
c
9
(y
2
+ y + 1)(y
5
+ 2y
4
+ ··· + 5y 1)(y
18
+ 10y
17
+ ··· 8y + 1)
· (y
52
+ 80y
51
+ ··· + 24550030999y + 1597840729)
c
10
(y
2
+ y + 1)(y
5
+ 2y
4
+ ··· + 5y 1)(y
18
3y
17
+ ··· + 3y + 1)
· (y
52
+ 7y
51
+ ··· + 23618y + 2401)
c
12
(y
2
+ y + 1)(y
5
+ 2y
4
+ 3y
3
+ 2y
2
+ y 1)
· (y
18
15y
17
+ ··· + 1256y + 121)
· (y
52
45y
51
+ ··· + 108799403279y + 10160438401)
27