12n
0517
(K12n
0517
)
A knot diagram
1
Linearized knot diagam
3 6 10 8 2 11 5 11 1 4 6 9
Solving Sequence
3,10
4
6,11
7 2 1 5 9 8 12
c
3
c
10
c
6
c
2
c
1
c
5
c
9
c
8
c
12
c
4
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h2.59090 × 10
123
u
69
1.74742 × 10
122
u
68
+ ··· + 5.02254 × 10
123
b + 2.90544 × 10
125
,
2.56644 × 10
125
u
69
+ 1.38382 × 10
124
u
68
+ ··· + 1.19537 × 10
125
a 2.88247 × 10
127
,
u
70
+ u
69
+ ··· + 167u + 119i
I
u
2
= hu
19
11u
17
+ ··· + b + 4u, u
17
+ 10u
15
+ ··· + a 1, u
20
12u
18
+ ··· 4u + 1i
* 2 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.59 × 10
123
u
69
1.75 × 10
122
u
68
+ · · · + 5.02 × 10
123
b + 2.91 ×
10
125
, 2.57 × 10
125
u
69
+ 1.38 × 10
124
u
68
+ · · · + 1.20 × 10
125
a 2.88 ×
10
127
, u
70
+ u
69
+ · · · + 167u + 119i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
6
=
2.14699u
69
0.115765u
68
+ ··· + 107.714u + 241.137
0.515855u
69
+ 0.0347916u
68
+ ··· 26.3006u 57.8481
a
11
=
u
u
3
+ u
a
7
=
2.48131u
69
0.149289u
68
+ ··· + 124.761u + 277.011
0.586466u
69
+ 0.0388864u
68
+ ··· 30.8994u 65.7480
a
2
=
1.60207u
69
+ 0.0880802u
68
+ ··· 76.1759u 177.582
0.685277u
69
0.0402039u
68
+ ··· + 34.8200u + 76.6862
a
1
=
0.916797u
69
+ 0.0478763u
68
+ ··· 41.3559u 100.896
0.685277u
69
0.0402039u
68
+ ··· + 34.8200u + 76.6862
a
5
=
1.07887u
69
0.0702660u
68
+ ··· + 57.0307u + 120.856
0.0814787u
69
+ 0.00137789u
68
+ ··· + 3.35624u + 10.5249
a
9
=
0.674424u
69
0.0312906u
68
+ ··· + 30.0286u + 74.7526
0.0263865u
69
0.00119856u
68
+ ··· + 0.797097u 2.27910
a
8
=
0.619496u
69
0.0200100u
68
+ ··· + 25.8813u + 68.2796
0.00908482u
69
0.0135532u
68
+ ··· + 1.17023u 0.873214
a
12
=
1.58425u
69
+ 0.0976078u
68
+ ··· 82.4818u 179.510
0.515765u
69
0.0286416u
68
+ ··· + 28.2421u + 57.9908
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3.84455u
69
+ 0.214348u
68
+ ··· 176.947u 438.096
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
70
+ 37u
69
+ ··· + 12u + 1
c
2
, c
5
u
70
+ u
69
+ ··· + 2u + 1
c
3
, c
10
u
70
+ u
69
+ ··· + 167u + 119
c
4
, c
7
u
70
2u
69
+ ··· 22u + 47
c
6
, c
11
u
70
+ 3u
69
+ ··· + 7369u + 589
c
8
u
70
+ 5u
69
+ ··· 20478u + 1117
c
9
, c
12
u
70
3u
69
+ ··· 379u + 71
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
70
+ 7y
69
+ ··· + 132y + 1
c
2
, c
5
y
70
37y
69
+ ··· 12y + 1
c
3
, c
10
y
70
67y
69
+ ··· 100955y + 14161
c
4
, c
7
y
70
+ 26y
69
+ ··· + 56950y + 2209
c
6
, c
11
y
70
51y
69
+ ··· 7893673y + 346921
c
8
y
70
+ 13y
69
+ ··· 1909946y + 1247689
c
9
, c
12
y
70
39y
69
+ ··· + 159529y + 5041
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.162942 + 0.992734I
a = 0.526812 0.555218I
b = 1.128030 + 0.561542I
4.48127 + 4.09578I 0
u = 0.162942 0.992734I
a = 0.526812 + 0.555218I
b = 1.128030 0.561542I
4.48127 4.09578I 0
u = 0.587410 + 0.760416I
a = 1.068560 + 0.458240I
b = 0.710294 0.340326I
0.736963 + 0.674108I 0
u = 0.587410 0.760416I
a = 1.068560 0.458240I
b = 0.710294 + 0.340326I
0.736963 0.674108I 0
u = 0.260207 + 0.914917I
a = 0.512081 0.446654I
b = 0.852333 0.420136I
2.36112 1.77812I 0
u = 0.260207 0.914917I
a = 0.512081 + 0.446654I
b = 0.852333 + 0.420136I
2.36112 + 1.77812I 0
u = 1.057580 + 0.004969I
a = 0.17447 + 2.35938I
b = 0.714189 0.522373I
0.22585 + 2.80688I 0
u = 1.057580 0.004969I
a = 0.17447 2.35938I
b = 0.714189 + 0.522373I
0.22585 2.80688I 0
u = 1.026770 + 0.280884I
a = 0.334154 0.106289I
b = 1.41951 + 0.14300I
4.19560 + 0.59854I 0
u = 1.026770 0.280884I
a = 0.334154 + 0.106289I
b = 1.41951 0.14300I
4.19560 0.59854I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.358150 + 1.054780I
a = 0.497432 + 0.636293I
b = 1.155510 0.571979I
3.66192 + 10.54230I 0
u = 0.358150 1.054780I
a = 0.497432 0.636293I
b = 1.155510 + 0.571979I
3.66192 10.54230I 0
u = 1.047030 + 0.481909I
a = 0.975032 0.983126I
b = 0.489259 + 0.339253I
0.42197 4.87071I 0
u = 1.047030 0.481909I
a = 0.975032 + 0.983126I
b = 0.489259 0.339253I
0.42197 + 4.87071I 0
u = 0.408614 + 0.731960I
a = 0.423060 + 0.429280I
b = 0.245639 0.809125I
1.03432 5.43336I 0.32914 + 5.23361I
u = 0.408614 0.731960I
a = 0.423060 0.429280I
b = 0.245639 + 0.809125I
1.03432 + 5.43336I 0.32914 5.23361I
u = 1.201710 + 0.128261I
a = 0.52282 2.12440I
b = 0.607963 + 0.436429I
0.56341 3.78229I 0
u = 1.201710 0.128261I
a = 0.52282 + 2.12440I
b = 0.607963 0.436429I
0.56341 + 3.78229I 0
u = 0.275586 + 0.695762I
a = 0.24228 1.51253I
b = 1.221590 + 0.294817I
6.37463 4.14439I 6.36331 + 4.51180I
u = 0.275586 0.695762I
a = 0.24228 + 1.51253I
b = 1.221590 0.294817I
6.37463 + 4.14439I 6.36331 4.51180I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.265140 + 0.097957I
a = 0.273902 1.370370I
b = 1.198590 + 0.510986I
5.45930 + 2.61096I 0
u = 1.265140 0.097957I
a = 0.273902 + 1.370370I
b = 1.198590 0.510986I
5.45930 2.61096I 0
u = 0.149406 + 0.715223I
a = 0.538311 0.502735I
b = 0.251933 + 0.713035I
2.04923 + 0.75692I 2.25190 0.59358I
u = 0.149406 0.715223I
a = 0.538311 + 0.502735I
b = 0.251933 0.713035I
2.04923 0.75692I 2.25190 + 0.59358I
u = 1.298540 + 0.175170I
a = 0.570275 + 0.268495I
b = 1.60944 0.20167I
2.09036 4.20016I 0
u = 1.298540 0.175170I
a = 0.570275 0.268495I
b = 1.60944 + 0.20167I
2.09036 + 4.20016I 0
u = 0.646226 + 0.217967I
a = 0.526529 0.590917I
b = 0.204273 + 0.374685I
1.194110 + 0.658977I 5.37455 1.65683I
u = 0.646226 0.217967I
a = 0.526529 + 0.590917I
b = 0.204273 0.374685I
1.194110 0.658977I 5.37455 + 1.65683I
u = 1.306510 + 0.216293I
a = 0.21558 + 1.96906I
b = 0.998153 0.908859I
8.43098 5.62723I 0
u = 1.306510 0.216293I
a = 0.21558 1.96906I
b = 0.998153 + 0.908859I
8.43098 + 5.62723I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.542381 + 0.399358I
a = 1.25802 1.62036I
b = 0.912515 + 0.347188I
0.46038 3.54414I 1.55532 + 8.51020I
u = 0.542381 0.399358I
a = 1.25802 + 1.62036I
b = 0.912515 0.347188I
0.46038 + 3.54414I 1.55532 8.51020I
u = 1.283520 + 0.392498I
a = 0.251934 + 1.120160I
b = 1.187610 0.547691I
5.76596 + 6.53404I 0
u = 1.283520 0.392498I
a = 0.251934 1.120160I
b = 1.187610 + 0.547691I
5.76596 6.53404I 0
u = 1.199560 + 0.602314I
a = 0.428332 0.050852I
b = 1.028560 + 0.413497I
1.34620 + 1.52607I 0
u = 1.199560 0.602314I
a = 0.428332 + 0.050852I
b = 1.028560 0.413497I
1.34620 1.52607I 0
u = 1.054730 + 0.838026I
a = 0.220170 0.062594I
b = 0.972698 0.437995I
1.67691 4.10730I 0
u = 1.054730 0.838026I
a = 0.220170 + 0.062594I
b = 0.972698 + 0.437995I
1.67691 + 4.10730I 0
u = 1.344190 + 0.102651I
a = 0.89673 + 1.29535I
b = 0.868924 1.038020I
8.88504 1.38023I 0
u = 1.344190 0.102651I
a = 0.89673 1.29535I
b = 0.868924 + 1.038020I
8.88504 + 1.38023I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.340120 + 0.269926I
a = 0.92144 + 1.59073I
b = 0.981639 0.519310I
1.13757 + 1.42679I 0
u = 1.340120 0.269926I
a = 0.92144 1.59073I
b = 0.981639 + 0.519310I
1.13757 1.42679I 0
u = 1.341050 + 0.289401I
a = 0.635108 1.174990I
b = 0.484189 + 1.015180I
2.62724 + 2.87361I 0
u = 1.341050 0.289401I
a = 0.635108 + 1.174990I
b = 0.484189 1.015180I
2.62724 2.87361I 0
u = 0.400487 + 0.438177I
a = 0.921915 + 0.093140I
b = 0.728854 + 0.148303I
1.256590 + 0.357225I 7.27517 + 0.18626I
u = 0.400487 0.438177I
a = 0.921915 0.093140I
b = 0.728854 0.148303I
1.256590 0.357225I 7.27517 0.18626I
u = 0.119971 + 0.563177I
a = 0.09431 + 1.68398I
b = 1.290550 0.275222I
5.81925 + 1.72254I 6.10737 2.59063I
u = 0.119971 0.563177I
a = 0.09431 1.68398I
b = 1.290550 + 0.275222I
5.81925 1.72254I 6.10737 + 2.59063I
u = 1.46008 + 0.13032I
a = 0.051187 + 0.556347I
b = 0.076948 0.671711I
8.76387 1.80793I 0
u = 1.46008 0.13032I
a = 0.051187 0.556347I
b = 0.076948 + 0.671711I
8.76387 + 1.80793I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40292 + 0.42870I
a = 0.07992 1.66606I
b = 1.178830 + 0.716037I
0.46915 9.15994I 0
u = 1.40292 0.42870I
a = 0.07992 + 1.66606I
b = 1.178830 0.716037I
0.46915 + 9.15994I 0
u = 1.44300 + 0.29103I
a = 0.74349 1.68648I
b = 1.021850 + 0.498295I
0.81406 + 7.77590I 0
u = 1.44300 0.29103I
a = 0.74349 + 1.68648I
b = 1.021850 0.498295I
0.81406 7.77590I 0
u = 1.47157 + 0.29756I
a = 0.501696 + 1.251770I
b = 0.387022 1.144810I
4.98777 + 9.24338I 0
u = 1.47157 0.29756I
a = 0.501696 1.251770I
b = 0.387022 + 1.144810I
4.98777 9.24338I 0
u = 1.52784 + 0.12654I
a = 0.09189 1.46031I
b = 1.140390 + 0.501960I
6.37959 + 5.48541I 0
u = 1.52784 0.12654I
a = 0.09189 + 1.46031I
b = 1.140390 0.501960I
6.37959 5.48541I 0
u = 0.036904 + 0.432180I
a = 0.875519 + 0.275342I
b = 0.904712 0.843485I
4.36453 + 3.13122I 8.73522 5.59654I
u = 0.036904 0.432180I
a = 0.875519 0.275342I
b = 0.904712 + 0.843485I
4.36453 3.13122I 8.73522 + 5.59654I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.51010 + 0.42006I
a = 0.13045 + 1.56613I
b = 1.24589 0.71543I
2.2947 15.8377I 0
u = 1.51010 0.42006I
a = 0.13045 1.56613I
b = 1.24589 + 0.71543I
2.2947 + 15.8377I 0
u = 1.58659 + 0.21199I
a = 0.123175 + 1.118740I
b = 1.146000 0.542754I
6.61081 + 2.90666I 0
u = 1.58659 0.21199I
a = 0.123175 1.118740I
b = 1.146000 + 0.542754I
6.61081 2.90666I 0
u = 1.60871 + 0.02945I
a = 0.541754 0.550692I
b = 0.291751 + 0.192601I
9.05325 1.52708I 0
u = 1.60871 0.02945I
a = 0.541754 + 0.550692I
b = 0.291751 0.192601I
9.05325 + 1.52708I 0
u = 1.64274 + 0.01405I
a = 0.014479 0.737286I
b = 0.224356 + 0.463466I
9.17388 1.53079I 0
u = 1.64274 0.01405I
a = 0.014479 + 0.737286I
b = 0.224356 0.463466I
9.17388 + 1.53079I 0
u = 0.298614 + 0.147930I
a = 2.04425 + 3.28230I
b = 0.849476 + 0.355840I
2.19229 1.58613I 8.62350 + 3.92336I
u = 0.298614 0.147930I
a = 2.04425 3.28230I
b = 0.849476 0.355840I
2.19229 + 1.58613I 8.62350 3.92336I
11
II. I
u
2
=
hu
19
11u
17
+· · ·+b+4u, u
17
+10u
15
+· · ·+a1, u
20
12u
18
+· · ·4u+1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
6
=
u
17
10u
15
+ ··· 8u + 1
u
19
+ 11u
17
+ ··· + 2u
2
4u
a
11
=
u
u
3
+ u
a
7
=
u
15
+ 10u
13
+ ··· 8u + 1
u
17
10u
15
+ ··· + 3u
2
4u
a
2
=
u
19
+ 11u
17
+ ··· 7u + 3
u
17
10u
15
+ ··· 6u + 1
a
1
=
u
19
+ 12u
17
+ ··· 13u + 4
u
17
10u
15
+ ··· 6u + 1
a
5
=
u
19
+ 12u
17
+ ··· 7u 2
u
16
9u
14
+ ··· + u 2
a
9
=
u
19
12u
17
+ ··· + 14u 4
u
19
11u
17
+ ··· + 7u 1
a
8
=
2u
17
+ 20u
15
+ ··· + 14u 4
2u
19
21u
17
+ ··· + 6u 1
a
12
=
u
5
3u
3
+ 2u
u
4
u
3
2u
2
+ 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
17
2u
16
+ 40u
15
+ 17u
14
168u
13
57u
12
+ 386u
11
+
87u
10
529u
9
34u
8
+ 432u
7
70u
6
182u
5
+ 98u
4
+ 13u
3
46u
2
+ 14u + 6
12
(iv) u-Polynomials at the component
13
Crossings u-Polynomials at each crossing
c
1
u
20
14u
19
+ ··· 17u + 1
c
2
u
20
7u
18
+ ··· + u + 1
c
3
u
20
12u
18
+ ··· 4u + 1
c
4
u
20
3u
19
+ ··· 3u + 1
c
5
u
20
7u
18
+ ··· u + 1
c
6
u
20
2u
18
+ ··· 8u + 1
c
7
u
20
+ 3u
19
+ ··· + 3u + 1
c
8
u
20
+ 3u
17
+ ··· + 65u + 25
c
9
u
20
4u
19
+ ··· + 2u
2
+ 1
c
10
u
20
12u
18
+ ··· + 4u + 1
c
11
u
20
2u
18
+ ··· + 8u + 1
c
12
u
20
+ 4u
19
+ ··· + 2u
2
+ 1
14
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
2y
19
+ ··· 13y + 1
c
2
, c
5
y
20
14y
19
+ ··· 17y + 1
c
3
, c
10
y
20
24y
19
+ ··· + 8y + 1
c
4
, c
7
y
20
+ 13y
19
+ ··· + 17y + 1
c
6
, c
11
y
20
4y
19
+ ··· 38y + 1
c
8
y
20
+ 32y
18
+ ··· + 14925y + 625
c
9
, c
12
y
20
16y
19
+ ··· + 4y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.783854 + 0.449976I
a = 0.88225 + 1.46027I
b = 0.607925 + 0.053893I
1.21478 1.69741I 5.21357 + 2.91826I
u = 0.783854 0.449976I
a = 0.88225 1.46027I
b = 0.607925 0.053893I
1.21478 + 1.69741I 5.21357 2.91826I
u = 0.834972 + 0.271757I
a = 0.402769 + 0.469015I
b = 1.336280 0.001110I
4.22306 + 1.50916I 0.90565 4.60792I
u = 0.834972 0.271757I
a = 0.402769 0.469015I
b = 1.336280 + 0.001110I
4.22306 1.50916I 0.90565 + 4.60792I
u = 1.097540 + 0.232712I
a = 0.824240 0.456164I
b = 1.364360 + 0.107526I
3.24781 3.48078I 2.45496 + 2.40562I
u = 1.097540 0.232712I
a = 0.824240 + 0.456164I
b = 1.364360 0.107526I
3.24781 + 3.48078I 2.45496 2.40562I
u = 1.076770 + 0.366665I
a = 0.91092 1.73477I
b = 0.617101 + 0.196016I
0.19696 + 4.79433I 7.00908 7.37935I
u = 1.076770 0.366665I
a = 0.91092 + 1.73477I
b = 0.617101 0.196016I
0.19696 4.79433I 7.00908 + 7.37935I
u = 0.202370 + 0.595132I
a = 0.51038 + 1.43333I
b = 0.911128 + 0.340957I
1.59110 1.41451I 5.95128 0.67158I
u = 0.202370 0.595132I
a = 0.51038 1.43333I
b = 0.911128 0.340957I
1.59110 + 1.41451I 5.95128 + 0.67158I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.407250 + 0.133915I
a = 0.22271 + 1.63206I
b = 1.135860 0.806663I
9.26854 + 4.51233I 6.25147 2.40036I
u = 1.407250 0.133915I
a = 0.22271 1.63206I
b = 1.135860 + 0.806663I
9.26854 4.51233I 6.25147 + 2.40036I
u = 1.49226 + 0.19871I
a = 0.104580 1.177260I
b = 1.176570 + 0.447055I
6.50658 + 4.39997I 3.95982 2.84697I
u = 1.49226 0.19871I
a = 0.104580 + 1.177260I
b = 1.176570 0.447055I
6.50658 4.39997I 3.95982 + 2.84697I
u = 1.52078 + 0.07559I
a = 0.645514 + 1.015480I
b = 0.640462 0.853286I
10.74570 + 1.73917I 8.18415 2.81379I
u = 1.52078 0.07559I
a = 0.645514 1.015480I
b = 0.640462 + 0.853286I
10.74570 1.73917I 8.18415 + 2.81379I
u = 1.64381 + 0.07647I
a = 0.690763 0.401595I
b = 0.564885 + 0.278244I
8.89603 1.12476I 0.70439 8.32969I
u = 1.64381 0.07647I
a = 0.690763 + 0.401595I
b = 0.564885 0.278244I
8.89603 + 1.12476I 0.70439 + 8.32969I
u = 0.134600 + 0.262014I
a = 0.62114 1.47786I
b = 0.908744 0.795002I
4.77332 2.98706I 9.34349 + 0.03679I
u = 0.134600 0.262014I
a = 0.62114 + 1.47786I
b = 0.908744 + 0.795002I
4.77332 + 2.98706I 9.34349 0.03679I
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
20
14u
19
+ ··· 17u + 1)(u
70
+ 37u
69
+ ··· + 12u + 1)
c
2
(u
20
7u
18
+ ··· + u + 1)(u
70
+ u
69
+ ··· + 2u + 1)
c
3
(u
20
12u
18
+ ··· 4u + 1)(u
70
+ u
69
+ ··· + 167u + 119)
c
4
(u
20
3u
19
+ ··· 3u + 1)(u
70
2u
69
+ ··· 22u + 47)
c
5
(u
20
7u
18
+ ··· u + 1)(u
70
+ u
69
+ ··· + 2u + 1)
c
6
(u
20
2u
18
+ ··· 8u + 1)(u
70
+ 3u
69
+ ··· + 7369u + 589)
c
7
(u
20
+ 3u
19
+ ··· + 3u + 1)(u
70
2u
69
+ ··· 22u + 47)
c
8
(u
20
+ 3u
17
+ ··· + 65u + 25)(u
70
+ 5u
69
+ ··· 20478u + 1117)
c
9
(u
20
4u
19
+ ··· + 2u
2
+ 1)(u
70
3u
69
+ ··· 379u + 71)
c
10
(u
20
12u
18
+ ··· + 4u + 1)(u
70
+ u
69
+ ··· + 167u + 119)
c
11
(u
20
2u
18
+ ··· + 8u + 1)(u
70
+ 3u
69
+ ··· + 7369u + 589)
c
12
(u
20
+ 4u
19
+ ··· + 2u
2
+ 1)(u
70
3u
69
+ ··· 379u + 71)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
20
2y
19
+ ··· 13y + 1)(y
70
+ 7y
69
+ ··· + 132y + 1)
c
2
, c
5
(y
20
14y
19
+ ··· 17y + 1)(y
70
37y
69
+ ··· 12y + 1)
c
3
, c
10
(y
20
24y
19
+ ··· + 8y + 1)(y
70
67y
69
+ ··· 100955y + 14161)
c
4
, c
7
(y
20
+ 13y
19
+ ··· + 17y + 1)(y
70
+ 26y
69
+ ··· + 56950y + 2209)
c
6
, c
11
(y
20
4y
19
+ ··· 38y + 1)(y
70
51y
69
+ ··· 7893673y + 346921)
c
8
(y
20
+ 32y
18
+ ··· + 14925y + 625)
· (y
70
+ 13y
69
+ ··· 1909946y + 1247689)
c
9
, c
12
(y
20
16y
19
+ ··· + 4y + 1)(y
70
39y
69
+ ··· + 159529y + 5041)
20