12n
0508
(K12n
0508
)
A knot diagram
1
Linearized knot diagam
3 6 12 7 2 9 11 5 3 12 8 9
Solving Sequence
2,6 3,9
7 10 1 5 4 8 12 11
c
2
c
6
c
9
c
1
c
5
c
4
c
8
c
12
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−11u
14
+ 3u
13
+ ··· + 36b + 14, u
14
+ 3u
13
+ ··· + 12a 8,
u
15
+ 2u
14
2u
13
5u
12
+ 4u
11
+ 9u
10
+ u
9
+ u
8
+ 3u
7
4u
6
+ 5u
5
+ 21u
4
+ 16u
3
+ 4u
2
2i
I
u
2
= h−7u
24
+ 2u
23
+ ··· + 32b + 140, 47u
25
117u
24
+ ··· + 368a + 2737, u
26
+ 2u
25
+ ··· 46u 23i
I
u
3
= hu
3
u
2
+ 2b, u
2
+ 2a + u, u
4
u
2
+ 2i
I
u
4
= h4b
2
4b 32u + 33, 2bu 2b u + 1, 2a + 1, u
2
2u + 1i
I
u
5
= h−u
3
+ u
2
+ 2b u + 1, u
3
+ u
2
+ 2a u + 1, u
4
+ 1i
I
u
6
= h−a
2
+ b 2a, a
3
+ 2a
2
+ a + 1, u 1i
I
u
7
= hba a
2
+ a + 1, u 1i
I
u
8
= hb a 1, u 1i
I
v
1
= ha, b
3
b 1, v 1i
I
v
2
= ha, b + 1, v 1i
* 8 irreducible components of dim
C
= 0, with total 59 representations.
* 2 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−11u
14
+ 3u
13
+ · · · + 36b + 14, u
14
+ 3u
13
+ · · · + 12a 8, u
15
+
2u
14
+ · · · + 4u
2
2i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
1
12
u
14
1
4
u
13
+ ··· +
1
6
u +
2
3
11
36
u
14
1
12
u
13
+ ···
8
9
u
7
18
a
7
=
1
4
u
12
3
4
u
10
+ ··· +
1
2
u
1
2
1
12
u
14
1
4
u
13
+ ··· +
2
3
u +
1
6
a
10
=
13
36
u
14
+
1
3
u
13
+ ··· +
11
9
u +
2
9
1
12
u
14
5
12
u
12
+ ···
1
3
u
1
3
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
4
=
1
2
u
14
1
2
u
13
+ ··· u +
3
2
1
2
u
14
1
2
u
13
+ ···
1
2
u + 1
a
8
=
0.388889u
14
0.416667u
13
+ ··· 0.277778u + 1.22222
1
6
u
14
1
4
u
13
+ ···
4
3
u +
1
6
a
12
=
1
2
u
6
1
2
u
4
+
1
2
u
3
+ 1
1
12
u
14
5
12
u
12
+ ···
1
3
u
1
3
a
11
=
13
36
u
14
+
1
3
u
13
+ ··· +
11
9
u +
2
9
1
6
u
14
+
1
4
u
13
+ ···
1
6
u
2
3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
28
27
u
14
8
9
u
13
134
27
u
12
+
104
27
u
11
+ 10u
10
26
3
u
9
206
27
u
8
+
200
27
u
7
148
27
u
6
98
27
u
5
+
158
9
u
4
8
3
u
3
488
27
u
2
214
27
u
160
27
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
15
+ 8u
14
+ ··· + 16u + 4
c
2
, c
5
, c
7
c
11
u
15
2u
14
+ ··· 4u
2
+ 2
c
3
, c
12
2(2u
15
6u
14
+ ··· 9u + 3)
c
4
, c
6
2(2u
15
+ 2u
14
+ ··· + 27u + 3)
c
8
3(3u
15
18u
14
+ ··· + 11u + 7)
c
9
3(3u
15
+ 18u
14
+ ··· 17u + 7)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
15
+ 32y
13
+ ··· + 800y 16
c
2
, c
5
, c
7
c
11
y
15
8y
14
+ ··· + 16y 4
c
3
, c
12
4(4y
15
104y
14
+ ··· + 249y 9)
c
4
, c
6
4(4y
15
+ 56y
14
+ ··· + 717y 9)
c
8
9(9y
15
24y
14
+ ··· + 555y 49)
c
9
9(9y
15
168y
14
+ ··· 229y 49)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.144120 + 1.054560I
a = 1.219520 + 0.251203I
b = 0.305685 0.517647I
5.10750 + 3.19553I 5.98942 2.06971I
u = 0.144120 1.054560I
a = 1.219520 0.251203I
b = 0.305685 + 0.517647I
5.10750 3.19553I 5.98942 + 2.06971I
u = 0.928567 + 0.624096I
a = 0.420023 + 0.318850I
b = 0.348565 + 0.966858I
2.54442 + 5.04477I 0.58192 5.69711I
u = 0.928567 0.624096I
a = 0.420023 0.318850I
b = 0.348565 0.966858I
2.54442 5.04477I 0.58192 + 5.69711I
u = 1.007800 + 0.747753I
a = 0.553989 + 0.660683I
b = 0.448740 + 1.074590I
0.77508 5.73977I 11.31279 + 5.82144I
u = 1.007800 0.747753I
a = 0.553989 0.660683I
b = 0.448740 1.074590I
0.77508 + 5.73977I 11.31279 5.82144I
u = 1.203300 + 0.403095I
a = 0.438882 1.115720I
b = 0.88076 2.14220I
4.79918 + 9.00906I 10.02265 8.13965I
u = 1.203300 0.403095I
a = 0.438882 + 1.115720I
b = 0.88076 + 2.14220I
4.79918 9.00906I 10.02265 + 8.13965I
u = 0.189655 + 0.562206I
a = 1.23134 + 1.07625I
b = 0.232219 0.118314I
1.46040 1.17055I 1.25283 + 2.21107I
u = 0.189655 0.562206I
a = 1.23134 1.07625I
b = 0.232219 + 0.118314I
1.46040 + 1.17055I 1.25283 2.21107I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.346970 + 0.412511I
a = 0.057661 + 0.976830I
b = 0.68130 + 1.78913I
14.7969 + 6.7928I 12.44195 4.01641I
u = 1.346970 0.412511I
a = 0.057661 0.976830I
b = 0.68130 1.78913I
14.7969 6.7928I 12.44195 + 4.01641I
u = 1.32413 + 0.56114I
a = 0.09611 1.50736I
b = 0.69422 2.43940I
12.5822 14.8536I 10.17186 + 7.59627I
u = 1.32413 0.56114I
a = 0.09611 + 1.50736I
b = 0.69422 + 2.43940I
12.5822 + 14.8536I 10.17186 7.59627I
u = 0.384887
a = 0.278645
b = 0.711991
0.975030 11.4640
6
II. I
u
2
= h−7u
24
+ 2u
23
+ · · · + 32b + 140, 47u
25
117u
24
+ · · · + 368a +
2737, u
26
+ 2u
25
+ · · · 46u 23i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
0.127717u
25
+ 0.317935u
24
+ ··· 4.13587u 7.43750
7
32
u
24
1
16
u
23
+ ···
23
32
u
35
8
a
7
=
0.535326u
25
+ 0.726902u
24
+ ··· 11.5476u 17.8125
0.375000u
25
+ 0.531250u
24
+ ··· 6.71875u 12.3125
a
10
=
0.122283u
25
+ 0.0366848u
24
+ ··· + 2.39538u 1.62500
0.187500u
25
0.0625000u
24
+ ··· + 3.59375u + 0.656250
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
4
=
0.157609u
25
0.252717u
24
+ ··· + 0.442935u + 8.18750
1
8
u
25
3
16
u
24
+ ··· +
3
4
u +
81
16
a
8
=
0.377717u
25
+ 0.474185u
24
+ ··· 8.38587u 11.0313
0.250000u
25
+ 0.375000u
24
+ ··· 4.96875u 7.96875
a
12
=
0.347826u
25
+ 0.539402u
24
+ ··· 7.51630u 11.5938
0.156250u
25
+ 0.343750u
24
+ ··· 3.59375u 8
a
11
=
0.663043u
25
+ 0.951087u
24
+ ··· 13.5272u 21.9375
5
16
u
25
+
5
8
u
24
+ ···
125
16
u
61
4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3
2
u
25
3
2
u
24
+ ··· +
147
4
u +
57
2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
26
+ 16u
25
+ ··· + 874u + 529
c
2
, c
5
, c
7
c
11
u
26
2u
25
+ ··· + 46u 23
c
3
, c
12
2(2u
26
4u
25
+ ··· + 5854u + 13513)
c
4
, c
6
2(2u
26
+ 12u
25
+ ··· 2212u 4061)
c
8
(u
13
+ 2u
12
+ ··· 3u + 1)
2
c
9
(u
13
2u
12
+ ··· + 9u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
26
12y
25
+ ··· 3545358y + 279841
c
2
, c
5
, c
7
c
11
y
26
16y
25
+ ··· 874y + 529
c
3
, c
12
4(4y
26
232y
25
+ ··· + 2.78070 × 10
8
y + 1.82601 × 10
8
)
c
4
, c
6
4(4y
26
+ 88y
25
+ ··· + 9.27579 × 10
7
y + 1.64917 × 10
7
)
c
8
(y
13
2y
12
+ ··· + 17y 1)
2
c
9
(y
13
18y
12
+ ··· + 65y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.145808 + 0.983156I
a = 1.47860 0.04032I
b = 0.285975 + 0.539303I
10.07100 1.92961I 9.33197 + 0.98070I
u = 0.145808 0.983156I
a = 1.47860 + 0.04032I
b = 0.285975 0.539303I
10.07100 + 1.92961I 9.33197 0.98070I
u = 0.694794 + 0.669489I
a = 0.747191 + 0.070295I
b = 0.044639 0.692695I
3.24368 1.97600 + 0.I
u = 0.694794 0.669489I
a = 0.747191 0.070295I
b = 0.044639 + 0.692695I
3.24368 1.97600 + 0.I
u = 0.727228 + 0.765886I
a = 0.656960 0.521646I
b = 0.485985 0.701709I
0.0875120 10.12424 + 0.I
u = 0.727228 0.765886I
a = 0.656960 + 0.521646I
b = 0.485985 + 0.701709I
0.0875120 10.12424 + 0.I
u = 0.089788 + 1.062330I
a = 1.239930 0.503480I
b = 0.331705 + 0.510914I
8.73749 + 9.07090I 7.83282 5.02365I
u = 0.089788 1.062330I
a = 1.239930 + 0.503480I
b = 0.331705 0.510914I
8.73749 9.07090I 7.83282 + 5.02365I
u = 1.071990 + 0.329976I
a = 1.056560 + 0.393863I
b = 1.60771 + 0.71133I
4.67191 + 1.36942I 12.56235 3.09698I
u = 1.071990 0.329976I
a = 1.056560 0.393863I
b = 1.60771 0.71133I
4.67191 1.36942I 12.56235 + 3.09698I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.14128
a = 0.980723
b = 1.64813
2.29729 0.573860
u = 1.166120 + 0.256035I
a = 0.63202 1.51574I
b = 0.93587 2.03026I
4.67191 + 1.36942I 12.56235 3.09698I
u = 1.166120 0.256035I
a = 0.63202 + 1.51574I
b = 0.93587 + 2.03026I
4.67191 1.36942I 12.56235 + 3.09698I
u = 1.148780 + 0.376438I
a = 0.276926 + 1.188600I
b = 0.77110 + 1.96980I
1.36409 + 4.88678I 5.58540 5.91732I
u = 1.148780 0.376438I
a = 0.276926 1.188600I
b = 0.77110 1.96980I
1.36409 4.88678I 5.58540 + 5.91732I
u = 0.722662
a = 2.98213
b = 1.92811
2.29729 0.573860
u = 0.048328 + 0.709054I
a = 1.16615 1.24694I
b = 0.0850094 0.1052430I
1.36409 4.88678I 5.58540 + 5.91732I
u = 0.048328 0.709054I
a = 1.16615 + 1.24694I
b = 0.0850094 + 0.1052430I
1.36409 + 4.88678I 5.58540 5.91732I
u = 1.277190 + 0.579499I
a = 0.27185 1.43511I
b = 0.07667 2.38894I
13.50590 3.70097I 11.32642 + 2.50956I
u = 1.277190 0.579499I
a = 0.27185 + 1.43511I
b = 0.07667 + 2.38894I
13.50590 + 3.70097I 11.32642 2.50956I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.31273 + 0.58386I
a = 0.040670 + 1.389900I
b = 0.44938 + 2.27345I
8.73749 9.07090I 7.83282 + 5.02365I
u = 1.31273 0.58386I
a = 0.040670 1.389900I
b = 0.44938 2.27345I
8.73749 + 9.07090I 7.83282 5.02365I
u = 1.38277 + 0.40950I
a = 0.082363 0.796616I
b = 0.62637 1.37358I
10.07100 + 1.92961I 9.33197 0.98070I
u = 1.38277 0.40950I
a = 0.082363 + 0.796616I
b = 0.62637 + 1.37358I
10.07100 1.92961I 9.33197 + 0.98070I
u = 1.39325 + 0.44582I
a = 0.049113 + 0.700779I
b = 0.91053 + 1.15456I
13.50590 3.70097I 11.32642 + 2.50956I
u = 1.39325 0.44582I
a = 0.049113 0.700779I
b = 0.91053 1.15456I
13.50590 + 3.70097I 11.32642 2.50956I
12
III. I
u
3
= hu
3
u
2
+ 2b, u
2
+ 2a + u, u
4
u
2
+ 2i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
1
2
u
2
1
2
u
1
2
u
3
+
1
2
u
2
a
7
=
1
2
u
3
1
2
u
2
1
2
u + 1
1
2
u
3
+ 1
a
10
=
1
2
u
2
1
2
u 1
1
2
u
3
1
2
u
2
a
1
=
u
2
+ 1
u
2
+ 2
a
5
=
u
u
a
4
=
1
4
u
3
1
4
u
2
+ u +
1
2
3
4
u
3
+
1
4
u
2
+
1
2
u
1
2
a
8
=
1
2
u
2
3
2
u
1
2
u
3
+
1
2
u
2
u
a
12
=
u
2
1
2
u + 1
1
2
u
2
+ 2
a
11
=
1
2
u
3
+
1
2
u
2
1
2
u + 1
1
2
u
3
+ u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
8
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
2
u + 2)
2
c
2
, c
5
, c
7
c
11
u
4
u
2
+ 2
c
3
, c
12
2(2u
4
+ 2u
3
+ 5u
2
+ 4u + 1)
c
4
, c
6
2(2u
4
2u
3
+ 5u
2
4u + 1)
c
8
, c
9
(u + 1)
4
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
2
+ 3y + 4)
2
c
2
, c
5
, c
7
c
11
(y
2
y + 2)
2
c
3
, c
4
, c
6
c
12
4(4y
4
+ 16y
3
+ 13y
2
6y + 1)
c
8
, c
9
(y 1)
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.978318 + 0.676097I
a = 0.239159 + 0.323389I
b = 0.452616 0.154683I
0.82247 5.33349I 6.00000 + 5.29150I
u = 0.978318 0.676097I
a = 0.239159 0.323389I
b = 0.452616 + 0.154683I
0.82247 + 5.33349I 6.00000 5.29150I
u = 0.978318 + 0.676097I
a = 0.739159 0.999486I
b = 0.04738 1.47756I
0.82247 + 5.33349I 6.00000 5.29150I
u = 0.978318 0.676097I
a = 0.739159 + 0.999486I
b = 0.04738 + 1.47756I
0.82247 5.33349I 6.00000 + 5.29150I
16
IV. I
u
4
= h4b
2
4b 32u + 33, 2bu 2b u + 1, 2a + 1, u
2
2u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
2u 1
a
9
=
0.5
b
a
7
=
1
4
u
1
2
b +
3
4
u +
1
4
a
10
=
b u
3u +
5
2
a
1
=
2u + 2
4u + 3
a
5
=
u
u
a
4
=
1
8
b +
11
8
u
3
16
5
8
b +
33
8
u
39
16
a
8
=
b 2u + 1
2u +
3
2
a
12
=
7
2
u +
13
4
1
2
b
5
2
u +
3
2
a
11
=
b 4u +
11
4
1
2
b 4u +
5
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
10
(u 1)
3
c
3
512(2u + 1)
3
c
4
512(2u 1)
3
c
5
, c
8
, c
9
c
11
(u + 1)
3
c
6
64(2u 1)
3
c
12
64(2u + 1)
3
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
8
, c
9
c
10
, c
11
(y 1)
3
c
3
, c
4
262144(4y 1)
3
c
6
, c
12
4096(4y 1)
3
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000
b = 0.500000
3.28987 12.0000
u = 1.00000
a = 0.500000
b = 0.500000
3.28987 12.0000
u = 1.00000
a = 0.500000
b = 0.500000
3.28987 12.0000
20
V. I
u
5
= h−u
3
+ u
2
+ 2b u + 1, u
3
+ u
2
+ 2a u + 1, u
4
+ 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
1
2
u
3
1
2
u
2
+
1
2
u
1
2
1
2
u
3
1
2
u
2
+
1
2
u
1
2
a
7
=
1
2
u
3
u
2
+
1
2
u
u
3
1
2
u
2
+ u +
1
2
a
10
=
1
2
u
3
1
2
u
2
+
1
2
u +
1
2
1
2
u
3
+
1
2
u
2
+
1
2
u
1
2
a
1
=
u
2
+ 1
1
a
5
=
u
u
a
4
=
1
2
u
3
+
1
2
u
2
+ u
1
2
u
2
+
1
2
u 1
a
8
=
1
2
u
3
1
2
u
2
+
3
2
u
1
2
1
2
u
3
1
2
u
2
+
3
2
u
1
2
a
12
=
3
2
u
2
+
1
2
1
2
u
3
+
1
2
u + 1
a
11
=
1
2
u
3
u
2
+
1
2
u 1
1
2
u
2
+ u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
2
+ 1)
2
c
2
, c
5
, c
7
c
11
u
4
+ 1
c
3
, c
4
, c
6
c
12
2(2u
4
+ 4u
3
+ 6u
2
+ 4u + 1)
c
8
, c
9
(u 1)
4
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y + 1)
4
c
2
, c
5
, c
7
c
11
(y
2
+ 1)
2
c
3
, c
4
, c
6
c
12
4(4y
4
+ 8y
3
+ 8y
2
4y + 1)
c
8
, c
9
(y 1)
4
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.707107 + 0.707107I
a = 0.207107 0.500000I
b = 0.500000 + 0.207107I
1.64493 4.00000
u = 0.707107 0.707107I
a = 0.207107 + 0.500000I
b = 0.500000 0.207107I
1.64493 4.00000
u = 0.707107 + 0.707107I
a = 1.207110 + 0.500000I
b = 0.500000 + 1.207110I
1.64493 4.00000
u = 0.707107 0.707107I
a = 1.207110 0.500000I
b = 0.500000 1.207110I
1.64493 4.00000
24
VI. I
u
6
= h−a
2
+ b 2a, a
3
+ 2a
2
+ a + 1, u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
1
a
3
=
1
1
a
9
=
a
a
2
+ 2a
a
7
=
a
2
a
a
10
=
a
2
a
a
1
=
0
1
a
5
=
1
1
a
4
=
a
2
a
2
a
a
8
=
a
2
a
a
12
=
a
2
a
a
11
=
a
2
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u + 1)
3
c
3
, c
4
, c
8
c
9
u
3
u 1
c
6
u
3
2u
2
+ u 1
c
7
, c
10
, c
11
u
3
c
12
u
3
+ 2u
2
+ u + 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
3
c
3
, c
4
, c
8
c
9
y
3
2y
2
+ y 1
c
6
, c
12
y
3
2y
2
3y 1
c
7
, c
10
, c
11
y
3
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.122561 + 0.744862I
b = 0.78492 + 1.30714I
1.64493 6.00000
u = 1.00000
a = 0.122561 0.744862I
b = 0.78492 1.30714I
1.64493 6.00000
u = 1.00000
a = 1.75488
b = 0.430160
1.64493 6.00000
28
VII. I
u
7
= hba a
2
+ a + 1, u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
1
a
3
=
1
1
a
9
=
a
b
a
7
=
a
2
a
2
a
a
10
=
b + 2a
a
a
1
=
0
1
a
5
=
1
1
a
4
=
a
3
+ 1
a
3
+ a
2
+ 1
a
8
=
b + 2a
a
a
12
=
a
2
a
2
+ a
a
11
=
a
2
b + 2a
a
2
+ 2a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
29
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
7
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
3.28987 12.0000
30
VIII. I
u
8
= hb a 1, u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
1
a
3
=
1
1
a
9
=
a
a + 1
a
7
=
a
2
a
2
+ a + 1
a
10
=
a 1
a
a
1
=
0
1
a
5
=
1
1
a
4
=
a
3
+ a
2
+ 1
a
3
+ 2a
2
+ 2a + 2
a
8
=
a 1
a
a
12
=
a
2
a
2
a 1
a
11
=
a
2
+ a 1
a
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
31
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
8
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
3.28987 12.0000
32
IX. I
v
1
= ha, b
3
b 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
1
0
a
3
=
1
0
a
9
=
0
b
a
7
=
1
b
2
a
10
=
b
b
a
1
=
1
0
a
5
=
1
0
a
4
=
b
2
+ 1
b
2
+ b
a
8
=
b
b
a
12
=
1
b
2
a
11
=
b + 1
b
2
+ b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
3
c
3
u
3
+ 2u
2
+ u + 1
c
4
u
3
2u
2
+ u 1
c
6
, c
8
, c
9
c
12
u
3
u 1
c
7
, c
10
, c
11
(u + 1)
3
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
3
c
3
, c
4
y
3
2y
2
3y 1
c
6
, c
8
, c
9
c
12
y
3
2y
2
+ y 1
c
7
, c
10
, c
11
(y 1)
3
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.662359 + 0.562280I
1.64493 6.00000
v = 1.00000
a = 0
b = 0.662359 0.562280I
1.64493 6.00000
v = 1.00000
a = 0
b = 1.32472
1.64493 6.00000
36
X. I
v
2
= ha, b + 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
1
0
a
3
=
1
0
a
9
=
0
1
a
7
=
1
1
a
10
=
1
1
a
1
=
1
0
a
5
=
1
0
a
4
=
0
1
a
8
=
1
1
a
12
=
1
1
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
37
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
10
, c
11
u
c
3
, c
4
, c
6
c
12
u + 1
c
8
, c
9
u 1
38
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
10
, c
11
y
c
3
, c
4
, c
6
c
8
, c
9
, c
12
y 1
39
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
40
XI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
u
4
(u 1)
3
(u + 1)
3
(u
2
+ 1)
2
(u
2
u + 2)
2
(u
15
+ 8u
14
+ ··· + 16u + 4)
· (u
26
+ 16u
25
+ ··· + 874u + 529)
c
2
, c
7
u
4
(u 1)
3
(u + 1)
3
(u
4
+ 1)(u
4
u
2
+ 2)(u
15
2u
14
+ ··· 4u
2
+ 2)
· (u
26
2u
25
+ ··· + 46u 23)
c
3
8192(u + 1)(2u + 1)
3
(u
3
u 1)(u
3
+ 2u
2
+ u + 1)
· (2u
4
+ 2u
3
+ 5u
2
+ 4u + 1)(2u
4
+ 4u
3
+ 6u
2
+ 4u + 1)
· (2u
15
6u
14
+ ··· 9u + 3)(2u
26
4u
25
+ ··· + 5854u + 13513)
c
4
8192(u + 1)(2u 1)
3
(u
3
u 1)(u
3
2u
2
+ u 1)
· (2u
4
2u
3
+ 5u
2
4u + 1)(2u
4
+ 4u
3
+ 6u
2
+ 4u + 1)
· (2u
15
+ 2u
14
+ ··· + 27u + 3)(2u
26
+ 12u
25
+ ··· 2212u 4061)
c
5
, c
11
u
4
(u + 1)
6
(u
4
+ 1)(u
4
u
2
+ 2)(u
15
2u
14
+ ··· 4u
2
+ 2)
· (u
26
2u
25
+ ··· + 46u 23)
c
6
1024(u + 1)(2u 1)
3
(u
3
u 1)(u
3
2u
2
+ u 1)
· (2u
4
2u
3
+ 5u
2
4u + 1)(2u
4
+ 4u
3
+ 6u
2
+ 4u + 1)
· (2u
15
+ 2u
14
+ ··· + 27u + 3)(2u
26
+ 12u
25
+ ··· 2212u 4061)
c
8
3(u 1)
5
(u + 1)
7
(u
3
u 1)
2
(u
13
+ 2u
12
+ ··· 3u + 1)
2
· (3u
15
18u
14
+ ··· + 11u + 7)
c
9
3(u 1)
5
(u + 1)
7
(u
3
u 1)
2
(u
13
2u
12
+ ··· + 9u + 1)
2
· (3u
15
+ 18u
14
+ ··· 17u + 7)
c
12
1024(u + 1)(2u + 1)
3
(u
3
u 1)(u
3
+ 2u
2
+ u + 1)
· (2u
4
+ 2u
3
+ 5u
2
+ 4u + 1)(2u
4
+ 4u
3
+ 6u
2
+ 4u + 1)
· (2u
15
6u
14
+ ··· 9u + 3)(2u
26
4u
25
+ ··· + 5854u + 13513)
41
XII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
4
(y 1)
6
(y + 1)
4
(y
2
+ 3y + 4)
2
(y
15
+ 32y
13
+ ··· + 800y 16)
· (y
26
12y
25
+ ··· 3545358y + 279841)
c
2
, c
5
, c
7
c
11
y
4
(y 1)
6
(y
2
+ 1)
2
(y
2
y + 2)
2
(y
15
8y
14
+ ··· + 16y 4)
· (y
26
16y
25
+ ··· 874y + 529)
c
3
67108864(y 1)(4y 1)
3
(y
3
2y
2
3y 1)(y
3
2y
2
+ y 1)
· (4y
4
+ 8y
3
+ 8y
2
4y + 1)(4y
4
+ 16y
3
+ 13y
2
6y + 1)
· (4y
15
104y
14
+ ··· + 249y 9)
· (4y
26
232y
25
+ ··· + 278070166y + 182601169)
c
4
67108864(y 1)(4y 1)
3
(y
3
2y
2
3y 1)(y
3
2y
2
+ y 1)
· (4y
4
+ 8y
3
+ 8y
2
4y + 1)(4y
4
+ 16y
3
+ 13y
2
6y + 1)
· (4y
15
+ 56y
14
+ ··· + 717y 9)
· (4y
26
+ 88y
25
+ ··· + 92757862y + 16491721)
c
6
1048576(y 1)(4y 1)
3
(y
3
2y
2
3y 1)(y
3
2y
2
+ y 1)
· (4y
4
+ 8y
3
+ 8y
2
4y + 1)(4y
4
+ 16y
3
+ 13y
2
6y + 1)
· (4y
15
+ 56y
14
+ ··· + 717y 9)
· (4y
26
+ 88y
25
+ ··· + 92757862y + 16491721)
c
8
9(y 1)
12
(y
3
2y
2
+ y 1)
2
(y
13
2y
12
+ ··· + 17y 1)
2
· (9y
15
24y
14
+ ··· + 555y 49)
c
9
9(y 1)
12
(y
3
2y
2
+ y 1)
2
(y
13
18y
12
+ ··· + 65y 1)
2
· (9y
15
168y
14
+ ··· 229y 49)
c
12
1048576(y 1)(4y 1)
3
(y
3
2y
2
3y 1)(y
3
2y
2
+ y 1)
· (4y
4
+ 8y
3
+ 8y
2
4y + 1)(4y
4
+ 16y
3
+ 13y
2
6y + 1)
· (4y
15
104y
14
+ ··· + 249y 9)
· (4y
26
232y
25
+ ··· + 278070166y + 182601169)
42