12n
0516
(K12n
0516
)
A knot diagram
1
Linearized knot diagam
3 6 10 8 2 11 5 1 4 1 7 8
Solving Sequence
2,5
6
3,11
7 8 1 4 10 9 12
c
5
c
2
c
6
c
7
c
1
c
4
c
10
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−7.85298 × 10
46
u
63
5.20735 × 10
47
u
62
+ ··· + 6.20841 × 10
47
b 2.06005 × 10
48
,
7.35896 × 10
48
u
63
9.51515 × 10
48
u
62
+ ··· + 4.34588 × 10
48
a + 4.04153 × 10
49
, u
64
+ u
63
+ ··· + u 7i
I
u
2
= hu
13
2u
11
+ u
10
+ 5u
9
u
8
6u
7
+ 3u
6
+ 6u
5
2u
4
3u
3
+ 2u
2
+ b + u 1, u
15
+ 2u
14
+ ··· + a 3,
u
16
3u
14
+ u
13
+ 8u
12
2u
11
13u
10
+ 5u
9
+ 17u
8
6u
7
15u
6
+ 6u
5
+ 10u
4
4u
3
4u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 80 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−7.85×10
46
u
63
5.21×10
47
u
62
+· · ·+6.21×10
47
b2.06×10
48
, 7.36×
10
48
u
63
9.52×10
48
u
62
+· · ·+4.35×10
48
a+4.04×10
49
, u
64
+u
63
+· · ·+u7i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
1.69332u
63
+ 2.18946u
62
+ ··· 1.36290u 9.29967
0.126489u
63
+ 0.838758u
62
+ ··· + 0.322847u + 3.31817
a
7
=
0.458095u
63
+ 0.270972u
62
+ ··· + 5.77781u 3.68320
0.652252u
63
0.459949u
62
+ ··· 3.70273u 0.960278
a
8
=
1.11035u
63
+ 0.730921u
62
+ ··· + 9.48054u 2.72293
0.652252u
63
0.459949u
62
+ ··· 3.70273u 0.960278
a
1
=
u
3
u
5
u
3
+ u
a
4
=
0.390009u
63
+ 1.20156u
62
+ ··· + 9.75516u + 2.37373
1.02634u
63
2.06653u
62
+ ··· 6.84016u + 0.604319
a
10
=
1.03280u
63
+ 0.937261u
62
+ ··· 5.99095u 13.2305
0.117302u
63
+ 0.462797u
62
+ ··· + 0.960616u + 2.35400
a
9
=
1.98871u
63
1.59326u
62
+ ··· 13.0023u + 2.89409
0.669965u
63
+ 0.133677u
62
+ ··· + 3.58629u 0.901368
a
12
=
0.547710u
63
+ 1.84010u
62
+ ··· 2.73316u + 10.4198
1.08225u
63
+ 0.435476u
62
+ ··· + 6.51395u + 1.98262
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3.58831u
63
4.70243u
62
+ ··· 11.8066u 39.5814
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
64
+ 25u
63
+ ··· + 365u + 49
c
2
, c
5
u
64
+ u
63
+ ··· + u 7
c
3
, c
9
u
64
+ u
63
+ ··· 21u 11
c
4
, c
7
u
64
3u
63
+ ··· + 9u 1
c
6
, c
11
u
64
3u
63
+ ··· 2134u + 163
c
8
, c
12
u
64
+ 3u
63
+ ··· 44u + 1
c
10
u
64
+ u
63
+ ··· + 1218u + 817
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
64
+ 35y
63
+ ··· 129697y + 2401
c
2
, c
5
y
64
25y
63
+ ··· 365y + 49
c
3
, c
9
y
64
+ 21y
63
+ ··· + 1847y + 121
c
4
, c
7
y
64
+ 3y
63
+ ··· + 67y + 1
c
6
, c
11
y
64
51y
63
+ ··· 1941718y + 26569
c
8
, c
12
y
64
+ 63y
63
+ ··· 222y + 1
c
10
y
64
17y
63
+ ··· 71533104y + 667489
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.371115 + 0.915968I
a = 0.249549 + 0.000216I
b = 1.41996 0.06852I
4.48635 + 5.15157I 8.61815 5.07687I
u = 0.371115 0.915968I
a = 0.249549 0.000216I
b = 1.41996 + 0.06852I
4.48635 5.15157I 8.61815 + 5.07687I
u = 0.857881 + 0.542275I
a = 1.74491 1.24280I
b = 0.157463 + 1.230750I
3.16250 + 2.17822I 8.00000 2.65918I
u = 0.857881 0.542275I
a = 1.74491 + 1.24280I
b = 0.157463 1.230750I
3.16250 2.17822I 8.00000 + 2.65918I
u = 0.774165 + 0.604979I
a = 0.379187 0.211028I
b = 1.184290 0.467280I
0.067270 0.618429I 7.06284 1.08548I
u = 0.774165 0.604979I
a = 0.379187 + 0.211028I
b = 1.184290 + 0.467280I
0.067270 + 0.618429I 7.06284 + 1.08548I
u = 0.697346 + 0.673163I
a = 1.356820 0.219530I
b = 0.281088 0.295837I
1.16285 2.77092I 3.07563 + 5.25924I
u = 0.697346 0.673163I
a = 1.356820 + 0.219530I
b = 0.281088 + 0.295837I
1.16285 + 2.77092I 3.07563 5.25924I
u = 0.650023 + 0.706094I
a = 0.285329 + 0.030490I
b = 1.046050 0.338958I
0.317206 0.693581I 9.74422 0.91005I
u = 0.650023 0.706094I
a = 0.285329 0.030490I
b = 1.046050 + 0.338958I
0.317206 + 0.693581I 9.74422 + 0.91005I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.005520 + 0.304620I
a = 0.923017 + 0.876033I
b = 0.04591 + 1.48528I
3.50871 + 0.31411I 14.0279 2.5519I
u = 1.005520 0.304620I
a = 0.923017 0.876033I
b = 0.04591 1.48528I
3.50871 0.31411I 14.0279 + 2.5519I
u = 1.06514
a = 2.45909
b = 1.23942
5.55858 18.6480
u = 0.895727 + 0.581855I
a = 1.75893 + 1.76078I
b = 1.60878 0.32014I
0.42753 + 5.30671I 8.00000 5.96802I
u = 0.895727 0.581855I
a = 1.75893 1.76078I
b = 1.60878 + 0.32014I
0.42753 5.30671I 8.00000 + 5.96802I
u = 0.597067 + 0.892023I
a = 0.024569 + 0.245452I
b = 1.45388 0.06677I
3.48226 + 1.14380I 0
u = 0.597067 0.892023I
a = 0.024569 0.245452I
b = 1.45388 + 0.06677I
3.48226 1.14380I 0
u = 0.559478 + 0.919447I
a = 0.206651 0.005295I
b = 1.53912 + 0.83354I
3.36566 9.85168I 0
u = 0.559478 0.919447I
a = 0.206651 + 0.005295I
b = 1.53912 0.83354I
3.36566 + 9.85168I 0
u = 0.916404 + 0.593398I
a = 0.319890 + 0.450880I
b = 0.167272 0.326682I
1.79208 3.22792I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.916404 0.593398I
a = 0.319890 0.450880I
b = 0.167272 + 0.326682I
1.79208 + 3.22792I 0
u = 0.968315 + 0.512599I
a = 0.667248 + 1.104970I
b = 1.13705 + 1.56486I
2.38426 5.52251I 0
u = 0.968315 0.512599I
a = 0.667248 1.104970I
b = 1.13705 1.56486I
2.38426 + 5.52251I 0
u = 0.458469 + 0.773809I
a = 0.365977 0.435982I
b = 1.36736 0.65169I
1.92183 + 3.34302I 2.34549 5.45826I
u = 0.458469 0.773809I
a = 0.365977 + 0.435982I
b = 1.36736 + 0.65169I
1.92183 3.34302I 2.34549 + 5.45826I
u = 0.781870 + 0.435593I
a = 2.32610 2.04972I
b = 1.55966 + 0.88903I
1.62663 + 1.61635I 10.68775 0.61960I
u = 0.781870 0.435593I
a = 2.32610 + 2.04972I
b = 1.55966 0.88903I
1.62663 1.61635I 10.68775 + 0.61960I
u = 0.394059 + 0.796783I
a = 0.067963 0.328943I
b = 1.29066 + 0.68009I
4.83374 + 2.64674I 8.71564 1.20360I
u = 0.394059 0.796783I
a = 0.067963 + 0.328943I
b = 1.29066 0.68009I
4.83374 2.64674I 8.71564 + 1.20360I
u = 0.851879 + 0.716505I
a = 0.867199 + 0.921044I
b = 0.045981 1.060590I
2.98092 2.73164I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.851879 0.716505I
a = 0.867199 0.921044I
b = 0.045981 + 1.060590I
2.98092 + 2.73164I 0
u = 0.692371 + 0.478325I
a = 0.687637 + 1.208310I
b = 0.067945 + 0.390241I
2.43536 1.37800I 3.03170 + 4.30230I
u = 0.692371 0.478325I
a = 0.687637 1.208310I
b = 0.067945 0.390241I
2.43536 + 1.37800I 3.03170 4.30230I
u = 0.965929 + 0.642706I
a = 1.406400 0.035612I
b = 0.366038 0.021949I
0.34858 + 7.88695I 0
u = 0.965929 0.642706I
a = 1.406400 + 0.035612I
b = 0.366038 + 0.021949I
0.34858 7.88695I 0
u = 0.827576 + 0.058957I
a = 0.354062 1.262080I
b = 0.449402 + 0.256518I
3.04990 + 3.22340I 13.6310 5.3592I
u = 0.827576 0.058957I
a = 0.354062 + 1.262080I
b = 0.449402 0.256518I
3.04990 3.22340I 13.6310 + 5.3592I
u = 1.172890 + 0.150474I
a = 1.81652 0.37330I
b = 1.64426 + 0.42875I
3.25362 1.09733I 0
u = 1.172890 0.150474I
a = 1.81652 + 0.37330I
b = 1.64426 0.42875I
3.25362 + 1.09733I 0
u = 1.187400 + 0.076445I
a = 2.20975 + 0.70478I
b = 1.68317 + 0.47480I
10.28720 0.24729I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.187400 0.076445I
a = 2.20975 0.70478I
b = 1.68317 0.47480I
10.28720 + 0.24729I 0
u = 0.649477 + 0.461049I
a = 0.545471 + 1.205120I
b = 0.025243 + 0.420984I
2.43555 1.37713I 2.48418 + 4.50652I
u = 0.649477 0.461049I
a = 0.545471 1.205120I
b = 0.025243 0.420984I
2.43555 + 1.37713I 2.48418 4.50652I
u = 1.010460 + 0.669661I
a = 1.34958 + 1.35057I
b = 1.206140 0.351826I
1.39409 + 6.02950I 0
u = 1.010460 0.669661I
a = 1.34958 1.35057I
b = 1.206140 + 0.351826I
1.39409 6.02950I 0
u = 0.898375 + 0.815724I
a = 0.506734 0.223654I
b = 0.012593 0.831763I
8.50218 + 3.05145I 0
u = 0.898375 0.815724I
a = 0.506734 + 0.223654I
b = 0.012593 + 0.831763I
8.50218 3.05145I 0
u = 1.234370 + 0.078310I
a = 2.24169 0.21794I
b = 1.84636 0.41895I
10.34120 8.02728I 0
u = 1.234370 0.078310I
a = 2.24169 + 0.21794I
b = 1.84636 + 0.41895I
10.34120 + 8.02728I 0
u = 1.092590 + 0.608643I
a = 1.85261 1.17381I
b = 1.38520 + 0.95415I
6.86464 7.86312I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.092590 0.608643I
a = 1.85261 + 1.17381I
b = 1.38520 0.95415I
6.86464 + 7.86312I 0
u = 1.090750 + 0.629227I
a = 1.67774 + 1.10641I
b = 1.79920 0.82291I
0.06662 8.65572I 0
u = 1.090750 0.629227I
a = 1.67774 1.10641I
b = 1.79920 + 0.82291I
0.06662 + 8.65572I 0
u = 0.928957 + 0.899756I
a = 0.280326 + 0.368000I
b = 0.099596 0.430826I
4.89538 3.31206I 0
u = 0.928957 0.899756I
a = 0.280326 0.368000I
b = 0.099596 + 0.430826I
4.89538 + 3.31206I 0
u = 1.153990 + 0.595067I
a = 1.11490 1.27051I
b = 1.57061 + 0.32109I
6.95046 + 0.36378I 0
u = 1.153990 0.595067I
a = 1.11490 + 1.27051I
b = 1.57061 0.32109I
6.95046 0.36378I 0
u = 1.088600 + 0.714285I
a = 0.79820 1.46524I
b = 1.60298 + 0.07379I
4.99650 7.10286I 0
u = 1.088600 0.714285I
a = 0.79820 + 1.46524I
b = 1.60298 0.07379I
4.99650 + 7.10286I 0
u = 1.106450 + 0.707429I
a = 1.66490 1.28159I
b = 1.67082 + 1.00047I
5.0534 + 15.8408I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.106450 0.707429I
a = 1.66490 + 1.28159I
b = 1.67082 1.00047I
5.0534 15.8408I 0
u = 0.525925
a = 0.416776
b = 0.487079
0.777990 12.7260
u = 0.035617 + 0.416471I
a = 1.82679 1.45388I
b = 0.296847 + 0.840473I
0.83793 + 2.36944I 4.69100 1.64356I
u = 0.035617 0.416471I
a = 1.82679 + 1.45388I
b = 0.296847 0.840473I
0.83793 2.36944I 4.69100 + 1.64356I
11
II.
I
u
2
= hu
13
2u
11
+· · ·+b1, u
15
+2u
14
+· · ·+a3, u
16
3u
14
+· · ·+u+1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
u
15
2u
14
+ ··· + 4u + 3
u
13
+ 2u
11
+ ··· u + 1
a
7
=
3u
15
+ u
14
+ ··· 5u + 2
u
14
3u
12
+ ··· 2u 1
a
8
=
3u
15
9u
13
+ ··· 3u + 3
u
14
3u
12
+ ··· 2u 1
a
1
=
u
3
u
5
u
3
+ u
a
4
=
2u
15
+ u
14
+ ··· + 2u 3
u
14
+ 3u
12
+ ··· + 3u + 2
a
10
=
u
15
2u
14
+ ··· + 5u + 3
u
13
+ 2u
11
u
10
5u
9
+ 6u
7
u
6
7u
5
u
4
+ 4u
3
+ u
2
2u
a
9
=
3u
15
8u
13
+ ··· 2u + 3
u
14
3u
12
+ ··· 2u 2
a
12
=
2u
15
u
14
+ ··· 9u
2
+ 2u
u
15
3u
13
+ ··· 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
15
+ 4u
14
+ 6u
13
13u
12
17u
11
+ 32u
10
+ 27u
9
57u
8
34u
7
+ 66u
6
+ 28u
5
63u
4
14u
3
+ 35u
2
u 18
12
(iv) u-Polynomials at the component
13
Crossings u-Polynomials at each crossing
c
1
u
16
6u
15
+ ··· 9u + 1
c
2
u
16
3u
14
+ ··· u + 1
c
3
u
16
+ 8u
14
+ ··· u + 1
c
4
u
16
2u
15
+ ··· + u + 1
c
5
u
16
3u
14
+ ··· + u + 1
c
6
u
16
6u
14
+ ··· 4u + 1
c
7
u
16
+ 2u
15
+ ··· u + 1
c
8
u
16
+ 4u
15
+ ··· + 8u + 3
c
9
u
16
+ 8u
14
+ ··· + u + 1
c
10
u
16
12u
15
+ ··· + 4u + 1
c
11
u
16
6u
14
+ ··· + 4u + 1
c
12
u
16
4u
15
+ ··· 8u + 3
14
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
+ 14y
15
+ ··· + 7y + 1
c
2
, c
5
y
16
6y
15
+ ··· 9y + 1
c
3
, c
9
y
16
+ 16y
15
+ ··· + 11y + 1
c
4
, c
7
y
16
+ 10y
15
+ ··· 5y + 1
c
6
, c
11
y
16
12y
15
+ ··· 14y + 1
c
8
, c
12
y
16
+ 6y
15
+ ··· + 14y + 9
c
10
y
16
2y
15
+ ··· 16y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.697088 + 0.669632I
a = 1.019220 0.460118I
b = 1.149200 + 0.054160I
0.02773 + 1.95723I 6.96082 3.46038I
u = 0.697088 0.669632I
a = 1.019220 + 0.460118I
b = 1.149200 0.054160I
0.02773 1.95723I 6.96082 + 3.46038I
u = 0.858913 + 0.641497I
a = 1.25891 + 1.35675I
b = 0.060267 1.095260I
4.17448 + 2.50164I 1.63264 3.76808I
u = 0.858913 0.641497I
a = 1.25891 1.35675I
b = 0.060267 + 1.095260I
4.17448 2.50164I 1.63264 + 3.76808I
u = 1.083430 + 0.218721I
a = 1.93923 0.45656I
b = 1.45846 + 0.77557I
3.73156 1.08240I 18.1024 + 3.9332I
u = 1.083430 0.218721I
a = 1.93923 + 0.45656I
b = 1.45846 0.77557I
3.73156 + 1.08240I 18.1024 3.9332I
u = 0.993253 + 0.639630I
a = 1.29065 + 1.22703I
b = 1.367360 + 0.028381I
0.90271 7.06415I 9.34862 + 8.78611I
u = 0.993253 0.639630I
a = 1.29065 1.22703I
b = 1.367360 0.028381I
0.90271 + 7.06415I 9.34862 8.78611I
u = 0.764991 + 0.200725I
a = 1.38195 1.78127I
b = 0.126233 0.802194I
1.83703 0.82457I 12.09308 1.50076I
u = 0.764991 0.200725I
a = 1.38195 + 1.78127I
b = 0.126233 + 0.802194I
1.83703 + 0.82457I 12.09308 + 1.50076I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.904876 + 0.830651I
a = 0.283918 + 0.502389I
b = 0.025373 + 0.533046I
7.95111 + 3.09873I 10.71462 3.22283I
u = 0.904876 0.830651I
a = 0.283918 0.502389I
b = 0.025373 0.533046I
7.95111 3.09873I 10.71462 + 3.22283I
u = 0.921176 + 0.893488I
a = 0.537236 + 0.264160I
b = 0.095236 0.832026I
5.34876 3.28911I 3.79077 + 2.57921I
u = 0.921176 0.893488I
a = 0.537236 0.264160I
b = 0.095236 + 0.832026I
5.34876 + 3.28911I 3.79077 2.57921I
u = 0.529286 + 0.266978I
a = 1.60905 + 2.15788I
b = 0.869516 + 0.421920I
1.54536 + 3.30158I 8.70391 5.45477I
u = 0.529286 0.266978I
a = 1.60905 2.15788I
b = 0.869516 0.421920I
1.54536 3.30158I 8.70391 + 5.45477I
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
16
6u
15
+ ··· 9u + 1)(u
64
+ 25u
63
+ ··· + 365u + 49)
c
2
(u
16
3u
14
+ ··· u + 1)(u
64
+ u
63
+ ··· + u 7)
c
3
(u
16
+ 8u
14
+ ··· u + 1)(u
64
+ u
63
+ ··· 21u 11)
c
4
(u
16
2u
15
+ ··· + u + 1)(u
64
3u
63
+ ··· + 9u 1)
c
5
(u
16
3u
14
+ ··· + u + 1)(u
64
+ u
63
+ ··· + u 7)
c
6
(u
16
6u
14
+ ··· 4u + 1)(u
64
3u
63
+ ··· 2134u + 163)
c
7
(u
16
+ 2u
15
+ ··· u + 1)(u
64
3u
63
+ ··· + 9u 1)
c
8
(u
16
+ 4u
15
+ ··· + 8u + 3)(u
64
+ 3u
63
+ ··· 44u + 1)
c
9
(u
16
+ 8u
14
+ ··· + u + 1)(u
64
+ u
63
+ ··· 21u 11)
c
10
(u
16
12u
15
+ ··· + 4u + 1)(u
64
+ u
63
+ ··· + 1218u + 817)
c
11
(u
16
6u
14
+ ··· + 4u + 1)(u
64
3u
63
+ ··· 2134u + 163)
c
12
(u
16
4u
15
+ ··· 8u + 3)(u
64
+ 3u
63
+ ··· 44u + 1)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
16
+ 14y
15
+ ··· + 7y + 1)(y
64
+ 35y
63
+ ··· 129697y + 2401)
c
2
, c
5
(y
16
6y
15
+ ··· 9y + 1)(y
64
25y
63
+ ··· 365y + 49)
c
3
, c
9
(y
16
+ 16y
15
+ ··· + 11y + 1)(y
64
+ 21y
63
+ ··· + 1847y + 121)
c
4
, c
7
(y
16
+ 10y
15
+ ··· 5y + 1)(y
64
+ 3y
63
+ ··· + 67y + 1)
c
6
, c
11
(y
16
12y
15
+ ··· 14y + 1)(y
64
51y
63
+ ··· 1941718y + 26569)
c
8
, c
12
(y
16
+ 6y
15
+ ··· + 14y + 9)(y
64
+ 63y
63
+ ··· 222y + 1)
c
10
(y
16
2y
15
+ ··· 16y + 1)
· (y
64
17y
63
+ ··· 71533104y + 667489)
20