12n
0510
(K12n
0510
)
A knot diagram
1
Linearized knot diagam
3 5 10 8 2 4 12 5 1 4 1 7
Solving Sequence
3,10
4
5,11
2 6 7 1 9 8 12
c
3
c
10
c
2
c
5
c
6
c
1
c
9
c
8
c
12
c
4
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
8
4u
7
+ 8u
6
8u
5
+ 4u
4
+ u
2
+ b 2u + 1, u
8
+ 4u
7
8u
6
+ 8u
5
4u
4
u
3
+ a + 2u 2,
u
9
5u
8
+ 12u
7
16u
6
+ 12u
5
3u
4
u
3
u
2
+ 3u 1i
I
u
2
= hu
2
a + u
2
+ b, u
9
a + 4u
9
+ ··· + 2a 1, u
10
+ 2u
9
+ u
8
u
7
+ 2u
6
+ 5u
5
+ 2u
4
4u
3
3u
2
+ u + 1i
I
u
3
= h−9u
9
+ 29u
8
20u
7
81u
6
+ 207u
5
123u
4
256u
3
+ 576u
2
+ 16b 472u + 176,
13u
9
43u
8
+ 34u
7
+ 113u
6
309u
5
+ 217u
4
+ 350u
3
876u
2
+ 32a + 776u 320,
u
10
5u
9
+ 8u
8
+ 5u
7
39u
6
+ 55u
5
+ 4u
4
116u
3
+ 168u
2
112u + 32i
I
u
4
= hu
8
2u
7
2u
6
+ 6u
5
2u
4
4u
3
+ 5u
2
+ b 1, u
8
+ 2u
7
+ 2u
6
6u
5
+ 2u
4
+ 3u
3
4u
2
+ a + 2u,
u
9
u
8
4u
7
+ 4u
6
+ 4u
5
5u
4
+ u
3
+ 3u
2
u 1i
I
u
5
= h4u
19
5u
18
+ ··· + 8b 34, 8u
19
a 62u
19
+ ··· 86a 198, u
20
+ 2u
19
+ ··· + 2u 1i
I
u
6
= hu
2
a + u
2
+ b, u
2
a + a
2
+ u
2
+ a + u 1, u
3
u 1i
I
u
7
= h−au + b + a u + 1, a
2
2au a + u + 3, u
2
+ u 1i
* 7 irreducible components of dim
C
= 0, with total 98 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
8
4u
7
+ 8u
6
8u
5
+ 4u
4
+ u
2
+ b 2u + 1, u
8
+ 4u
7
+ · · · + a
2, u
9
5u
8
+ · · · + 3u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
5
=
u
8
4u
7
+ 8u
6
8u
5
+ 4u
4
+ u
3
2u + 2
u
8
+ 4u
7
8u
6
+ 8u
5
4u
4
u
2
+ 2u 1
a
11
=
u
u
3
+ u
a
2
=
u
7
3u
6
+ 5u
5
4u
4
+ 2u
3
+ u
u
8
+ 3u
7
4u
6
+ u
5
+ 2u
4
2u
3
u
2
+ u
a
6
=
u
8
3u
7
+ 5u
6
4u
5
+ 2u
4
+ u
3
+ 1
2u
8
+ 7u
7
12u
6
+ 10u
5
4u
4
u
3
u
2
+ 2u 1
a
7
=
2u
8
8u
7
+ 15u
6
14u
5
+ 5u
4
+ 3u
3
u
2
3u + 2
u
7
3u
6
+ 5u
5
4u
4
+ u
3
+ u
2
+ u 1
a
1
=
u
8
+ 4u
7
7u
6
+ 6u
5
2u
4
u
2
+ 2u
u
8
+ 3u
7
4u
6
+ u
5
+ 2u
4
2u
3
u
2
+ u
a
9
=
u
2
u
4
u
3
+ u
a
8
=
u
8
+ 4u
7
8u
6
+ 8u
5
4u
4
u
3
+ u 1
u
8
4u
7
+ 8u
6
8u
5
+ 4u
4
+ u
3
u
2
u + 1
a
12
=
u
3
u
2
+ u
u
5
+ 2u
4
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ 18u
6
32u
5
+ 24u
4
12u
2
+ 2u + 15
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
9
+ 5u
8
+ 11u
7
+ 10u
6
u
5
5u
4
+ 9u
3
+ 14u
2
+ 4u 1
c
2
, c
5
, c
7
c
12
u
9
+ 3u
8
+ 7u
7
+ 10u
6
+ 11u
5
+ 9u
4
+ 5u
3
+ 2u
2
1
c
3
, c
4
, c
8
c
10
u
9
5u
8
+ 12u
7
16u
6
+ 12u
5
3u
4
u
3
u
2
+ 3u 1
c
6
, c
9
u
9
+ u
8
+ 4u
7
+ u
6
+ 11u
5
+ u
4
+ 11u
3
+ 7u
2
+ u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
9
3y
8
+ 19y
7
54y
6
+ 167y
5
225y
4
+ 233y
3
134y
2
+ 44y 1
c
2
, c
5
, c
7
c
12
y
9
+ 5y
8
+ 11y
7
+ 10y
6
y
5
5y
4
+ 9y
3
+ 14y
2
+ 4y 1
c
3
, c
4
, c
8
c
10
y
9
y
8
+ 8y
7
+ 20y
5
3y
4
+ 35y
3
13y
2
+ 7y 1
c
6
, c
9
y
9
+ 7y
8
+ 36y
7
+ 107y
6
+ 195y
5
+ 237y
4
+ 131y
3
25y
2
+ 15y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.000250 + 0.725181I
a = 1.000710 + 0.653784I
b = 0.948795 0.309253I
0.91788 + 5.42837I 11.84517 4.00961I
u = 1.000250 0.725181I
a = 1.000710 0.653784I
b = 0.948795 + 0.309253I
0.91788 5.42837I 11.84517 + 4.00961I
u = 0.546415 + 1.108600I
a = 0.230267 0.335909I
b = 0.309218 1.245070I
9.16918 1.97699I 1.47834 + 1.39149I
u = 0.546415 1.108600I
a = 0.230267 + 0.335909I
b = 0.309218 + 1.245070I
9.16918 + 1.97699I 1.47834 1.39149I
u = 0.519685 + 0.388914I
a = 1.137270 0.230863I
b = 0.160625 + 0.891368I
2.04430 1.72035I 4.21443 + 4.65394I
u = 0.519685 0.388914I
a = 1.137270 + 0.230863I
b = 0.160625 0.891368I
2.04430 + 1.72035I 4.21443 4.65394I
u = 1.26544 + 0.92224I
a = 1.55365 + 0.07913I
b = 0.600380 + 1.232850I
4.8606 + 16.8243I 6.88008 9.57741I
u = 1.26544 0.92224I
a = 1.55365 0.07913I
b = 0.600380 1.232850I
4.8606 16.8243I 6.88008 + 9.57741I
u = 0.415171
a = 1.29473
b = 0.395535
0.703597 14.1640
5
II. I
u
2
= hu
2
a + u
2
+ b, u
9
a + 4u
9
+ · · · + 2a 1, u
10
+ 2u
9
+ · · · + u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
5
=
a
u
2
a u
2
a
11
=
u
u
3
+ u
a
2
=
u
9
a + 3u
9
+ ··· 2u + 3
u
8
a 2u
9
+ ··· + u 2
a
6
=
2u
9
a 3u
8
a + ··· 2a 2
u
9
a + u
9
+ ··· + 2a + 3
a
7
=
u
9
a + 2u
9
+ ··· a 2u
u
9
a + u
8
a + ··· + a + 1
a
1
=
u
9
a + u
9
+ ··· u + 1
u
8
a 2u
9
+ ··· + u 2
a
9
=
u
9
a u
9
+ ··· + a 1
u
3
a u
3
+ au
a
8
=
u
9
a u
9
+ ··· + a 1
au
a
12
=
u
9
a u
9
+ ··· + a 1
u
8
+ u
7
u
5
+ 3u
4
+ 2u
3
3u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
9
+ 12u
8
8u
7
19u
6
+ 32u
5
+ 32u
4
25u
3
59u
2
+ 4u + 39
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
20
+ 8u
19
+ ··· 512u + 1024
c
2
, c
5
, c
7
c
12
u
20
+ 6u
19
+ ··· + 192u + 32
c
3
, c
4
, c
8
c
10
(u
10
+ 2u
9
+ u
8
u
7
+ 2u
6
+ 5u
5
+ 2u
4
4u
3
3u
2
+ u + 1)
2
c
6
, c
9
u
20
+ 2u
19
+ ··· 13u
2
+ 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
20
+ 8y
19
+ ··· + 655360y + 1048576
c
2
, c
5
, c
7
c
12
y
20
+ 8y
19
+ ··· 512y + 1024
c
3
, c
4
, c
8
c
10
(y
10
2y
9
+ 9y
8
13y
7
+ 28y
6
33y
5
+ 36y
4
34y
3
+ 21y
2
7y + 1)
2
c
6
, c
9
y
20
+ 24y
19
+ ··· 26y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.697487 + 0.893220I
a = 0.662772 0.575220I
b = 0.821731 + 0.241096I
4.56796 1.72827I 5.99377 + 2.10096I
u = 0.697487 + 0.893220I
a = 0.0120261 + 0.0747158I
b = 0.222000 + 1.284270I
4.56796 1.72827I 5.99377 + 2.10096I
u = 0.697487 0.893220I
a = 0.662772 + 0.575220I
b = 0.821731 0.241096I
4.56796 + 1.72827I 5.99377 2.10096I
u = 0.697487 0.893220I
a = 0.0120261 0.0747158I
b = 0.222000 1.284270I
4.56796 + 1.72827I 5.99377 2.10096I
u = 0.693459 + 0.193871I
a = 1.50091 0.64277I
b = 0.935824 + 0.957395I
2.81596 6.19567I 19.0021 + 9.7994I
u = 0.693459 + 0.193871I
a = 3.12443 + 0.88317I
b = 0.704293 0.962732I
2.81596 6.19567I 19.0021 + 9.7994I
u = 0.693459 0.193871I
a = 1.50091 + 0.64277I
b = 0.935824 0.957395I
2.81596 + 6.19567I 19.0021 9.7994I
u = 0.693459 0.193871I
a = 3.12443 0.88317I
b = 0.704293 + 0.962732I
2.81596 + 6.19567I 19.0021 9.7994I
u = 0.862296 + 0.948082I
a = 1.67900 + 0.41333I
b = 0.570373 + 1.174400I
7.29651 + 6.88238I 4.01797 5.83705I
u = 0.862296 + 0.948082I
a = 0.166644 + 0.078095I
b = 0.257113 1.350450I
7.29651 + 6.88238I 4.01797 5.83705I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.862296 0.948082I
a = 1.67900 0.41333I
b = 0.570373 1.174400I
7.29651 6.88238I 4.01797 + 5.83705I
u = 0.862296 0.948082I
a = 0.166644 0.078095I
b = 0.257113 + 1.350450I
7.29651 6.88238I 4.01797 + 5.83705I
u = 0.663837 + 0.151994I
a = 1.58914 + 0.48669I
b = 0.982955 0.725714I
3.48993 + 0.66365I 16.4607 8.1518I
u = 0.663837 + 0.151994I
a = 1.75895 + 2.14112I
b = 0.748997 0.740931I
3.48993 + 0.66365I 16.4607 8.1518I
u = 0.663837 0.151994I
a = 1.58914 0.48669I
b = 0.982955 + 0.725714I
3.48993 0.66365I 16.4607 + 8.1518I
u = 0.663837 0.151994I
a = 1.75895 2.14112I
b = 0.748997 + 0.740931I
3.48993 0.66365I 16.4607 + 8.1518I
u = 1.135190 + 0.826360I
a = 1.031390 0.513255I
b = 0.981958 + 0.252022I
1.84362 11.11570I 9.52549 + 6.91894I
u = 1.135190 + 0.826360I
a = 1.67888 0.10717I
b = 0.612314 1.208760I
1.84362 11.11570I 9.52549 + 6.91894I
u = 1.135190 0.826360I
a = 1.031390 + 0.513255I
b = 0.981958 0.252022I
1.84362 + 11.11570I 9.52549 6.91894I
u = 1.135190 0.826360I
a = 1.67888 + 0.10717I
b = 0.612314 + 1.208760I
1.84362 + 11.11570I 9.52549 6.91894I
10
III. I
u
3
= h−9u
9
+ 29u
8
+ · · · + 16b + 176, 13u
9
43u
8
+ · · · + 32a
320, u
10
5u
9
+ · · · 112u + 32i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
5
=
13
32
u
9
+
43
32
u
8
+ ···
97
4
u + 10
9
16
u
9
29
16
u
8
+ ··· +
59
2
u 11
a
11
=
u
u
3
+ u
a
2
=
37
16
u
9
+
133
16
u
8
+ ···
571
4
u + 50
u
9
31
8
u
8
+ ··· + 73u 26
a
6
=
3
16
u
9
+
7
16
u
8
+ ··· 8u +
9
2
1
2
u
9
11
8
u
8
+ ··· +
33
2
u 6
a
7
=
0.812500u
9
+ 2.68750u
8
+ ··· 41.5000u + 14.5000
3
2
u
9
43
8
u
8
+ ··· +
189
2
u 34
a
1
=
21
16
u
9
+
71
16
u
8
+ ···
279
4
u + 24
u
9
31
8
u
8
+ ··· + 73u 26
a
9
=
1.81250u
9
6.06250u
8
+ ··· + 100.250u 34.5000
15
8
u
9
+
13
2
u
8
+ ···
217
2
u + 38
a
8
=
1
16
u
8
+
3
16
u
7
+ ··· +
7
2
u
5
2
1
16
u
9
3
16
u
8
+ ···
9
2
u
2
+
7
2
u
a
12
=
1.18750u
9
+ 4.06250u
8
+ ··· 67.2500u + 23.5000
u
9
29
8
u
8
+ ··· +
127
2
u 22
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 12u
9
+ 42u
8
32u
7
110u
6
+ 302u
5
200u
4
356u
3
+ 854u
2
716u + 262
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
2
c
2
, c
5
, c
7
c
12
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
3
, c
4
, c
8
c
10
u
10
5u
9
+ ··· 112u + 32
c
6
, c
9
u
10
2u
9
+ 7u
8
12u
7
+ 28u
6
30u
5
+ 33u
4
12u
3
+ 7u
2
+ 2u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
c
2
, c
5
, c
7
c
12
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
3
, c
4
, c
8
c
10
y
10
9y
9
+ ··· 1792y + 1024
c
6
, c
9
y
10
+ 10y
9
+ ··· + 10y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.741441 + 0.645002I
a = 1.071590 0.512139I
b = 0.766826
0.132640 11.03771 + 0.I
u = 0.741441 0.645002I
a = 1.071590 + 0.512139I
b = 0.766826
0.132640 11.03771 + 0.I
u = 1.46105 + 0.05872I
a = 1.46066 0.89350I
b = 0.339110 + 0.822375I
4.27660 + 3.06116I 12.9698 8.8613I
u = 1.46105 0.05872I
a = 1.46066 + 0.89350I
b = 0.339110 0.822375I
4.27660 3.06116I 12.9698 + 8.8613I
u = 1.27770 + 0.76072I
a = 1.64111 0.08519I
b = 0.455697 1.200150I
6.81032 + 8.80167I 4.51137 6.99717I
u = 1.27770 0.76072I
a = 1.64111 + 0.08519I
b = 0.455697 + 1.200150I
6.81032 8.80167I 4.51137 + 6.99717I
u = 0.68721 + 1.38261I
a = 0.400210 + 0.011625I
b = 0.455697 + 1.200150I
6.81032 8.80167I 4.51137 + 6.99717I
u = 0.68721 1.38261I
a = 0.400210 0.011625I
b = 0.455697 1.200150I
6.81032 + 8.80167I 4.51137 6.99717I
u = 1.66741 + 0.39957I
a = 0.902252 0.079481I
b = 0.339110 0.822375I
4.27660 3.06116I 12.9698 + 8.8613I
u = 1.66741 0.39957I
a = 0.902252 + 0.079481I
b = 0.339110 + 0.822375I
4.27660 + 3.06116I 12.9698 8.8613I
14
IV.
I
u
4
= hu
8
2u
7
+ · · · + b 1, u
8
+ 2u
7
+ · · · + a + 2u, u
9
u
8
+ · · · u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
5
=
u
8
2u
7
2u
6
+ 6u
5
2u
4
3u
3
+ 4u
2
2u
u
8
+ 2u
7
+ 2u
6
6u
5
+ 2u
4
+ 4u
3
5u
2
+ 1
a
11
=
u
u
3
+ u
a
2
=
2u
8
+ 3u
7
+ 7u
6
13u
5
2u
4
+ 14u
3
10u
2
u + 4
u
8
u
7
4u
6
+ 5u
5
+ 2u
4
6u
3
+ 5u
2
+ u 2
a
6
=
3u
8
5u
7
9u
6
+ 18u
5
+ 2u
4
17u
3
+ 12u
2
+ 2u 5
2u
8
+ 3u
7
+ 6u
6
10u
5
2u
4
+ 9u
3
7u
2
2u + 3
a
7
=
2u
8
4u
7
5u
6
+ 14u
5
u
4
13u
3
+ 9u
2
+ u 4
2u
8
+ 3u
7
+ 5u
6
9u
5
+ 7u
3
7u
2
u + 3
a
1
=
u
8
+ 2u
7
+ 3u
6
8u
5
+ 8u
3
5u
2
+ 2
u
8
u
7
4u
6
+ 5u
5
+ 2u
4
6u
3
+ 5u
2
+ u 2
a
9
=
u
2
2
u
4
+ u
3
+ 2u
2
u
a
8
=
u
8
+ 2u
7
+ 2u
6
6u
5
+ 2u
4
+ 3u
3
4u
2
+ u 1
u
8
2u
7
2u
6
+ 6u
5
2u
4
3u
3
+ 5u
2
u 1
a
12
=
u
3
+ u
2
+ 3u 2
u
5
2u
4
2u
3
+ 4u
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
2u
6
20u
5
+ 16u
4
+ 20u
3
24u
2
+ 6u + 15
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
9
5u
8
+ 15u
7
30u
6
+ 43u
5
43u
4
+ 29u
3
10u
2
+ 1
c
2
, c
7
u
9
+ u
8
+ 3u
7
+ 2u
6
+ 5u
5
+ 3u
4
+ 5u
3
+ 2u
2
+ 2u + 1
c
3
, c
8
u
9
u
8
4u
7
+ 4u
6
+ 4u
5
5u
4
+ u
3
+ 3u
2
u 1
c
4
, c
10
u
9
+ u
8
4u
7
4u
6
+ 4u
5
+ 5u
4
+ u
3
3u
2
u + 1
c
5
, c
12
u
9
u
8
+ 3u
7
2u
6
+ 5u
5
3u
4
+ 5u
3
2u
2
+ 2u 1
c
6
u
9
+ u
8
+ u
6
+ u
5
u
4
+ u
3
3u
2
u 1
c
9
u
9
u
8
u
6
+ u
5
+ u
4
+ u
3
+ 3u
2
u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
9
+ 5y
8
+ 11y
7
+ 18y
6
+ 39y
5
+ 55y
4
+ 41y
3
14y
2
+ 20y 1
c
2
, c
5
, c
7
c
12
y
9
+ 5y
8
+ 15y
7
+ 30y
6
+ 43y
5
+ 43y
4
+ 29y
3
+ 10y
2
1
c
3
, c
4
, c
8
c
10
y
9
9y
8
+ 32y
7
56y
6
+ 52y
5
35y
4
+ 31y
3
21y
2
+ 7y 1
c
6
, c
9
y
9
y
8
+ 3y
6
+ 7y
5
+ 9y
4
5y
3
13y
2
5y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.462033 + 0.754487I
a = 0.078103 1.033230I
b = 0.336796 1.119250I
3.12884 + 6.23780I 2.73865 7.61913I
u = 0.462033 0.754487I
a = 0.078103 + 1.033230I
b = 0.336796 + 1.119250I
3.12884 6.23780I 2.73865 + 7.61913I
u = 0.782089
a = 0.220949
b = 0.476516
2.80099 14.9720
u = 1.364940 + 0.065675I
a = 1.289310 0.543338I
b = 0.635154 + 0.958055I
5.53504 + 5.05565I 12.9398 5.8623I
u = 1.364940 0.065675I
a = 1.289310 + 0.543338I
b = 0.635154 0.958055I
5.53504 5.05565I 12.9398 + 5.8623I
u = 0.559877 + 0.179451I
a = 2.50809 0.97379I
b = 0.791008 + 0.978807I
2.21345 6.06496I 3.18848 + 6.10484I
u = 0.559877 0.179451I
a = 2.50809 + 0.97379I
b = 0.791008 0.978807I
2.21345 + 6.06496I 3.18848 6.10484I
u = 1.57174 + 0.24578I
a = 1.186410 0.282603I
b = 0.230908 + 0.825079I
3.84945 + 2.41446I 5.14685 + 1.22263I
u = 1.57174 0.24578I
a = 1.186410 + 0.282603I
b = 0.230908 0.825079I
3.84945 2.41446I 5.14685 1.22263I
18
V. I
u
5
= h4u
19
5u
18
+ · · · + 8b 34, 8u
19
a 62u
19
+ · · · 86a
198, u
20
+ 2u
19
+ · · · + 2u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
5
=
a
1
2
u
19
+
5
8
u
18
+ ··· u +
17
4
a
11
=
u
u
3
+ u
a
2
=
13
8
u
19
a
17
8
u
19
+ ··· +
1
8
a +
7
4
1
2
u
19
a +
5
8
u
19
+ ···
9
8
a
7
2
a
6
=
7
8
u
19
a
9
4
u
19
+ ···
3
8
a
55
8
1
2
u
19
a
9
8
u
19
+ ··· +
7
8
a +
11
8
a
7
=
5
8
u
19
a
31
8
u
19
+ ···
35
4
u 6
1
2
u
19
a
5
8
u
19
+ ··· +
3
4
a +
1
2
a
1
=
17
8
u
19
a
3
2
u
19
+ ··· a
7
4
1
2
u
19
a +
5
8
u
19
+ ···
9
8
a
7
2
a
9
=
2u
19
a
3
4
u
19
+ ··· +
17
8
a
11
8
u
19
a
5
8
u
19
+ ··· +
3
4
a
7
4
a
8
=
3
4
u
19
a
3
4
u
19
+ ··· +
11
8
a
11
8
1
4
u
19
a +
3
2
u
19
+ ··· +
1
8
a +
5
8
a
12
=
2u
19
a +
1
8
u
19
+ ··· +
17
8
a +
1
4
7
8
u
19
+
7
8
u
18
+ ··· +
3
4
u
11
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
7
2
u
19
5u
18
+
17
2
u
17
+ 22u
16
5u
15
67
2
u
14
+
41
2
u
13
+ 85u
12
+
43
2
u
11
149
2
u
10
+
3
2
u
9
+
157
2
u
8
47u
7
175u
6
27u
5
+ 140u
4
+ 99u
3
17
2
u
2
17u + 11
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
8
c
2
, c
5
, c
7
c
12
(u
5
u
4
+ 2u
3
u
2
+ u 1)
8
c
3
, c
4
, c
8
c
10
(u
20
+ 2u
19
+ ··· + 2u 1)
2
c
6
, c
9
u
40
+ 7u
39
+ ··· + 15696u + 9056
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
8
c
2
, c
5
, c
7
c
12
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
8
c
3
, c
4
, c
8
c
10
(y
20
8y
19
+ ··· 24y + 1)
2
c
6
, c
9
y
40
15y
39
+ ··· 551370496y + 82011136
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.003740 + 0.203240I
a = 0.736760 + 0.293591I
b = 0.766826
2.20462 1.53058I 12.00374 + 4.43065I
u = 1.003740 + 0.203240I
a = 0.07037 + 1.42616I
b = 0.339110 0.822375I
2.20462 1.53058I 12.00374 + 4.43065I
u = 1.003740 0.203240I
a = 0.736760 0.293591I
b = 0.766826
2.20462 + 1.53058I 12.00374 4.43065I
u = 1.003740 0.203240I
a = 0.07037 1.42616I
b = 0.339110 + 0.822375I
2.20462 + 1.53058I 12.00374 4.43065I
u = 0.837472 + 0.186217I
a = 1.62048 + 0.56618I
b = 0.455697 + 1.200150I
1.26686 5.93141I 8.74057 + 7.92923I
u = 0.837472 + 0.186217I
a = 0.52205 + 2.59753I
b = 0.339110 0.822375I
1.26686 5.93141I 8.74057 + 7.92923I
u = 0.837472 0.186217I
a = 1.62048 0.56618I
b = 0.455697 1.200150I
1.26686 + 5.93141I 8.74057 7.92923I
u = 0.837472 0.186217I
a = 0.52205 2.59753I
b = 0.339110 + 0.822375I
1.26686 + 5.93141I 8.74057 7.92923I
u = 0.518290 + 1.034340I
a = 0.229000 + 1.109210I
b = 0.339110 + 0.822375I
1.26686 + 5.93141I 8.74057 7.92923I
u = 0.518290 + 1.034340I
a = 0.625942 0.270987I
b = 0.455697 1.200150I
1.26686 + 5.93141I 8.74057 7.92923I
22
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.518290 1.034340I
a = 0.229000 1.109210I
b = 0.339110 0.822375I
1.26686 5.93141I 8.74057 + 7.92923I
u = 0.518290 1.034340I
a = 0.625942 + 0.270987I
b = 0.455697 + 1.200150I
1.26686 5.93141I 8.74057 + 7.92923I
u = 0.876335 + 0.759147I
a = 0.899822 + 0.139425I
b = 0.455697 + 1.200150I
1.26686 2.87025I 8.74057 0.93206I
u = 0.876335 + 0.759147I
a = 0.537367 0.405725I
b = 0.339110 + 0.822375I
1.26686 2.87025I 8.74057 0.93206I
u = 0.876335 0.759147I
a = 0.899822 0.139425I
b = 0.455697 1.200150I
1.26686 + 2.87025I 8.74057 + 0.93206I
u = 0.876335 0.759147I
a = 0.537367 + 0.405725I
b = 0.339110 0.822375I
1.26686 + 2.87025I 8.74057 + 0.93206I
u = 0.640737 + 1.010450I
a = 0.980178 + 0.568848I
b = 0.766826
3.33884 + 4.40083I 7.77454 3.49859I
u = 0.640737 + 1.010450I
a = 0.314549 + 0.014758I
b = 0.455697 1.200150I
3.33884 + 4.40083I 7.77454 3.49859I
u = 0.640737 1.010450I
a = 0.980178 0.568848I
b = 0.766826
3.33884 4.40083I 7.77454 + 3.49859I
u = 0.640737 1.010450I
a = 0.314549 0.014758I
b = 0.455697 + 1.200150I
3.33884 4.40083I 7.77454 + 3.49859I
23
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.626341 + 0.466406I
a = 0.547283 0.504915I
b = 0.766826
2.20462 1.53058I 12.00374 + 4.43065I
u = 0.626341 + 0.466406I
a = 1.26438 1.85588I
b = 0.339110 0.822375I
2.20462 1.53058I 12.00374 + 4.43065I
u = 0.626341 0.466406I
a = 0.547283 + 0.504915I
b = 0.766826
2.20462 + 1.53058I 12.00374 4.43065I
u = 0.626341 0.466406I
a = 1.26438 + 1.85588I
b = 0.339110 + 0.822375I
2.20462 + 1.53058I 12.00374 4.43065I
u = 1.086970 + 0.743564I
a = 0.983639 + 0.469524I
b = 0.766826
3.33884 4.40083I 7.77454 + 3.49859I
u = 1.086970 + 0.743564I
a = 1.56355 + 0.05153I
b = 0.455697 + 1.200150I
3.33884 4.40083I 7.77454 + 3.49859I
u = 1.086970 0.743564I
a = 0.983639 0.469524I
b = 0.766826
3.33884 + 4.40083I 7.77454 3.49859I
u = 1.086970 0.743564I
a = 1.56355 0.05153I
b = 0.455697 1.200150I
3.33884 + 4.40083I 7.77454 3.49859I
u = 1.36679
a = 1.84955 + 0.44022I
b = 0.339110 0.822375I
4.27660 12.9700
u = 1.36679
a = 1.84955 0.44022I
b = 0.339110 + 0.822375I
4.27660 12.9700
24
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.030490 + 0.931621I
a = 0.384781 0.097424I
b = 0.455697 + 1.200150I
6.81032 4.51137 + 0.I
u = 1.030490 + 0.931621I
a = 1.62227 + 0.02761I
b = 0.455697 1.200150I
6.81032 4.51137 + 0.I
u = 1.030490 0.931621I
a = 0.384781 + 0.097424I
b = 0.455697 1.200150I
6.81032 4.51137 + 0.I
u = 1.030490 0.931621I
a = 1.62227 0.02761I
b = 0.455697 + 1.200150I
6.81032 4.51137 + 0.I
u = 0.316111 + 0.046866I
a = 2.10387 1.97197I
b = 0.455697 1.200150I
1.26686 + 2.87025I 8.74057 + 0.93206I
u = 0.316111 + 0.046866I
a = 6.41754 3.25398I
b = 0.339110 0.822375I
1.26686 + 2.87025I 8.74057 + 0.93206I
u = 0.316111 0.046866I
a = 2.10387 + 1.97197I
b = 0.455697 + 1.200150I
1.26686 2.87025I 8.74057 0.93206I
u = 0.316111 0.046866I
a = 6.41754 + 3.25398I
b = 0.339110 + 0.822375I
1.26686 2.87025I 8.74057 0.93206I
u = 1.76524
a = 0.708336 + 0.263915I
b = 0.339110 0.822375I
4.27660 12.9700
u = 1.76524
a = 0.708336 0.263915I
b = 0.339110 + 0.822375I
4.27660 12.9700
25
VI. I
u
6
= hu
2
a + u
2
+ b, u
2
a + a
2
+ u
2
+ a + u 1, u
3
u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
5
=
a
u
2
a u
2
a
11
=
u
1
a
2
=
u
2
a + au + 2u + 2
au a u 2
a
6
=
au + u
2
+ a + u
u
2
a au u
2
2u
a
7
=
au + u
2
+ 2a + u + 1
2u
2
a au 2u
2
2u
a
1
=
u
2
a a + u
au a u 2
a
9
=
u
2
a au u
2
a + 1
a + u + 1
a
8
=
u
2
a u
2
a + 1
au
a
12
=
u
2
a au u
2
a + 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
2
+ 9u + 13
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
6
4u
5
+ 8u
4
9u
3
+ 8u
2
4u + 1
c
2
, c
7
u
6
+ 2u
4
u
3
+ 2u
2
+ 1
c
3
, c
8
(u
3
u 1)
2
c
4
, c
10
(u
3
u + 1)
2
c
5
, c
12
u
6
+ 2u
4
+ u
3
+ 2u
2
+ 1
c
6
u
6
+ u
5
3u
4
+ 4u
2
3u + 1
c
9
u
6
u
5
3u
4
+ 4u
2
+ 3u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
6
+ 8y
4
+ 17y
3
+ 8y
2
+ 1
c
2
, c
5
, c
7
c
12
y
6
+ 4y
5
+ 8y
4
+ 9y
3
+ 8y
2
+ 4y + 1
c
3
, c
4
, c
8
c
10
(y
3
2y
2
+ y 1)
2
c
6
, c
9
y
6
7y
5
+ 17y
4
16y
3
+ 10y
2
y + 1
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.662359 + 0.562280I
a = 0.751796 + 0.282758I
b = 0.425318 + 1.270190I
1.45094 3.77083I 6.42596 + 8.78482I
u = 0.662359 + 0.562280I
a = 1.87436 + 0.46210I
b = 0.237041 0.707911I
1.45094 3.77083I 6.42596 + 8.78482I
u = 0.662359 0.562280I
a = 0.751796 0.282758I
b = 0.425318 1.270190I
1.45094 + 3.77083I 6.42596 8.78482I
u = 0.662359 0.562280I
a = 1.87436 0.46210I
b = 0.237041 + 0.707911I
1.45094 + 3.77083I 6.42596 8.78482I
u = 1.32472
a = 1.37744 + 0.42692I
b = 0.662359 0.749187I
6.19175 16.1480
u = 1.32472
a = 1.37744 0.42692I
b = 0.662359 + 0.749187I
6.19175 16.1480
29
VII. I
u
7
= h−au + b + a u + 1, a
2
2au a + u + 3, u
2
+ u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u 1
a
5
=
a
au a + u 1
a
11
=
u
u + 1
a
2
=
2au u + 3
au + u 1
a
6
=
au + a u 2
a + u
a
7
=
2au 3
3au + a 2u + 2
a
1
=
au + 2
au + u 1
a
9
=
a u 1
au a + 2u 1
a
8
=
au + a u 1
au
a
12
=
a
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u + 11
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
11
, c
12
u
4
u
3
+ u
2
u + 1
c
2
, c
7
, c
9
u
4
+ u
3
+ u
2
+ u + 1
c
3
, c
8
(u
2
+ u 1)
2
c
4
, c
10
(u
2
u 1)
2
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
9
c
11
, c
12
y
4
+ y
3
+ y
2
+ y + 1
c
3
, c
4
, c
8
c
10
(y
2
3y + 1)
2
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.11803 + 1.53884I
b = 0.809017 0.587785I
3.28987 14.0900
u = 0.618034
a = 1.11803 1.53884I
b = 0.809017 + 0.587785I
3.28987 14.0900
u = 1.61803
a = 1.118030 + 0.363271I
b = 0.309017 0.951057I
3.28987 2.90980
u = 1.61803
a = 1.118030 0.363271I
b = 0.309017 + 0.951057I
3.28987 2.90980
33
VIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
4
u
3
+ u
2
u + 1)(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
10
· (u
6
4u
5
+ 8u
4
9u
3
+ 8u
2
4u + 1)
· (u
9
5u
8
+ 15u
7
30u
6
+ 43u
5
43u
4
+ 29u
3
10u
2
+ 1)
· (u
9
+ 5u
8
+ 11u
7
+ 10u
6
u
5
5u
4
+ 9u
3
+ 14u
2
+ 4u 1)
· (u
20
+ 8u
19
+ ··· 512u + 1024)
c
2
, c
7
(u
4
+ u
3
+ u
2
+ u + 1)(u
5
u
4
+ 2u
3
u
2
+ u 1)
10
· (u
6
+ 2u
4
u
3
+ 2u
2
+ 1)
· (u
9
+ u
8
+ 3u
7
+ 2u
6
+ 5u
5
+ 3u
4
+ 5u
3
+ 2u
2
+ 2u + 1)
· (u
9
+ 3u
8
+ 7u
7
+ 10u
6
+ 11u
5
+ 9u
4
+ 5u
3
+ 2u
2
1)
· (u
20
+ 6u
19
+ ··· + 192u + 32)
c
3
, c
8
(u
2
+ u 1)
2
(u
3
u 1)
2
· (u
9
5u
8
+ 12u
7
16u
6
+ 12u
5
3u
4
u
3
u
2
+ 3u 1)
· (u
9
u
8
4u
7
+ 4u
6
+ 4u
5
5u
4
+ u
3
+ 3u
2
u 1)
· (u
10
5u
9
+ ··· 112u + 32)
· (u
10
+ 2u
9
+ u
8
u
7
+ 2u
6
+ 5u
5
+ 2u
4
4u
3
3u
2
+ u + 1)
2
· (u
20
+ 2u
19
+ ··· + 2u 1)
2
c
4
, c
10
(u
2
u 1)
2
(u
3
u + 1)
2
· (u
9
5u
8
+ 12u
7
16u
6
+ 12u
5
3u
4
u
3
u
2
+ 3u 1)
· (u
9
+ u
8
4u
7
4u
6
+ 4u
5
+ 5u
4
+ u
3
3u
2
u + 1)
· (u
10
5u
9
+ ··· 112u + 32)
· (u
10
+ 2u
9
+ u
8
u
7
+ 2u
6
+ 5u
5
+ 2u
4
4u
3
3u
2
+ u + 1)
2
· (u
20
+ 2u
19
+ ··· + 2u 1)
2
c
5
, c
12
(u
4
u
3
+ u
2
u + 1)(u
5
u
4
+ 2u
3
u
2
+ u 1)
10
· (u
6
+ 2u
4
+ u
3
+ 2u
2
+ 1)
· (u
9
u
8
+ 3u
7
2u
6
+ 5u
5
3u
4
+ 5u
3
2u
2
+ 2u 1)
· (u
9
+ 3u
8
+ 7u
7
+ 10u
6
+ 11u
5
+ 9u
4
+ 5u
3
+ 2u
2
1)
· (u
20
+ 6u
19
+ ··· + 192u + 32)
c
6
(u
4
u
3
+ u
2
u + 1)(u
6
+ u
5
3u
4
+ 4u
2
3u + 1)
· (u
9
+ u
8
+ u
6
+ u
5
u
4
+ u
3
3u
2
u 1)
· (u
9
+ u
8
+ 4u
7
+ u
6
+ 11u
5
+ u
4
+ 11u
3
+ 7u
2
+ u 1)
· (u
10
2u
9
+ 7u
8
12u
7
+ 28u
6
30u
5
+ 33u
4
12u
3
+ 7u
2
+ 2u + 1)
· (u
20
+ 2u
19
+ ··· 13u
2
+ 1)(u
40
+ 7u
39
+ ··· + 15696u + 9056)
c
9
(u
4
+ u
3
+ u
2
+ u + 1)(u
6
u
5
3u
4
+ 4u
2
+ 3u + 1)
· (u
9
u
8
u
6
+ u
5
+ u
4
+ u
3
+ 3u
2
u + 1)
· (u
9
+ u
8
+ 4u
7
+ u
6
+ 11u
5
+ u
4
+ 11u
3
+ 7u
2
+ u 1)
· (u
10
2u
9
+ 7u
8
12u
7
+ 28u
6
30u
5
+ 33u
4
12u
3
+ 7u
2
+ 2u + 1)
· (u
20
+ 2u
19
+ ··· 13u
2
+ 1)(u
40
+ 7u
39
+ ··· + 15696u + 9056)
34
IX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y
4
+ y
3
+ y
2
+ y + 1)(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
10
· (y
6
+ 8y
4
+ 17y
3
+ 8y
2
+ 1)
· (y
9
3y
8
+ 19y
7
54y
6
+ 167y
5
225y
4
+ 233y
3
134y
2
+ 44y 1)
· (y
9
+ 5y
8
+ 11y
7
+ 18y
6
+ 39y
5
+ 55y
4
+ 41y
3
14y
2
+ 20y 1)
· (y
20
+ 8y
19
+ ··· + 655360y + 1048576)
c
2
, c
5
, c
7
c
12
(y
4
+ y
3
+ y
2
+ y + 1)(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
10
· (y
6
+ 4y
5
+ 8y
4
+ 9y
3
+ 8y
2
+ 4y + 1)
· (y
9
+ 5y
8
+ 11y
7
+ 10y
6
y
5
5y
4
+ 9y
3
+ 14y
2
+ 4y 1)
· (y
9
+ 5y
8
+ 15y
7
+ 30y
6
+ 43y
5
+ 43y
4
+ 29y
3
+ 10y
2
1)
· (y
20
+ 8y
19
+ ··· 512y + 1024)
c
3
, c
4
, c
8
c
10
(y
2
3y + 1)
2
(y
3
2y
2
+ y 1)
2
· (y
9
9y
8
+ 32y
7
56y
6
+ 52y
5
35y
4
+ 31y
3
21y
2
+ 7y 1)
· (y
9
y
8
+ 8y
7
+ 20y
5
3y
4
+ 35y
3
13y
2
+ 7y 1)
· (y
10
9y
9
+ ··· 1792y + 1024)
· (y
10
2y
9
+ 9y
8
13y
7
+ 28y
6
33y
5
+ 36y
4
34y
3
+ 21y
2
7y + 1)
2
· (y
20
8y
19
+ ··· 24y + 1)
2
c
6
, c
9
(y
4
+ y
3
+ y
2
+ y + 1)(y
6
7y
5
+ 17y
4
16y
3
+ 10y
2
y + 1)
· (y
9
y
8
+ 3y
6
+ 7y
5
+ 9y
4
5y
3
13y
2
5y 1)
· (y
9
+ 7y
8
+ 36y
7
+ 107y
6
+ 195y
5
+ 237y
4
+ 131y
3
25y
2
+ 15y 1)
· (y
10
+ 10y
9
+ ··· + 10y + 1)(y
20
+ 24y
19
+ ··· 26y + 1)
· (y
40
15y
39
+ ··· 551370496y + 82011136)
35