12n
0514
(K12n
0514
)
A knot diagram
1
Linearized knot diagam
3 6 9 7 2 11 4 12 3 6 8 10
Solving Sequence
6,11 3,7
2 1 5 4 8 10 9 12
c
6
c
2
c
1
c
5
c
4
c
7
c
10
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−8.97013 × 10
55
u
29
1.58329 × 10
56
u
28
+ ··· + 4.35231 × 10
58
b + 6.55011 × 10
57
,
3.18509 × 10
57
u
29
1.03463 × 10
58
u
28
+ ··· + 1.82362 × 10
61
a + 1.17215 × 10
61
,
u
30
+ 2u
29
+ ··· + 100u 419i
I
u
2
= h−5u
12
+ 21u
10
7u
9
18u
8
+ 33u
7
17u
6
26u
5
+ 26u
4
+ 7u
3
15u
2
+ 2b + 3u + 5,
11u
12
+ 2u
11
48u
10
+ 6u
9
+ 49u
8
64u
7
+ 21u
6
+ 72u
5
53u
4
32u
3
+ 37u
2
+ 2a u 14,
u
13
+ u
12
4u
11
3u
10
+ 4u
9
2u
8
2u
7
+ 7u
6
+ u
5
6u
4
+ 2u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 43 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−8.97 × 10
55
u
29
1.58 × 10
56
u
28
+ · · · + 4.35 × 10
58
b + 6.55 ×
10
57
, 3.19 × 10
57
u
29
1.03 × 10
58
u
28
+ · · · + 1.82 × 10
61
a + 1.17 ×
10
61
, u
30
+ 2u
29
+ · · · + 100u 419i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
0.000174658u
29
+ 0.000567352u
28
+ ··· + 1.47843u 0.642763
0.00206100u
29
+ 0.00363781u
28
+ ··· 0.596168u 0.150497
a
7
=
1
u
2
a
2
=
0.00188635u
29
+ 0.00420517u
28
+ ··· + 0.882267u 0.793260
0.00206100u
29
+ 0.00363781u
28
+ ··· 0.596168u 0.150497
a
1
=
0.00358201u
29
+ 0.00533243u
28
+ ··· 0.845448u + 0.146579
0.00430260u
29
0.00434093u
28
+ ··· + 2.70318u 1.08487
a
5
=
0.0000550185u
29
+ 0.00136950u
28
+ ··· + 0.855142u 0.322525
0.000908531u
29
+ 0.0000579815u
28
+ ··· + 0.0808855u 1.03300
a
4
=
0.000107308u
29
+ 0.000594620u
28
+ ··· + 0.877150u + 0.182757
0.0000965840u
29
+ 0.00130720u
28
+ ··· 0.0289697u 0.664503
a
8
=
0.0000748679u
29
+ 0.000914934u
28
+ ··· + 0.654950u + 0.759505
0.00255893u
29
0.00377164u
28
+ ··· + 0.375116u 0.944810
a
10
=
u
u
a
9
=
0.0000732909u
29
0.00133981u
28
+ ··· 1.16207u 0.158293
0.00125946u
29
+ 0.00337516u
28
+ ··· 0.328027u + 0.0230528
a
12
=
0.00156530u
29
+ 0.00377669u
28
+ ··· 0.300258u 0.872709
0.00228589u
29
0.00278519u
28
+ ··· + 2.15799u 0.0655795
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.000964221u
29
+ 0.00738326u
28
+ ··· + 11.2158u + 0.582373
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
+ 54u
29
+ ··· + 35644u + 961
c
2
, c
5
u
30
+ 2u
29
+ ··· + 274u + 31
c
3
, c
9
u
30
u
29
+ ··· 18u 9
c
4
, c
7
u
30
+ 7u
29
+ ··· 58u + 7
c
6
, c
10
u
30
+ 2u
29
+ ··· + 100u 419
c
8
, c
11
u
30
u
29
+ ··· u 1
c
12
u
30
+ 3u
29
+ ··· + 276288u 31624
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
166y
29
+ ··· + 2665988060y + 923521
c
2
, c
5
y
30
54y
29
+ ··· 35644y + 961
c
3
, c
9
y
30
+ 47y
29
+ ··· + 972y + 81
c
4
, c
7
y
30
+ 23y
29
+ ··· 1614y + 49
c
6
, c
10
y
30
+ 10y
29
+ ··· + 590846y + 175561
c
8
, c
11
y
30
21y
29
+ ··· 19y + 1
c
12
y
30
+ 121y
29
+ ··· + 1307553376y + 1000077376
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.642590 + 0.700606I
a = 0.106716 1.072760I
b = 0.347246 + 1.044670I
0.82927 + 4.60566I 7.38656 8.01596I
u = 0.642590 0.700606I
a = 0.106716 + 1.072760I
b = 0.347246 1.044670I
0.82927 4.60566I 7.38656 + 8.01596I
u = 0.814116 + 0.677327I
a = 0.504066 + 1.067370I
b = 0.549219 0.145896I
0.77900 2.06540I 3.22171 + 2.38317I
u = 0.814116 0.677327I
a = 0.504066 1.067370I
b = 0.549219 + 0.145896I
0.77900 + 2.06540I 3.22171 2.38317I
u = 0.560922 + 0.747663I
a = 0.472626 0.864157I
b = 0.104866 + 0.109501I
0.327633 0.843648I 6.72873 + 1.86017I
u = 0.560922 0.747663I
a = 0.472626 + 0.864157I
b = 0.104866 0.109501I
0.327633 + 0.843648I 6.72873 1.86017I
u = 0.055990 + 1.128490I
a = 0.924318 + 0.178825I
b = 2.41962 0.23089I
10.40080 + 1.46441I 1.99581 5.01569I
u = 0.055990 1.128490I
a = 0.924318 0.178825I
b = 2.41962 + 0.23089I
10.40080 1.46441I 1.99581 + 5.01569I
u = 0.586638 + 0.553835I
a = 0.155793 + 1.119640I
b = 0.651578 0.537140I
1.29989 1.54235I 1.52237 + 4.53495I
u = 0.586638 0.553835I
a = 0.155793 1.119640I
b = 0.651578 + 0.537140I
1.29989 + 1.54235I 1.52237 4.53495I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.307100 + 0.036349I
a = 0.71975 + 1.63357I
b = 0.798397 0.708430I
3.26183 2.73720I 10.18982 + 2.92398I
u = 1.307100 0.036349I
a = 0.71975 1.63357I
b = 0.798397 + 0.708430I
3.26183 + 2.73720I 10.18982 2.92398I
u = 0.049314 + 1.329620I
a = 0.356304 + 0.123824I
b = 1.85890 0.07524I
11.24640 1.91319I 0.75047 + 3.50106I
u = 0.049314 1.329620I
a = 0.356304 0.123824I
b = 1.85890 + 0.07524I
11.24640 + 1.91319I 0.75047 3.50106I
u = 0.403283 + 1.277970I
a = 0.507314 0.949307I
b = 1.40638 + 0.97678I
3.40270 3.64668I 2.86245 + 2.46962I
u = 0.403283 1.277970I
a = 0.507314 + 0.949307I
b = 1.40638 0.97678I
3.40270 + 3.64668I 2.86245 2.46962I
u = 0.276632 + 1.333170I
a = 0.334409 + 0.791751I
b = 1.39749 0.61314I
7.55076 1.32763I 0.010757 + 0.862501I
u = 0.276632 1.333170I
a = 0.334409 0.791751I
b = 1.39749 + 0.61314I
7.55076 + 1.32763I 0.010757 0.862501I
u = 0.309884 + 0.543530I
a = 0.220039 + 0.852834I
b = 0.933653 0.345827I
1.56864 1.53975I 1.10369 + 4.69285I
u = 0.309884 0.543530I
a = 0.220039 0.852834I
b = 0.933653 + 0.345827I
1.56864 + 1.53975I 1.10369 4.69285I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.242225 + 1.368910I
a = 0.111633 0.819227I
b = 1.153510 + 0.418732I
4.09460 + 6.61711I 2.97271 4.66549I
u = 0.242225 1.368910I
a = 0.111633 + 0.819227I
b = 1.153510 0.418732I
4.09460 6.61711I 2.97271 + 4.66549I
u = 0.531314
a = 0.442861
b = 0.183744
0.719441 14.3760
u = 1.55692
a = 0.621196
b = 0.986893
7.16181 20.2020
u = 1.34575 + 1.55021I
a = 1.43706 + 0.93333I
b = 2.22516 0.41486I
15.4447 11.8067I 3.77024 + 5.11220I
u = 1.34575 1.55021I
a = 1.43706 0.93333I
b = 2.22516 + 0.41486I
15.4447 + 11.8067I 3.77024 5.11220I
u = 1.48358 + 1.48152I
a = 1.42930 1.02156I
b = 2.15106 + 0.44424I
19.4159 + 5.5271I 1.12565 2.12056I
u = 1.48358 1.48152I
a = 1.42930 + 1.02156I
b = 2.15106 0.44424I
19.4159 5.5271I 1.12565 + 2.12056I
u = 1.68857 + 1.42229I
a = 1.44579 + 1.14500I
b = 2.06005 0.54414I
14.5803 + 0.6531I 6.00000 + 0.I
u = 1.68857 1.42229I
a = 1.44579 1.14500I
b = 2.06005 + 0.54414I
14.5803 0.6531I 6.00000 + 0.I
7
II. I
u
2
=
h−5u
12
+21u
10
+· · ·+2b+5, 11u
12
+2u
11
+· · ·+2a14, u
13
+u
12
+· · ·u1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
11
2
u
12
u
11
+ ··· +
1
2
u + 7
5
2
u
12
21
2
u
10
+ ···
3
2
u
5
2
a
7
=
1
u
2
a
2
=
3u
12
u
11
+ ··· u +
9
2
5
2
u
12
21
2
u
10
+ ···
3
2
u
5
2
a
1
=
3
2
u
12
2u
11
+ ···
3
2
u + 5
3
2
u
12
+
1
2
u
11
+ ··· 2u
3
2
a
5
=
2u
12
+ u
11
+ ··· u
3
2
5
2
u
12
+
1
2
u
11
+ ··· +
17
2
u
2
7
2
a
4
=
u
12
+ 5u
10
u
9
7u
8
+ 6u
7
9u
5
+ 6u
4
+ 7u
3
6u
2
2u + 3
3u
12
+ u
11
+ ··· + u
11
2
a
8
=
11
2
u
12
u
11
+ ··· +
3
2
u +
9
2
3u
12
1
2
u
11
+ ··· + 6u
2
5
2
u
a
10
=
u
u
a
9
=
1
2
u
12
+
3
2
u
11
+ ··· + 4u 2
u
12
1
2
u
11
+ ··· +
1
2
u + 2
a
12
=
4u
12
2u
11
+ ··· 14u
2
+
13
2
4u
12
+
1
2
u
11
+ ···
7
2
u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
12
4u
11
21
2
u
10
+
39
2
u
9
7
2
u
8
51
2
u
7
+ 42u
6
15u
5
41
2
u
4
+
41
2
u
3
3u
2
12u +
21
2
8
(iv) u-Polynomials at the component
9
Crossings u-Polynomials at each crossing
c
1
u
13
13u
12
+ ··· + 7u 1
c
2
u
13
+ 3u
12
+ ··· 3u 1
c
3
u
13
+ 8u
11
+ ··· + 3u + 1
c
4
u
13
+ 2u
11
+ ··· + 3u + 1
c
5
u
13
3u
12
+ ··· 3u + 1
c
6
u
13
+ u
12
+ ··· u 1
c
7
u
13
+ 2u
11
+ ··· + 3u 1
c
8
u
13
6u
11
+ ··· 2u 3
c
9
u
13
+ 8u
11
+ ··· + 3u 1
c
10
u
13
u
12
+ ··· u + 1
c
11
u
13
6u
11
+ ··· 2u + 3
c
12
u
13
2u
12
+ ··· 13u + 1
10
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
37y
12
+ ··· + 11y 1
c
2
, c
5
y
13
13y
12
+ ··· + 7y 1
c
3
, c
9
y
13
+ 16y
12
+ ··· 5y 1
c
4
, c
7
y
13
+ 4y
12
+ ··· + y 1
c
6
, c
10
y
13
9y
12
+ ··· + 5y 1
c
8
, c
11
y
13
12y
12
+ ··· + 46y 9
c
12
y
13
+ 30y
12
+ ··· + 25y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.954573 + 0.260088I
a = 0.92363 1.20575I
b = 0.582097 0.018888I
3.98060 + 1.00568I 1.162112 0.615451I
u = 0.954573 0.260088I
a = 0.92363 + 1.20575I
b = 0.582097 + 0.018888I
3.98060 1.00568I 1.162112 + 0.615451I
u = 0.266976 + 1.054200I
a = 0.532456 + 0.412592I
b = 2.10432 0.01987I
9.61091 1.01135I 7.06702 0.15470I
u = 0.266976 1.054200I
a = 0.532456 0.412592I
b = 2.10432 + 0.01987I
9.61091 + 1.01135I 7.06702 + 0.15470I
u = 0.752928 + 0.297393I
a = 1.030040 + 0.709707I
b = 0.921610 0.177058I
0.796848 0.470467I 2.94539 1.34493I
u = 0.752928 0.297393I
a = 1.030040 0.709707I
b = 0.921610 + 0.177058I
0.796848 + 0.470467I 2.94539 + 1.34493I
u = 0.684151 + 0.344382I
a = 1.27505 + 0.67741I
b = 0.314319 + 0.549467I
1.36517 5.98644I 4.94299 + 5.64527I
u = 0.684151 0.344382I
a = 1.27505 0.67741I
b = 0.314319 0.549467I
1.36517 + 5.98644I 4.94299 5.64527I
u = 0.460968 + 0.533555I
a = 0.56985 1.90658I
b = 0.813036 + 0.713273I
0.43653 + 3.26322I 5.30243 3.80898I
u = 0.460968 0.533555I
a = 0.56985 + 1.90658I
b = 0.813036 0.713273I
0.43653 3.26322I 5.30243 + 3.80898I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.60034 + 0.28645I
a = 0.84754 + 1.61343I
b = 0.858896 0.743211I
2.06490 + 2.83942I 2.96766 2.65257I
u = 1.60034 0.28645I
a = 0.84754 1.61343I
b = 0.858896 + 0.743211I
2.06490 2.83942I 2.96766 + 2.65257I
u = 1.70981
a = 0.957563
b = 1.24998
6.76499 0.775210
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
13
13u
12
+ ··· + 7u 1)(u
30
+ 54u
29
+ ··· + 35644u + 961)
c
2
(u
13
+ 3u
12
+ ··· 3u 1)(u
30
+ 2u
29
+ ··· + 274u + 31)
c
3
(u
13
+ 8u
11
+ ··· + 3u + 1)(u
30
u
29
+ ··· 18u 9)
c
4
(u
13
+ 2u
11
+ ··· + 3u + 1)(u
30
+ 7u
29
+ ··· 58u + 7)
c
5
(u
13
3u
12
+ ··· 3u + 1)(u
30
+ 2u
29
+ ··· + 274u + 31)
c
6
(u
13
+ u
12
+ ··· u 1)(u
30
+ 2u
29
+ ··· + 100u 419)
c
7
(u
13
+ 2u
11
+ ··· + 3u 1)(u
30
+ 7u
29
+ ··· 58u + 7)
c
8
(u
13
6u
11
+ ··· 2u 3)(u
30
u
29
+ ··· u 1)
c
9
(u
13
+ 8u
11
+ ··· + 3u 1)(u
30
u
29
+ ··· 18u 9)
c
10
(u
13
u
12
+ ··· u + 1)(u
30
+ 2u
29
+ ··· + 100u 419)
c
11
(u
13
6u
11
+ ··· 2u + 3)(u
30
u
29
+ ··· u 1)
c
12
(u
13
2u
12
+ ··· 13u + 1)(u
30
+ 3u
29
+ ··· + 276288u 31624)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
13
37y
12
+ ··· + 11y 1)
· (y
30
166y
29
+ ··· + 2665988060y + 923521)
c
2
, c
5
(y
13
13y
12
+ ··· + 7y 1)(y
30
54y
29
+ ··· 35644y + 961)
c
3
, c
9
(y
13
+ 16y
12
+ ··· 5y 1)(y
30
+ 47y
29
+ ··· + 972y + 81)
c
4
, c
7
(y
13
+ 4y
12
+ ··· + y 1)(y
30
+ 23y
29
+ ··· 1614y + 49)
c
6
, c
10
(y
13
9y
12
+ ··· + 5y 1)(y
30
+ 10y
29
+ ··· + 590846y + 175561)
c
8
, c
11
(y
13
12y
12
+ ··· + 46y 9)(y
30
21y
29
+ ··· 19y + 1)
c
12
(y
13
+ 30y
12
+ ··· + 25y 1)
· (y
30
+ 121y
29
+ ··· + 1307553376y + 1000077376)
16