12n
0512
(K12n
0512
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 2 12 4 11 3 6 8 10
Solving Sequence
3,6
2 1
5,11
10 9 4 8 12 7
c
2
c
1
c
5
c
10
c
9
c
4
c
8
c
12
c
6
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.56209 × 10
137
u
52
+ 2.13565 × 10
138
u
51
+ ··· + 5.27502 × 10
137
b 7.84392 × 10
138
,
1.41680 × 10
139
u
52
+ 8.65355 × 10
139
u
51
+ ··· + 5.27502 × 10
137
a 1.27431 × 10
140
,
u
53
6u
52
+ ··· + 40u + 1i
I
u
2
= h−457327227u
19
610703148u
18
+ ··· + 96358259b + 1111419337,
2105382800u
19
+ 2179873747u
18
+ ··· + 1252657367a 8679007382, u
20
+ u
19
+ ··· 3u + 1i
* 2 irreducible components of dim
C
= 0, with total 73 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.56 × 10
137
u
52
+ 2.14 × 10
138
u
51
+ · · · + 5.28 × 10
137
b 7.84 ×
10
138
, 1.42 × 10
139
u
52
+ 8.65 × 10
139
u
51
+ · · · + 5.28 × 10
137
a 1.27 ×
10
140
, u
53
6u
52
+ · · · + 40u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
11
=
26.8586u
52
164.048u
51
+ ··· + 7449.00u + 241.575
0.675274u
52
4.04861u
51
+ ··· + 369.847u + 14.8699
a
10
=
26.8586u
52
164.048u
51
+ ··· + 7449.00u + 241.575
0.965646u
52
5.81779u
51
+ ··· + 458.826u + 17.7659
a
9
=
25.8930u
52
158.230u
51
+ ··· + 6990.17u + 223.809
0.965646u
52
5.81779u
51
+ ··· + 458.826u + 17.7659
a
4
=
18.4782u
52
+ 112.605u
51
+ ··· 6257.19u 224.169
1.57008u
52
9.59238u
51
+ ··· + 487.147u + 16.3474
a
8
=
2.77482u
52
+ 16.5932u
51
+ ··· 1230.46u 34.8505
1.36325u
52
+ 8.33041u
51
+ ··· 410.734u 14.9305
a
12
=
21.3342u
52
129.983u
51
+ ··· + 6833.05u + 226.930
3.27322u
52
19.9309u
51
+ ··· + 1054.12u + 37.4865
a
7
=
19.9047u
52
121.176u
51
+ ··· + 6787.17u + 238.652
0.884196u
52
+ 5.40601u
51
+ ··· 268.684u 8.40868
(ii) Obstruction class = 1
(iii) Cusp Shapes = 40.2182u
52
245.280u
51
+ ··· + 12382.7u + 427.694
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
53
+ 80u
52
+ ··· + 238u + 1
c
2
, c
5
u
53
+ 6u
52
+ ··· + 40u 1
c
3
, c
7
u
53
17u
51
+ ··· + 63u 11
c
4
u
53
+ u
52
+ ··· 131614u 3089431
c
6
u
53
2u
52
+ ··· 45u 25
c
8
, c
11
u
53
+ 7u
52
+ ··· 392u 37
c
9
u
53
2u
52
+ ··· + 34266u 3617
c
10
u
53
+ 7u
52
+ ··· + 22602191u 16425077
c
12
u
53
+ u
52
+ ··· + 528726u 213397
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
53
212y
52
+ ··· + 14210y 1
c
2
, c
5
y
53
80y
52
+ ··· + 238y 1
c
3
, c
7
y
53
34y
52
+ ··· + 3309y 121
c
4
y
53
+ 55y
52
+ ··· 87460058633830y 9544583903761
c
6
y
53
+ 8y
52
+ ··· 16775y 625
c
8
, c
11
y
53
+ 41y
52
+ ··· + 12250y 1369
c
9
y
53
+ 102y
52
+ ··· + 1220203166y 13082689
c
10
y
53
+ 71y
52
+ ··· 2845499866554563y 269783154455929
c
12
y
53
+ 93y
52
+ ··· 373137198832y 45538279609
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.651411 + 0.752062I
a = 1.134320 + 0.061409I
b = 0.511145 0.535779I
3.88667 1.27131I 0
u = 0.651411 0.752062I
a = 1.134320 0.061409I
b = 0.511145 + 0.535779I
3.88667 + 1.27131I 0
u = 0.992728 + 0.033495I
a = 1.012130 0.339700I
b = 1.193880 0.568300I
0.238785 0.926241I 0
u = 0.992728 0.033495I
a = 1.012130 + 0.339700I
b = 1.193880 + 0.568300I
0.238785 + 0.926241I 0
u = 1.010360 + 0.207032I
a = 0.585032 0.713094I
b = 0.373601 0.012887I
3.66107 0.98999I 0
u = 1.010360 0.207032I
a = 0.585032 + 0.713094I
b = 0.373601 + 0.012887I
3.66107 + 0.98999I 0
u = 0.834510 + 0.668017I
a = 0.037971 + 0.804259I
b = 0.811369 + 0.481691I
1.21719 + 5.26322I 0
u = 0.834510 0.668017I
a = 0.037971 0.804259I
b = 0.811369 0.481691I
1.21719 5.26322I 0
u = 0.827402 + 0.388907I
a = 0.140688 0.616647I
b = 0.620881 0.428477I
1.43824 1.25865I 0
u = 0.827402 0.388907I
a = 0.140688 + 0.616647I
b = 0.620881 + 0.428477I
1.43824 + 1.25865I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.581625 + 0.702705I
a = 0.846217 0.114913I
b = 0.347803 + 0.705862I
2.02336 0.17363I 0
u = 0.581625 0.702705I
a = 0.846217 + 0.114913I
b = 0.347803 0.705862I
2.02336 + 0.17363I 0
u = 0.604136 + 0.653648I
a = 0.15330 2.45151I
b = 2.94062 1.54125I
1.09785 5.39717I 0
u = 0.604136 0.653648I
a = 0.15330 + 2.45151I
b = 2.94062 + 1.54125I
1.09785 + 5.39717I 0
u = 0.234994 + 0.792616I
a = 0.68335 + 1.25161I
b = 0.967724 + 0.802230I
0.64524 2.29715I 0
u = 0.234994 0.792616I
a = 0.68335 1.25161I
b = 0.967724 0.802230I
0.64524 + 2.29715I 0
u = 1.011050 + 0.728145I
a = 0.863583 0.230870I
b = 0.209639 + 0.531099I
2.58796 + 4.29315I 0
u = 1.011050 0.728145I
a = 0.863583 + 0.230870I
b = 0.209639 0.531099I
2.58796 4.29315I 0
u = 0.722480 + 0.177433I
a = 1.08346 + 1.04580I
b = 0.530116 0.093427I
4.43015 2.75918I 0. + 6.84222I
u = 0.722480 0.177433I
a = 1.08346 1.04580I
b = 0.530116 + 0.093427I
4.43015 + 2.75918I 0. 6.84222I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.656788 + 0.104423I
a = 1.139030 0.753059I
b = 1.035190 + 0.001812I
1.75452 + 1.11434I 6.66980 0.91738I
u = 0.656788 0.104423I
a = 1.139030 + 0.753059I
b = 1.035190 0.001812I
1.75452 1.11434I 6.66980 + 0.91738I
u = 1.19055 + 0.88568I
a = 1.03039 + 1.18794I
b = 3.01001 2.00642I
5.54516 2.28770I 0
u = 1.19055 0.88568I
a = 1.03039 1.18794I
b = 3.01001 + 2.00642I
5.54516 + 2.28770I 0
u = 1.25052 + 0.95834I
a = 0.765795 0.742774I
b = 1.93360 + 1.56424I
2.29349 + 8.62681I 0
u = 1.25052 0.95834I
a = 0.765795 + 0.742774I
b = 1.93360 1.56424I
2.29349 8.62681I 0
u = 0.015951 + 0.307510I
a = 3.13764 2.41335I
b = 1.067820 0.221770I
2.76658 2.41535I 4.47087 + 1.33196I
u = 0.015951 0.307510I
a = 3.13764 + 2.41335I
b = 1.067820 + 0.221770I
2.76658 + 2.41535I 4.47087 1.33196I
u = 1.73290 + 0.22179I
a = 0.166376 + 0.891503I
b = 1.53471 0.39631I
13.03680 + 0.42178I 0
u = 1.73290 0.22179I
a = 0.166376 0.891503I
b = 1.53471 + 0.39631I
13.03680 0.42178I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.222604
a = 2.63595
b = 0.204967
0.751427 13.9310
u = 1.79232 + 0.08357I
a = 0.253542 + 0.882171I
b = 0.692163 0.475817I
8.36557 7.93433I 0
u = 1.79232 0.08357I
a = 0.253542 0.882171I
b = 0.692163 + 0.475817I
8.36557 + 7.93433I 0
u = 1.81353 + 0.16616I
a = 0.207496 0.844861I
b = 1.317620 + 0.423194I
13.8162 + 3.3112I 0
u = 1.81353 0.16616I
a = 0.207496 + 0.844861I
b = 1.317620 0.423194I
13.8162 3.3112I 0
u = 1.82641 + 0.02277I
a = 0.408438 0.956178I
b = 0.835144 + 1.106430I
7.20845 1.41990I 0
u = 1.82641 0.02277I
a = 0.408438 + 0.956178I
b = 0.835144 1.106430I
7.20845 + 1.41990I 0
u = 1.83249 + 0.05934I
a = 0.289698 0.861622I
b = 0.850502 + 0.649158I
11.49160 + 3.02837I 0
u = 1.83249 0.05934I
a = 0.289698 + 0.861622I
b = 0.850502 0.649158I
11.49160 3.02837I 0
u = 0.0831788 + 0.0833293I
a = 9.86402 1.69209I
b = 1.031690 + 0.055942I
0.30393 7.10088I 6.36388 + 5.33035I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.0831788 0.0833293I
a = 9.86402 + 1.69209I
b = 1.031690 0.055942I
0.30393 + 7.10088I 6.36388 5.33035I
u = 0.0934579 + 0.0087537I
a = 4.09016 + 5.62846I
b = 1.230780 + 0.270711I
3.45336 0.72834I 4.97850 + 9.73372I
u = 0.0934579 0.0087537I
a = 4.09016 5.62846I
b = 1.230780 0.270711I
3.45336 + 0.72834I 4.97850 9.73372I
u = 1.92828 + 0.39816I
a = 0.073932 + 0.751779I
b = 1.55124 0.77066I
12.70340 4.46357I 0
u = 1.92828 0.39816I
a = 0.073932 0.751779I
b = 1.55124 + 0.77066I
12.70340 + 4.46357I 0
u = 1.95974 + 0.27409I
a = 0.495203 1.120220I
b = 2.64977 + 1.35321I
13.4569 14.5302I 0
u = 1.95974 0.27409I
a = 0.495203 + 1.120220I
b = 2.64977 1.35321I
13.4569 + 14.5302I 0
u = 1.96062 + 0.27144I
a = 0.606172 + 1.255340I
b = 3.13934 1.65634I
16.6143 + 7.9534I 0
u = 1.96062 0.27144I
a = 0.606172 1.255340I
b = 3.13934 + 1.65634I
16.6143 7.9534I 0
u = 1.99808 + 0.23948I
a = 0.171286 0.721049I
b = 1.35791 + 0.78829I
13.38850 + 1.15104I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.99808 0.23948I
a = 0.171286 + 0.721049I
b = 1.35791 0.78829I
13.38850 1.15104I 0
u = 2.14143 + 0.40086I
a = 1.31536 2.28235I
b = 8.56241 + 4.52922I
9.57518 1.18543I 0
u = 2.14143 0.40086I
a = 1.31536 + 2.28235I
b = 8.56241 4.52922I
9.57518 + 1.18543I 0
10
II.
I
u
2
= h−4.57 × 10
8
u
19
6.11 × 10
8
u
18
+ · · · + 9.64 × 10
7
b + 1.11 × 10
9
, 2.11 ×
10
9
u
19
+ 2.18 × 10
9
u
18
+ · · · + 1.25 × 10
9
a 8.68 × 10
9
, u
20
+ u
19
+ · · · 3u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
11
=
1.68073u
19
1.74020u
18
+ ··· + 1.22079u + 6.92848
4.74611u
19
+ 6.33784u
18
+ ··· + 4.25754u 11.5342
a
10
=
1.68073u
19
1.74020u
18
+ ··· + 1.22079u + 6.92848
4.92880u
19
+ 6.87890u
18
+ ··· + 5.75988u 11.4748
a
9
=
6.60953u
19
8.61910u
18
+ ··· 4.53908u + 18.4033
4.92880u
19
+ 6.87890u
18
+ ··· + 5.75988u 11.4748
a
4
=
17.7080u
19
+ 25.0549u
18
+ ··· + 26.1497u 42.8331
5.23321u
19
7.65134u
18
+ ··· 8.10067u + 11.1686
a
8
=
2.92468u
19
+ 5.21610u
18
+ ··· + 12.4614u 3.29960
3.04593u
19
+ 4.28134u
18
+ ··· + 2.39110u 8.17378
a
12
=
9.53421u
19
+ 13.8352u
18
+ ··· + 17.0004u 19.7029
2.01703u
19
+ 2.81058u
18
+ ··· + 0.239552u 5.24907
a
7
=
18.3525u
19
+ 26.1833u
18
+ ··· + 30.0756u 42.2405
2.82962u
19
4.30100u
18
+ ··· 5.11549u + 5.70458
(ii) Obstruction class = 1
(iii) Cusp Shapes =
16130734190
1252657367
u
19
21563499972
1252657367
u
18
+ ···
38299165429
1252657367
u +
44038168311
1252657367
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
20
23u
19
+ ··· 21u + 1
c
2
u
20
+ u
19
+ ··· 3u + 1
c
3
u
20
3u
19
+ ··· 2u + 1
c
4
u
20
+ 6u
18
+ ··· + 9u + 1
c
5
u
20
u
19
+ ··· + 3u + 1
c
6
u
20
u
19
+ ··· 4u + 1
c
7
u
20
+ 3u
19
+ ··· + 2u + 1
c
8
u
20
+ 6u
19
+ ··· + 45u + 7
c
9
u
20
u
19
+ ··· u + 1
c
10
u
20
+ 4u
19
+ ··· + 4u + 1
c
11
u
20
6u
19
+ ··· 45u + 7
c
12
u
20
+ 9u
18
+ ··· + u + 1
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
51y
19
+ ··· 41y + 1
c
2
, c
5
y
20
23y
19
+ ··· 21y + 1
c
3
, c
7
y
20
17y
19
+ ··· 16y + 1
c
4
y
20
+ 12y
19
+ ··· 61y + 1
c
6
y
20
+ y
19
+ ··· 16y + 1
c
8
, c
11
y
20
+ 14y
19
+ ··· + 215y + 49
c
9
y
20
+ 23y
19
+ ··· 5y + 1
c
10
y
20
+ 20y
19
+ ··· 4y + 1
c
12
y
20
+ 18y
19
+ ··· 7y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.953168 + 0.477953I
a = 0.027910 0.764739I
b = 1.43070 + 0.64601I
0.15553 + 8.95849I 6.05677 7.79186I
u = 0.953168 0.477953I
a = 0.027910 + 0.764739I
b = 1.43070 0.64601I
0.15553 8.95849I 6.05677 + 7.79186I
u = 1.076970 + 0.113176I
a = 0.644492 0.140096I
b = 1.051310 0.246752I
0.753541 0.108333I 1.89880 1.85099I
u = 1.076970 0.113176I
a = 0.644492 + 0.140096I
b = 1.051310 + 0.246752I
0.753541 + 0.108333I 1.89880 + 1.85099I
u = 0.880029 + 0.788989I
a = 0.483386 + 0.858602I
b = 1.96510 + 0.09601I
0.01293 4.36454I 5.65242 + 3.34145I
u = 0.880029 0.788989I
a = 0.483386 0.858602I
b = 1.96510 0.09601I
0.01293 + 4.36454I 5.65242 3.34145I
u = 0.573843 + 0.568398I
a = 1.211620 0.162641I
b = 0.560549 + 0.039344I
3.66684 + 1.94633I 5.45415 4.37772I
u = 0.573843 0.568398I
a = 1.211620 + 0.162641I
b = 0.560549 0.039344I
3.66684 1.94633I 5.45415 + 4.37772I
u = 0.735779 + 0.317158I
a = 0.35138 + 1.55614I
b = 1.399420 0.144993I
3.47476 3.31570I 0.67932 + 5.99198I
u = 0.735779 0.317158I
a = 0.35138 1.55614I
b = 1.399420 + 0.144993I
3.47476 + 3.31570I 0.67932 5.99198I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.165200 + 0.433501I
a = 0.353048 + 0.390155I
b = 1.45248 + 0.46098I
1.34131 + 3.38449I 4.71773 3.89524I
u = 1.165200 0.433501I
a = 0.353048 0.390155I
b = 1.45248 0.46098I
1.34131 3.38449I 4.71773 + 3.89524I
u = 0.466533 + 0.291062I
a = 0.540211 0.115052I
b = 0.937438 + 0.236499I
3.58769 0.13487I 11.02112 2.80092I
u = 0.466533 0.291062I
a = 0.540211 + 0.115052I
b = 0.937438 0.236499I
3.58769 + 0.13487I 11.02112 + 2.80092I
u = 0.418981 + 0.040038I
a = 2.42239 0.52074I
b = 0.469495 + 1.066240I
1.05506 + 2.08410I 2.22198 2.68803I
u = 0.418981 0.040038I
a = 2.42239 + 0.52074I
b = 0.469495 1.066240I
1.05506 2.08410I 2.22198 + 2.68803I
u = 1.88694 + 0.23384I
a = 0.168220 0.691711I
b = 1.315960 + 0.356311I
12.85410 + 2.44827I 4.74569 1.68433I
u = 1.88694 0.23384I
a = 0.168220 + 0.691711I
b = 1.315960 0.356311I
12.85410 2.44827I 4.74569 + 1.68433I
u = 2.04630 + 0.30975I
a = 0.77344 + 1.85675I
b = 4.91542 3.72104I
9.30106 1.00549I 8.05201 4.41716I
u = 2.04630 0.30975I
a = 0.77344 1.85675I
b = 4.91542 + 3.72104I
9.30106 + 1.00549I 8.05201 + 4.41716I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
20
23u
19
+ ··· 21u + 1)(u
53
+ 80u
52
+ ··· + 238u + 1)
c
2
(u
20
+ u
19
+ ··· 3u + 1)(u
53
+ 6u
52
+ ··· + 40u 1)
c
3
(u
20
3u
19
+ ··· 2u + 1)(u
53
17u
51
+ ··· + 63u 11)
c
4
(u
20
+ 6u
18
+ ··· + 9u + 1)(u
53
+ u
52
+ ··· 131614u 3089431)
c
5
(u
20
u
19
+ ··· + 3u + 1)(u
53
+ 6u
52
+ ··· + 40u 1)
c
6
(u
20
u
19
+ ··· 4u + 1)(u
53
2u
52
+ ··· 45u 25)
c
7
(u
20
+ 3u
19
+ ··· + 2u + 1)(u
53
17u
51
+ ··· + 63u 11)
c
8
(u
20
+ 6u
19
+ ··· + 45u + 7)(u
53
+ 7u
52
+ ··· 392u 37)
c
9
(u
20
u
19
+ ··· u + 1)(u
53
2u
52
+ ··· + 34266u 3617)
c
10
(u
20
+ 4u
19
+ ··· + 4u + 1)
· (u
53
+ 7u
52
+ ··· + 22602191u 16425077)
c
11
(u
20
6u
19
+ ··· 45u + 7)(u
53
+ 7u
52
+ ··· 392u 37)
c
12
(u
20
+ 9u
18
+ ··· + u + 1)(u
53
+ u
52
+ ··· + 528726u 213397)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
20
51y
19
+ ··· 41y + 1)(y
53
212y
52
+ ··· + 14210y 1)
c
2
, c
5
(y
20
23y
19
+ ··· 21y + 1)(y
53
80y
52
+ ··· + 238y 1)
c
3
, c
7
(y
20
17y
19
+ ··· 16y + 1)(y
53
34y
52
+ ··· + 3309y 121)
c
4
(y
20
+ 12y
19
+ ··· 61y + 1)
· (y
53
+ 55y
52
+ ··· 87460058633830y 9544583903761)
c
6
(y
20
+ y
19
+ ··· 16y + 1)(y
53
+ 8y
52
+ ··· 16775y 625)
c
8
, c
11
(y
20
+ 14y
19
+ ··· + 215y + 49)(y
53
+ 41y
52
+ ··· + 12250y 1369)
c
9
(y
20
+ 23y
19
+ ··· 5y + 1)
· (y
53
+ 102y
52
+ ··· + 1220203166y 13082689)
c
10
(y
20
+ 20y
19
+ ··· 4y + 1)
· (y
53
+ 71y
52
+ ··· 2845499866554563y 269783154455929)
c
12
(y
20
+ 18y
19
+ ··· 7y + 1)
· (y
53
+ 93y
52
+ ··· 373137198832y 45538279609)
19