12n
0509
(K12n
0509
)
A knot diagram
1
Linearized knot diagam
3 6 10 7 9 2 11 5 3 12 7 9
Solving Sequence
2,7
6
3,9
10 1 5 4 8 12 11
c
6
c
2
c
9
c
1
c
5
c
4
c
8
c
12
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
6
+ 3u
5
6u
4
+ 7u
3
6u
2
+ b + 3u 1, u
6
3u
5
+ 6u
4
7u
3
+ 5u
2
+ a 3u,
u
7
3u
6
+ 7u
5
10u
4
+ 10u
3
8u
2
+ 3u 1i
I
u
2
= h−3u
13
+ 14u
12
+ ··· + 4b + 4, u
13
8u
12
+ ··· + 8a 4, u
14
6u
13
+ ··· 28u + 8i
I
u
3
= h−u
2
+ b + a 1, a
2
+ au + 2u
2
a + u, u
3
+ u
2
+ 2u + 1i
I
u
4
= h−u
6
u
5
2u
4
u
3
2u
2
+ b u 1, u
6
+ u
5
+ 2u
4
+ u
3
+ 3u
2
+ a + u + 2,
u
7
+ u
6
+ 3u
5
+ 2u
4
+ 4u
3
+ 2u
2
+ 3u + 1i
I
u
5
= h−2u
2
a au 2u
2
+ b 2a u 4, 2u
2
a + a
2
+ 2u
2
+ 3a + 2u + 4, u
3
+ u
2
+ 2u + 1i
I
u
6
= h−u
2
a + 2u
2
+ 2b + u + 3, a
2
+ 3u
2
+ 3u + 2, u
3
+ u
2
+ 2u + 1i
I
u
7
= hu
6
+ u
5
+ 2u
4
+ u
3
+ u
2
+ b + u + 1, 2u
7
2u
6
5u
5
3u
4
3u
3
3u
2
+ a 4u 1,
u
8
+ u
7
+ 3u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 3u
2
+ u + 1i
* 7 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
6
+ 3u
5
6u
4
+ 7u
3
6u
2
+ b + 3u 1, u
6
3u
5
+ 6u
4
7u
3
+
5u
2
+ a 3u, u
7
3u
6
+ 7u
5
10u
4
+ 10u
3
8u
2
+ 3u 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
u
6
+ 3u
5
6u
4
+ 7u
3
5u
2
+ 3u
u
6
3u
5
+ 6u
4
7u
3
+ 6u
2
3u + 1
a
10
=
u
6
+ 2u
5
4u
4
+ 4u
3
3u
2
+ 2u
u
3
u
a
1
=
u
3
u
5
+ u
3
+ u
a
5
=
u
5
+ 2u
4
3u
3
+ 3u
2
u + 1
u
6
+ 3u
5
6u
4
+ 7u
3
6u
2
+ 3u 1
a
4
=
u
6
+ 2u
5
4u
4
+ 4u
3
3u
2
+ 2u
u
6
+ 3u
5
6u
4
+ 7u
3
6u
2
+ 3u 1
a
8
=
u
6
+ 2u
5
4u
4
+ 4u
3
u
2
+ u + 1
u
2
a
12
=
u
5
2u
4
+ 4u
3
4u
2
+ 2u 1
u
a
11
=
u
5
2u
4
+ 4u
3
4u
2
+ u 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
6
8u
5
+ 20u
4
32u
3
+ 36u
2
30u + 5
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
7
+ 5u
6
+ 9u
5
2u
4
24u
3
24u
2
7u 1
c
2
, c
6
, c
7
c
11
u
7
3u
6
+ 7u
5
10u
4
+ 10u
3
8u
2
+ 3u 1
c
3
, c
5
, c
8
c
9
u
7
+ 5u
6
+ 8u
5
+ 4u
4
+ 2u
3
+ 5u
2
+ 3u + 1
c
4
, c
12
u
7
u
6
8u
5
+ 5u
4
+ 21u
3
+ 14u
2
+ 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
7
7y
6
+ 53y
5
210y
4
+ 364y
3
244y
2
+ y 1
c
2
, c
6
, c
7
c
11
y
7
+ 5y
6
+ 9y
5
2y
4
24y
3
24y
2
7y 1
c
3
, c
5
, c
8
c
9
y
7
9y
6
+ 28y
5
28y
4
+ 2y
3
21y
2
y 1
c
4
, c
12
y
7
17y
6
+ 116y
5
325y
4
+ 239y
3
38y
2
12y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.136302 + 1.137730I
a = 1.052660 + 0.165088I
b = 0.776815 + 0.145062I
4.44698 + 2.33074I 9.82174 3.80507I
u = 0.136302 1.137730I
a = 1.052660 0.165088I
b = 0.776815 0.145062I
4.44698 2.33074I 9.82174 + 3.80507I
u = 1.24390
a = 0.333091
b = 2.21419
11.4456 6.73760
u = 0.194340 + 0.463986I
a = 0.726250 + 0.493271I
b = 0.096235 0.312929I
0.189704 + 0.962753I 3.67202 7.06800I
u = 0.194340 0.463986I
a = 0.726250 0.493271I
b = 0.096235 + 0.312929I
0.189704 0.962753I 3.67202 + 7.06800I
u = 0.54741 + 1.45600I
a = 1.65987 + 0.82195I
b = 2.48014 + 0.77211I
18.5842 + 12.7630I 10.63743 5.46514I
u = 0.54741 1.45600I
a = 1.65987 0.82195I
b = 2.48014 0.77211I
18.5842 12.7630I 10.63743 + 5.46514I
5
II. I
u
2
=
h−3u
13
+14u
12
+· · ·+4b+4, u
13
8u
12
+· · ·+8a4, u
14
6u
13
+· · ·28u+8i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
1
8
u
13
+ u
12
+ ···
3
4
u +
1
2
3
4
u
13
7
2
u
12
+ ··· + 5u 1
a
10
=
1
8
u
13
+
3
4
u
11
+ ··· +
21
4
u
3
2
5
4
u
13
+
13
2
u
12
+ ··· 17u + 5
a
1
=
u
3
u
5
+ u
3
+ u
a
5
=
1
8
u
13
u
12
+ ··· +
21
4
u 1
1
4
u
13
u
12
+ ··· +
13
2
u 3
a
4
=
3
8
u
13
2u
12
+ ··· +
47
4
u 4
1
4
u
13
u
12
+ ··· +
13
2
u 3
a
8
=
5
8
u
13
13
4
u
12
+ ··· + 7u 1
1
2
u
13
+
5
2
u
12
+ ···
13
2
u + 3
a
12
=
1
8
u
13
+ u
12
+ ···
17
4
u + 1
3
4
u
13
4u
12
+ ··· +
31
2
u 5
a
11
=
7
8
u
13
+ 5u
12
+ ···
79
4
u + 6
3
4
u
13
4u
12
+ ··· +
31
2
u 5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
13
+ 12u
12
43u
11
+ 105u
10
196u
9
+ 295u
8
375u
7
+
414u
6
395u
5
+ 319u
4
217u
3
+ 130u
2
70u + 18
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
14
+ 8u
13
+ ··· + 240u + 64
c
2
, c
6
, c
7
c
11
u
14
6u
13
+ ··· 28u + 8
c
3
, c
5
, c
8
c
9
(u
7
2u
6
3u
5
+ 7u
4
3u
2
+ 1)
2
c
4
, c
12
u
14
2u
13
+ ··· + 15u + 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
14
+ 72y
12
+ ··· + 13056y + 4096
c
2
, c
6
, c
7
c
11
y
14
+ 8y
13
+ ··· + 240y + 64
c
3
, c
5
, c
8
c
9
(y
7
10y
6
+ 37y
5
61y
4
+ 46y
3
23y
2
+ 6y 1)
2
c
4
, c
12
y
14
24y
13
+ ··· 53y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.625244 + 0.634655I
a = 0.339092 + 0.351980I
b = 0.233020 0.022062I
0.091886 + 0.891330I 6.03895 5.74662I
u = 0.625244 0.634655I
a = 0.339092 0.351980I
b = 0.233020 + 0.022062I
0.091886 0.891330I 6.03895 + 5.74662I
u = 0.378126 + 1.062500I
a = 1.121480 0.077660I
b = 0.404958 + 1.328870I
1.03722 4.17104I 10.56067 + 2.18298I
u = 0.378126 1.062500I
a = 1.121480 + 0.077660I
b = 0.404958 1.328870I
1.03722 + 4.17104I 10.56067 2.18298I
u = 0.643460 + 1.009790I
a = 0.104502 0.643158I
b = 0.260752 0.097466I
1.03722 + 4.17104I 10.56067 2.18298I
u = 0.643460 1.009790I
a = 0.104502 + 0.643158I
b = 0.260752 + 0.097466I
1.03722 4.17104I 10.56067 + 2.18298I
u = 1.204680 + 0.069237I
a = 0.311651 0.047691I
b = 2.19150 + 0.08443I
16.0632 + 6.5463I 8.56192 3.00206I
u = 1.204680 0.069237I
a = 0.311651 + 0.047691I
b = 2.19150 0.08443I
16.0632 6.5463I 8.56192 + 3.00206I
u = 0.321436 + 0.722211I
a = 1.113680 + 0.162158I
b = 0.125852 0.871897I
0.091886 + 0.891330I 6.03895 5.74662I
u = 0.321436 0.722211I
a = 1.113680 0.162158I
b = 0.125852 + 0.871897I
0.091886 0.891330I 6.03895 + 5.74662I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.63252 + 1.42544I
a = 1.28836 + 1.02059I
b = 2.20148 + 0.65782I
19.2127 10.67691 + 0.I
u = 0.63252 1.42544I
a = 1.28836 1.02059I
b = 2.20148 0.65782I
19.2127 10.67691 + 0.I
u = 0.59366 + 1.46472I
a = 1.45351 0.86882I
b = 2.36839 0.76461I
16.0632 + 6.5463I 8.56192 3.00206I
u = 0.59366 1.46472I
a = 1.45351 + 0.86882I
b = 2.36839 + 0.76461I
16.0632 6.5463I 8.56192 + 3.00206I
10
III. I
u
3
= h−u
2
+ b + a 1, a
2
+ au + 2u
2
a + u, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
2
u 1
a
9
=
a
u
2
a + 1
a
10
=
u
2
a + au + 2a u 1
u
2
+ u + 1
a
1
=
u
2
2u 1
u
2
+ 2u
a
5
=
u
2
a + au + u
2
+ a u
u
2
+ a 1
a
4
=
u
2
a + au + 2a u 1
u
2
+ a 1
a
8
=
u
2
a au + 3u
2
a + 3u + 2
u
2
a
12
=
u
2
a + u
2
a u 1
u
a
11
=
u
2
a + u
2
a 2u 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
+ 8u + 2
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
3
+ 3u
2
+ 2u 1)
2
c
2
, c
6
, c
7
c
11
(u
3
+ u
2
+ 2u + 1)
2
c
3
, c
5
, c
8
c
9
u
6
+ u
5
2u
4
+ 5u
3
+ 14u
2
8
c
4
, c
12
u
6
4u
5
3u
4
+ 14u
3
+ 14u
2
+ 2u 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
3
5y
2
+ 10y 1)
2
c
2
, c
6
, c
7
c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
3
, c
5
, c
8
c
9
y
6
5y
5
+ 22y
4
97y
3
+ 228y
2
224y + 64
c
4
, c
12
y
6
22y
5
+ 149y
4
266y
3
+ 146y
2
32y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.276330 0.394337I
b = 0.613967 0.167943I
10.98310 5.65624I 13.0195 + 5.9589I
u = 0.215080 + 1.307140I
a = 2.49141 0.91280I
b = 3.15376 + 0.35052I
10.98310 5.65624I 13.0195 + 5.9589I
u = 0.215080 1.307140I
a = 1.276330 + 0.394337I
b = 0.613967 + 0.167943I
10.98310 + 5.65624I 13.0195 5.9589I
u = 0.215080 1.307140I
a = 2.49141 + 0.91280I
b = 3.15376 0.35052I
10.98310 + 5.65624I 13.0195 5.9589I
u = 0.569840
a = 1.51738
b = 0.192667
2.70789 0.0390210
u = 0.569840
a = 0.0524558
b = 1.27226
2.70789 0.0390210
14
IV. I
u
4
= h−u
6
u
5
2u
4
u
3
2u
2
+ b u 1, u
6
+ u
5
+ 2u
4
+ u
3
+
3u
2
+ a + u + 2, u
7
+ u
6
+ 3u
5
+ 2u
4
+ 4u
3
+ 2u
2
+ 3u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
u
6
u
5
2u
4
u
3
3u
2
u 2
u
6
+ u
5
+ 2u
4
+ u
3
+ 2u
2
+ u + 1
a
10
=
u
6
2u
4
3u
2
2
u
3
u
a
1
=
u
3
u
5
+ u
3
+ u
a
5
=
2u
6
+ u
5
+ 4u
4
+ u
3
+ 5u
2
+ u + 3
u
6
u
5
2u
4
u
3
2u
2
u 1
a
4
=
u
6
+ 2u
4
+ 3u
2
+ 2
u
6
u
5
2u
4
u
3
2u
2
u 1
a
8
=
u
6
+ 2u
4
+ 3u
2
u + 1
u
2
a
12
=
u
5
+ 2u
3
+ 2u 1
u
a
11
=
u
5
+ 2u
3
+ 3u 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
6
4u
3
4u
2
2u 11
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
7
5u
6
+ 13u
5
22u
4
+ 24u
3
16u
2
+ 5u + 1
c
2
, c
7
u
7
u
6
+ 3u
5
2u
4
+ 4u
3
2u
2
+ 3u 1
c
3
, c
8
u
7
+ u
6
4u
5
4u
4
+ 6u
3
+ 3u
2
3u + 1
c
4
u
7
+ u
6
u
4
+ 3u
3
4u
2
+ 2u 1
c
5
, c
9
u
7
u
6
4u
5
+ 4u
4
+ 6u
3
3u
2
3u 1
c
6
, c
11
u
7
+ u
6
+ 3u
5
+ 2u
4
+ 4u
3
+ 2u
2
+ 3u + 1
c
12
u
7
u
6
+ u
4
+ 3u
3
+ 4u
2
+ 2u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
7
+ y
6
3y
5
10y
4
+ 12y
3
+ 28y
2
+ 57y 1
c
2
, c
6
, c
7
c
11
y
7
+ 5y
6
+ 13y
5
+ 22y
4
+ 24y
3
+ 16y
2
+ 5y 1
c
3
, c
5
, c
8
c
9
y
7
9y
6
+ 36y
5
76y
4
+ 82y
3
37y
2
+ 3y 1
c
4
, c
12
y
7
y
6
+ 8y
5
+ 11y
4
+ 3y
3
6y
2
4y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.537424 + 0.962927I
a = 0.662429 0.173919I
b = 0.300834 0.861081I
0.10098 + 4.46523I 0.57946 5.51833I
u = 0.537424 0.962927I
a = 0.662429 + 0.173919I
b = 0.300834 + 0.861081I
0.10098 4.46523I 0.57946 + 5.51833I
u = 0.132251 + 1.213860I
a = 1.92214 0.71131I
b = 1.46616 + 1.03238I
10.69670 3.59676I 12.51315 + 1.73858I
u = 0.132251 1.213860I
a = 1.92214 + 0.71131I
b = 1.46616 1.03238I
10.69670 + 3.59676I 12.51315 1.73858I
u = 0.723592 + 0.997572I
a = 0.752025 + 0.832832I
b = 0.223589 + 0.610838I
3.82765 5.64420I 9.10487 + 5.57424I
u = 0.723592 0.997572I
a = 0.752025 0.832832I
b = 0.223589 0.610838I
3.82765 + 5.64420I 9.10487 5.57424I
u = 0.363162
a = 2.01537
b = 0.883481
3.64806 10.6050
18
V. I
u
5
=
h−2u
2
aau2u
2
+b2au4, 2u
2
a+a
2
+2u
2
+3a+2u+4, u
3
+u
2
+2u+1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
2
u 1
a
9
=
a
2u
2
a + au + 2u
2
+ 2a + u + 4
a
10
=
u
2
a + au u
2
+ a 1
u
2
a + au + u
2
+ 2a + 2
a
1
=
u
2
2u 1
u
2
+ 2u
a
5
=
u
2
a + 4u
2
+ 2a + 2u + 7
u
2
a 2u
2
2a 2u 4
a
4
=
2u
2
+ 3
u
2
a 2u
2
2a 2u 4
a
8
=
4u
2
a + 2au + 8u
2
+ 8a + 3u + 14
u
2
a + 2u
2
+ a + u + 4
a
12
=
u
2
a + u
2
+ 2a + 1
2u
2
a + au + 3u
2
+ 3a + u + 5
a
11
=
u
2
a au 2u
2
a u 4
2u
2
a + au + 3u
2
+ 3a + u + 5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
a + 4au + 8u
2
+ 8a + 4u + 6
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
3
+ 3u
2
+ 2u 1)
2
c
2
, c
6
, c
7
c
11
(u
3
+ u
2
+ 2u + 1)
2
c
3
, c
9
, c
12
(u
3
u
2
4u + 5)
2
c
4
u
6
+ u
5
+ 6u
4
3u
3
+ 10u
2
+ 8
c
5
, c
8
(u
3
+ u
2
1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
3
5y
2
+ 10y 1)
2
c
2
, c
6
, c
7
c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
3
, c
9
, c
12
(y
3
9y
2
+ 26y 25)
2
c
4
y
6
+ 11y
5
+ 62y
4
+ 127y
3
+ 196y
2
+ 160y + 64
c
5
, c
8
(y
3
y
2
+ 2y 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.824718 0.424452I
b = 0.732199 + 0.986732I
6.84548 2.82812I 6.49024 + 2.97945I
u = 0.215080 + 1.307140I
a = 0.50000 + 1.54901I
b = 0.94728 2.29387I
10.9831 13.01951 + 0.I
u = 0.215080 1.307140I
a = 0.824718 + 0.424452I
b = 0.732199 0.986732I
6.84548 + 2.82812I 6.49024 2.97945I
u = 0.215080 1.307140I
a = 0.50000 1.54901I
b = 0.94728 + 2.29387I
10.9831 13.01951 + 0.I
u = 0.569840
a = 1.82472 + 0.42445I
b = 0.284920 + 0.882689I
6.84548 2.82812I 6.49024 + 2.97945I
u = 0.569840
a = 1.82472 0.42445I
b = 0.284920 0.882689I
6.84548 + 2.82812I 6.49024 2.97945I
22
VI. I
u
6
= h−u
2
a + 2u
2
+ 2b + u + 3, a
2
+ 3u
2
+ 3u + 2, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
2
u 1
a
9
=
a
1
2
u
2
a u
2
1
2
u
3
2
a
10
=
1
2
u
2
a +
1
2
au +
3
2
a +
1
2
1
2
u
2
a
1
2
u
2
+
1
2
a
1
2
u 1
a
1
=
u
2
2u 1
u
2
+ 2u
a
5
=
u
2
a +
1
2
au + 2u
2
+
3
2
a +
3
2
u + 1
2u
2
u 2
a
4
=
u
2
a +
1
2
au +
3
2
a +
1
2
u 1
2u
2
u 2
a
8
=
1
2
u
2
3
2
a + u
1
2
1
2
u
2
+
1
2
a +
3
2
a
12
=
1
2
au +
1
2
u
2
+
3
2
u +
3
2
1
2
u
2
a + a
1
2
u
1
2
a
11
=
1
2
u
2
a +
1
2
au +
1
2
u
2
a + 2u + 2
1
2
u
2
a + a
1
2
u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
2
a + 2u
2
+ 2a + 2u 6
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
3
+ 3u
2
+ 2u 1)
2
c
2
, c
6
, c
7
c
11
(u
3
+ u
2
+ 2u + 1)
2
c
3
, c
9
(u
3
+ u
2
1)
2
c
4
, c
5
, c
8
(u
3
u
2
4u + 5)
2
c
12
u
6
+ u
5
+ 6u
4
3u
3
+ 10u
2
+ 8
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
3
5y
2
+ 10y 1)
2
c
2
, c
6
, c
7
c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
3
, c
9
(y
3
y
2
+ 2y 1)
2
c
4
, c
5
, c
8
(y
3
9y
2
+ 26y 25)
2
c
12
y
6
+ 11y
5
+ 62y
4
+ 127y
3
+ 196y
2
+ 160y + 64
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.98708 0.56228I
b = 1.53980 0.18258I
10.9831 13.01951 + 0.I
u = 0.215080 + 1.307140I
a = 1.98708 + 0.56228I
b = 2.07960
6.84548 2.82812I 6.49024 + 2.97945I
u = 0.215080 1.307140I
a = 1.98708 + 0.56228I
b = 1.53980 + 0.18258I
10.9831 13.01951 + 0.I
u = 0.215080 1.307140I
a = 1.98708 0.56228I
b = 2.07960
6.84548 + 2.82812I 6.49024 2.97945I
u = 0.569840
a = 1.124560I
b = 1.53980 + 0.18258I
6.84548 2.82812I 6.49024 + 2.97945I
u = 0.569840
a = 1.124560I
b = 1.53980 0.18258I
6.84548 + 2.82812I 6.49024 2.97945I
26
VII. I
u
7
= hu
6
+ u
5
+ 2u
4
+ u
3
+ u
2
+ b + u + 1, 2u
7
2u
6
+ · · · + a
1, u
8
+ u
7
+ 3u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 3u
2
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
2u
7
+ 2u
6
+ 5u
5
+ 3u
4
+ 3u
3
+ 3u
2
+ 4u + 1
u
6
u
5
2u
4
u
3
u
2
u 1
a
10
=
u
7
+ u
6
+ 2u
5
+ u
4
+ u
3
+ u
2
+ 2u
u
7
2u
6
3u
5
4u
4
2u
3
3u
2
2u 2
a
1
=
u
3
u
5
+ u
3
+ u
a
5
=
2u
7
+ 3u
6
+ 6u
5
+ 5u
4
+ 5u
3
+ 4u
2
+ 6u + 3
u
6
u
5
2u
4
u
3
u
2
u 2
a
4
=
2u
7
+ 2u
6
+ 5u
5
+ 3u
4
+ 4u
3
+ 3u
2
+ 5u + 1
u
6
u
5
2u
4
u
3
u
2
u 2
a
8
=
3u
6
2u
5
7u
4
3u
3
5u
2
3u 5
u
7
2u
5
+ u
4
u
3
+ u
2
u + 2
a
12
=
2u
7
u
6
4u
5
u
4
2u
3
u
2
3u + 1
u
7
+ u
6
+ 3u
5
+ 2u
4
+ 3u
3
+ 2u
2
+ 3u + 1
a
11
=
3u
7
2u
6
7u
5
3u
4
5u
3
3u
2
6u
u
7
+ u
6
+ 3u
5
+ 2u
4
+ 3u
3
+ 2u
2
+ 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
7
4u
6
5u
5
10u
4
7u
3
7u
2
5u 14
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
8
5u
7
+ 11u
6
16u
5
+ 19u
4
16u
3
+ 11u
2
5u + 1
c
2
, c
7
u
8
u
7
+ 3u
6
2u
5
+ 3u
4
2u
3
+ 3u
2
u + 1
c
3
, c
8
(u
4
u
3
2u
2
+ 2u + 1)
2
c
4
u
8
4u
7
+ 5u
6
u
5
u
4
u
3
+ 4u
2
3u + 1
c
5
, c
9
(u
4
+ u
3
2u
2
2u + 1)
2
c
6
, c
11
u
8
+ u
7
+ 3u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 3u
2
+ u + 1
c
12
u
8
+ 4u
7
+ 5u
6
+ u
5
u
4
+ u
3
+ 4u
2
+ 3u + 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
8
3y
7
y
6
+ 24y
5
+ 43y
4
+ 24y
3
y
2
3y + 1
c
2
, c
6
, c
7
c
11
y
8
+ 5y
7
+ 11y
6
+ 16y
5
+ 19y
4
+ 16y
3
+ 11y
2
+ 5y + 1
c
3
, c
5
, c
8
c
9
(y
4
5y
3
+ 10y
2
8y + 1)
2
c
4
, c
12
y
8
6y
7
+ 15y
6
11y
5
+ 17y
4
5y
3
+ 8y
2
y + 1
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.589362 + 0.807869I
a = 0.618883 0.314577I
b = 0.500000 + 0.685376I
0.398187 4.14403 + 0.I
u = 0.589362 0.807869I
a = 0.618883 + 0.314577I
b = 0.500000 0.685376I
0.398187 4.14403 + 0.I
u = 0.756438 + 0.654065I
a = 0.313901 0.842956I
b = 0.500000 0.432332I
2.83064 8.01125 + 0.I
u = 0.756438 0.654065I
a = 0.313901 + 0.842956I
b = 0.500000 + 0.432332I
2.83064 8.01125 + 0.I
u = 0.112930 + 0.707515I
a = 0.42892 + 2.19402I
b = 0.779254 0.555127I
8.65338 + 2.52742I 12.42236 1.86858I
u = 0.112930 0.707515I
a = 0.42892 2.19402I
b = 0.779254 + 0.555127I
8.65338 2.52742I 12.42236 + 1.86858I
u = 0.219994 + 1.378280I
a = 1.50387 + 0.55124I
b = 1.77925 0.55513I
8.65338 2.52742I 12.42236 + 1.86858I
u = 0.219994 1.378280I
a = 1.50387 0.55124I
b = 1.77925 + 0.55513I
8.65338 + 2.52742I 12.42236 1.86858I
30
VIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
((u
3
+ 3u
2
+ 2u 1)
6
)(u
7
5u
6
+ ··· + 5u + 1)
· (u
7
+ 5u
6
+ 9u
5
2u
4
24u
3
24u
2
7u 1)
· (u
8
5u
7
+ 11u
6
16u
5
+ 19u
4
16u
3
+ 11u
2
5u + 1)
· (u
14
+ 8u
13
+ ··· + 240u + 64)
c
2
, c
7
(u
3
+ u
2
+ 2u + 1)
6
(u
7
3u
6
+ 7u
5
10u
4
+ 10u
3
8u
2
+ 3u 1)
· (u
7
u
6
+ 3u
5
2u
4
+ 4u
3
2u
2
+ 3u 1)
· (u
8
u
7
+ 3u
6
2u
5
+ 3u
4
2u
3
+ 3u
2
u + 1)
· (u
14
6u
13
+ ··· 28u + 8)
c
3
, c
8
(u
3
u
2
4u + 5)
2
(u
3
+ u
2
1)
2
(u
4
u
3
2u
2
+ 2u + 1)
2
· (u
6
+ u
5
2u
4
+ 5u
3
+ 14u
2
8)(u
7
2u
6
3u
5
+ 7u
4
3u
2
+ 1)
2
· (u
7
+ u
6
4u
5
4u
4
+ 6u
3
+ 3u
2
3u + 1)
· (u
7
+ 5u
6
+ 8u
5
+ 4u
4
+ 2u
3
+ 5u
2
+ 3u + 1)
c
4
(u
3
u
2
4u + 5)
2
(u
6
4u
5
3u
4
+ 14u
3
+ 14u
2
+ 2u 1)
· (u
6
+ u
5
+ 6u
4
3u
3
+ 10u
2
+ 8)
· (u
7
u
6
8u
5
+ 5u
4
+ 21u
3
+ 14u
2
+ 4u + 1)
· (u
7
+ u
6
u
4
+ 3u
3
4u
2
+ 2u 1)
· (u
8
4u
7
+ 5u
6
u
5
u
4
u
3
+ 4u
2
3u + 1)
· (u
14
2u
13
+ ··· + 15u + 1)
c
5
, c
9
(u
3
u
2
4u + 5)
2
(u
3
+ u
2
1)
2
(u
4
+ u
3
2u
2
2u + 1)
2
· (u
6
+ u
5
2u
4
+ 5u
3
+ 14u
2
8)(u
7
2u
6
3u
5
+ 7u
4
3u
2
+ 1)
2
· (u
7
u
6
4u
5
+ 4u
4
+ 6u
3
3u
2
3u 1)
· (u
7
+ 5u
6
+ 8u
5
+ 4u
4
+ 2u
3
+ 5u
2
+ 3u + 1)
c
6
, c
11
(u
3
+ u
2
+ 2u + 1)
6
(u
7
3u
6
+ 7u
5
10u
4
+ 10u
3
8u
2
+ 3u 1)
· (u
7
+ u
6
+ 3u
5
+ 2u
4
+ 4u
3
+ 2u
2
+ 3u + 1)
· (u
8
+ u
7
+ 3u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 3u
2
+ u + 1)
· (u
14
6u
13
+ ··· 28u + 8)
c
12
(u
3
u
2
4u + 5)
2
(u
6
4u
5
3u
4
+ 14u
3
+ 14u
2
+ 2u 1)
· (u
6
+ u
5
+ 6u
4
3u
3
+ 10u
2
+ 8)(u
7
u
6
+ u
4
+ 3u
3
+ 4u
2
+ 2u + 1)
· (u
7
u
6
8u
5
+ 5u
4
+ 21u
3
+ 14u
2
+ 4u + 1)
· (u
8
+ 4u
7
+ 5u
6
+ u
5
u
4
+ u
3
+ 4u
2
+ 3u + 1)
· (u
14
2u
13
+ ··· + 15u + 1)
31
IX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
3
5y
2
+ 10y 1)
6
· (y
7
7y
6
+ 53y
5
210y
4
+ 364y
3
244y
2
+ y 1)
· (y
7
+ y
6
3y
5
10y
4
+ 12y
3
+ 28y
2
+ 57y 1)
· (y
8
3y
7
y
6
+ 24y
5
+ 43y
4
+ 24y
3
y
2
3y + 1)
· (y
14
+ 72y
12
+ ··· + 13056y + 4096)
c
2
, c
6
, c
7
c
11
(y
3
+ 3y
2
+ 2y 1)
6
(y
7
+ 5y
6
+ 9y
5
2y
4
24y
3
24y
2
7y 1)
· (y
7
+ 5y
6
+ 13y
5
+ 22y
4
+ 24y
3
+ 16y
2
+ 5y 1)
· (y
8
+ 5y
7
+ 11y
6
+ 16y
5
+ 19y
4
+ 16y
3
+ 11y
2
+ 5y + 1)
· (y
14
+ 8y
13
+ ··· + 240y + 64)
c
3
, c
5
, c
8
c
9
(y
3
9y
2
+ 26y 25)
2
(y
3
y
2
+ 2y 1)
2
· (y
4
5y
3
+ 10y
2
8y + 1)
2
· (y
6
5y
5
+ 22y
4
97y
3
+ 228y
2
224y + 64)
· (y
7
10y
6
+ 37y
5
61y
4
+ 46y
3
23y
2
+ 6y 1)
2
· (y
7
9y
6
+ 28y
5
28y
4
+ 2y
3
21y
2
y 1)
· (y
7
9y
6
+ 36y
5
76y
4
+ 82y
3
37y
2
+ 3y 1)
c
4
, c
12
(y
3
9y
2
+ 26y 25)
2
· (y
6
22y
5
+ 149y
4
266y
3
+ 146y
2
32y + 1)
· (y
6
+ 11y
5
+ 62y
4
+ 127y
3
+ 196y
2
+ 160y + 64)
· (y
7
17y
6
+ 116y
5
325y
4
+ 239y
3
38y
2
12y 1)
· (y
7
y
6
+ 8y
5
+ 11y
4
+ 3y
3
6y
2
4y 1)
· (y
8
6y
7
+ 15y
6
11y
5
+ 17y
4
5y
3
+ 8y
2
y + 1)
· (y
14
24y
13
+ ··· 53y + 1)
32