12n
0518
(K12n
0518
)
A knot diagram
1
Linearized knot diagam
3 6 10 8 2 12 4 7 3 9 1 7
Solving Sequence
3,6
2 1
5,8
4 7 9 10 12 11
c
2
c
1
c
5
c
4
c
7
c
8
c
9
c
12
c
11
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
2
+ b + u 1, u
4
u
2
+ 2a + u + 1, u
5
u
4
u
3
+ 2u
2
+ 2u 1i
I
u
2
= hu
6
a + u
5
a + u
6
+ u
4
a + u
5
u
4
+ 4u
2
a 2u
3
au + 2u
2
+ 2b + u 2,
4u
6
a + 2u
5
a u
6
2u
4
a 2u
3
a + 2u
4
+ 16u
2
a + u
3
+ 4a
2
2u
2
2a + u + 3, u
7
+ u
6
u
4
+ 3u
3
+ u
2
1i
I
u
3
= h−898u
13
+ 485u
12
+ ··· + 11257b 16952, 21137u
13
+ 40486u
12
+ ··· + 157598a 1559,
u
14
3u
13
+ 2u
12
+ 8u
11
18u
10
+ 6u
9
+ 27u
8
40u
7
+ 5u
6
+ 37u
5
36u
4
+ 4u
3
+ 20u
2
18u + 7i
I
u
4
= h−u
3
+ b + u 1, u
2
+ 2a + u, u
4
u
2
+ 2i
I
u
5
= h2a
3
2a
2
+ b + 5a 3, 2a
4
2a
3
+ 5a
2
4a + 1, u + 1i
I
u
6
= h−u
6
+ 2u
5
u
4
2u
2
+ 2b + 4, u
7
+ 3u
6
4u
5
+ 3u
4
3u
3
+ 2u
2
+ 2a + 2u 2,
u
8
2u
7
+ 2u
6
+ u
4
2u
2
+ 2u + 2i
I
u
7
= hu
4
+ u
3
+ b u, 2u
5
4u
4
3u
3
+ u
2
+ a + 2u 3, u
6
+ u
5
2u
3
+ 2u 1i
I
u
8
= h2u
5
+ 3u
4
+ 2u
3
2u
2
+ b 2u + 2, 4u
5
+ 6u
4
+ 4u
3
5u
2
+ a 2u + 5, u
6
+ u
5
2u
3
+ 2u 1i
I
u
9
= hb 5u 6, 2a 5, u
2
+ 2u + 1i
I
u
10
= hb + u, 2a + 3, u
2
+ 2u + 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
11
= hb, a + 1, u 1i
I
u
12
= hu
3
+ b u + 1, u
3
+ u
2
+ 2a u + 1, u
4
+ 1i
I
u
13
= h2a
3
+ 4a
2
+ b + 6a + 3, 2a
4
+ 4a
3
+ 6a
2
+ 4a + 1, u 1i
I
u
14
= hb 1, u + 1i
I
v
1
= ha, b + 1, v + 1i
* 14 irreducible components of dim
C
= 0, with total 75 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= hu
2
+ b + u 1, u
4
u
2
+ 2a + u + 1, u
5
u
4
u
3
+ 2u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
8
=
1
2
u
4
+
1
2
u
2
1
2
u
1
2
u
2
u + 1
a
4
=
1
2
u
4
1
2
u
2
+
1
2
u +
1
2
u
2
a
7
=
u
u
3
u
2
u + 1
a
9
=
1
2
u
4
+ u
3
+
1
2
u
2
1
2
u
1
2
u
a
10
=
1
2
u
4
+ u
3
+
1
2
u
2
3
2
u
1
2
u
a
12
=
1
u
4
+ u
3
u
a
11
=
u
4
u
2
+ 1
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
4u
3
+ 6u
2
+ 2u 16
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
, c
10
c
11
u
5
+ 3u
4
+ 9u
3
+ 10u
2
+ 8u + 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
12
u
5
+ u
4
u
3
2u
2
+ 2u + 1
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
10
c
11
y
5
+ 9y
4
+ 37y
3
+ 38y
2
+ 44y 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
12
y
5
3y
4
+ 9y
3
10y
2
+ 8y 1
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.937261 + 0.495129I
a = 0.515459 0.123840I
b = 1.303956 + 0.433001I
2.12840 + 7.92450I 14.4593 11.6636I
u = 0.937261 0.495129I
a = 0.515459 + 0.123840I
b = 1.303956 0.433001I
2.12840 7.92450I 14.4593 + 11.6636I
u = 1.24407 + 0.86929I
a = 1.29939 1.06631I
b = 1.03612 3.03218I
8.2190 15.4874I 13.2819 + 8.0512I
u = 1.24407 0.86929I
a = 1.29939 + 1.06631I
b = 1.03612 + 3.03218I
8.2190 + 15.4874I 13.2819 8.0512I
u = 0.386387
a = 0.629690
b = 0.464319
0.666621 14.5180
6
II.
I
u
2
= hu
6
a+u
6
+· · ·+2b2, 4u
6
au
6
+· · ·2a+3, u
7
+u
6
u
4
+3u
3
+u
2
1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
8
=
a
1
2
u
6
a
1
2
u
6
+ ···
1
2
u + 1
a
4
=
a
1
2
u
6
1
2
u
5
+ ···
1
2
u + 1
a
7
=
u
1
2
u
5
+
1
2
u
4
+
1
2
u
3
+ u +
1
2
a
9
=
1
2
u
6
1
2
u
5
+ ··· + a +
1
2
u
1
2
u
5
a +
1
2
u
4
a + ··· +
1
2
a + 1
a
10
=
1
2
u
5
a
1
2
u
6
+ ··· +
1
2
a 1
1
2
u
5
a +
1
2
u
4
a + ··· +
1
2
a + 1
a
12
=
1
1
2
u
6
1
2
u
5
+ ··· 2u
2
1
2
u
a
11
=
u
4
u
2
+ 1
1
2
u
6
1
2
u
5
+ ··· 2u
2
1
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
6
+ u
5
u
4
u
3
+ 10u
2
13
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
7
+ u
6
+ 8u
5
+ 3u
4
+ 13u
3
+ 3u
2
+ 2u + 1)
2
c
2
, c
5
, c
6
c
12
(u
7
u
6
+ u
4
+ 3u
3
u
2
+ 1)
2
c
3
, c
4
, c
7
c
9
u
14
+ 3u
13
+ ··· + 18u + 7
c
8
, c
10
u
14
+ 5u
13
+ ··· + 44u + 49
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y
7
+ 15y
6
+ 84y
5
+ 197y
4
+ 181y
3
+ 37y
2
2y 1)
2
c
2
, c
5
, c
6
c
12
(y
7
y
6
+ 8y
5
3y
4
+ 13y
3
3y
2
+ 2y 1)
2
c
3
, c
4
, c
7
c
9
y
14
5y
13
+ ··· 44y + 49
c
8
, c
10
y
14
+ 7y
13
+ ··· + 1984y + 2401
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.828738 + 0.848640I
a = 0.011269 1.123254I
b = 0.970381 0.889581I
0.10917 5.13113I 11.29789 + 5.71003I
u = 0.828738 + 0.848640I
a = 0.395708 0.325161I
b = 1.78580 + 0.85701I
0.10917 5.13113I 11.29789 + 5.71003I
u = 0.828738 0.848640I
a = 0.011269 + 1.123254I
b = 0.970381 + 0.889581I
0.10917 + 5.13113I 11.29789 5.71003I
u = 0.828738 0.848640I
a = 0.395708 + 0.325161I
b = 1.78580 0.85701I
0.10917 + 5.13113I 11.29789 5.71003I
u = 0.441920 + 0.538118I
a = 0.251395 0.220170I
b = 1.71953 + 0.74035I
3.48230 + 1.31889I 13.8490 4.9720I
u = 0.441920 + 0.538118I
a = 0.57883 + 2.23056I
b = 1.22991 + 1.18628I
3.48230 + 1.31889I 13.8490 4.9720I
u = 0.441920 0.538118I
a = 0.251395 + 0.220170I
b = 1.71953 0.74035I
3.48230 1.31889I 13.8490 + 4.9720I
u = 0.441920 0.538118I
a = 0.57883 2.23056I
b = 1.22991 1.18628I
3.48230 1.31889I 13.8490 + 4.9720I
u = 0.610544
a = 0.451001 + 0.791376I
b = 0.811414 0.457455I
0.187091 9.45050
u = 0.610544
a = 0.451001 0.791376I
b = 0.811414 + 0.457455I
0.187091 9.45050
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.19209 + 0.98985I
a = 0.978445 + 0.731013I
b = 1.01911 + 1.81521I
10.04640 + 7.93647I 11.12788 4.07397I
u = 1.19209 + 0.98985I
a = 0.97323 1.05400I
b = 0.97426 2.78584I
10.04640 + 7.93647I 11.12788 4.07397I
u = 1.19209 0.98985I
a = 0.978445 0.731013I
b = 1.01911 1.81521I
10.04640 7.93647I 11.12788 + 4.07397I
u = 1.19209 0.98985I
a = 0.97323 + 1.05400I
b = 0.97426 + 2.78584I
10.04640 7.93647I 11.12788 + 4.07397I
11
III. I
u
3
= h−898u
13
+ 485u
12
+ · · · + 11257b 16952, 21137u
13
+
40486u
12
+ · · · + 157598a 1559, u
14
3u
13
+ · · · 18u + 7i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
8
=
0.134120u
13
0.256894u
12
+ ··· + 0.0964923u + 0.00989226
0.0797726u
13
0.0430843u
12
+ ··· 0.739362u + 1.50591
a
4
=
0.101099u
13
+ 0.186881u
12
+ ··· + 0.264020u + 0.00957499
0.0945190u
13
+ 0.218087u
12
+ ··· 0.422404u 0.107222
a
7
=
0.0552672u
13
+ 0.00848996u
12
+ ··· 0.694070u 0.311768
0.0875899u
13
+ 0.437061u
12
+ ··· 3.55121u + 2.25966
a
9
=
0.111772u
13
0.408203u
12
+ ··· + 3.58886u 2.27231
0.0421071u
13
0.0539220u
12
+ ··· + 0.678778u 0.0781736
a
10
=
0.0696646u
13
0.354281u
12
+ ··· + 2.91008u 2.19413
0.0421071u
13
0.0539220u
12
+ ··· + 0.678778u 0.0781736
a
12
=
0.322809u
13
+ 0.880836u
12
+ ··· 4.38369u + 1.25934
1
a
11
=
0.357987u
13
+ 1.15373u
12
+ ··· 7.19127u + 2.70440
0.209470u
13
+ 0.534068u
12
+ ··· 3.49063u + 0.831927
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3768
11257
u
13
+
10810
11257
u
12
+ ··· +
4236
11257
u
140628
11257
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
14
+ 5u
13
+ ··· + 44u + 49
c
2
, c
5
, c
6
c
12
u
14
+ 3u
13
+ ··· + 18u + 7
c
3
, c
4
, c
7
c
9
(u
7
u
6
+ u
4
+ 3u
3
u
2
+ 1)
2
c
8
, c
10
(u
7
+ u
6
+ 8u
5
+ 3u
4
+ 13u
3
+ 3u
2
+ 2u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
14
+ 7y
13
+ ··· + 1984y + 2401
c
2
, c
5
, c
6
c
12
y
14
5y
13
+ ··· 44y + 49
c
3
, c
4
, c
7
c
9
(y
7
y
6
+ 8y
5
3y
4
+ 13y
3
3y
2
+ 2y 1)
2
c
8
, c
10
(y
7
+ 15y
6
+ 84y
5
+ 197y
4
+ 181y
3
+ 37y
2
2y 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.055750 + 0.340120I
a = 1.06312 + 0.98114I
b = 0.175488 + 0.424946I
3.48230 + 1.31889I 13.8490 4.9720I
u = 1.055750 0.340120I
a = 1.06312 0.98114I
b = 0.175488 0.424946I
3.48230 1.31889I 13.8490 + 4.9720I
u = 0.668117 + 0.582359I
a = 0.124005 + 0.615095I
b = 1.10865
0.187091 9.45047 + 0.I
u = 0.668117 0.582359I
a = 0.124005 0.615095I
b = 1.10865
0.187091 9.45047 + 0.I
u = 1.177859 + 0.244275I
a = 0.045270 + 0.188069I
b = 0.175488 + 0.424946I
3.48230 + 1.31889I 13.8490 4.9720I
u = 1.177859 0.244275I
a = 0.045270 0.188069I
b = 0.175488 0.424946I
3.48230 1.31889I 13.8490 + 4.9720I
u = 0.251958 + 0.745305I
a = 0.750002 0.183784I
b = 0.171189 0.644973I
0.10917 5.13113I 11.29789 + 5.71003I
u = 0.251958 0.745305I
a = 0.750002 + 0.183784I
b = 0.171189 + 0.644973I
0.10917 + 5.13113I 11.29789 5.71003I
u = 1.302132 + 0.252907I
a = 0.579931 0.820184I
b = 0.171189 + 0.644973I
0.10917 + 5.13113I 11.29789 5.71003I
u = 1.302132 0.252907I
a = 0.579931 + 0.820184I
b = 0.171189 0.644973I
0.10917 5.13113I 11.29789 + 5.71003I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.70316 + 1.23343I
a = 0.94800 1.24603I
b = 0.05002 3.09525I
10.04640 + 7.93647I 11.12788 4.07397I
u = 0.70316 1.23343I
a = 0.94800 + 1.24603I
b = 0.05002 + 3.09525I
10.04640 7.93647I 11.12788 + 4.07397I
u = 1.05678 + 1.07858I
a = 0.921887 + 0.849036I
b = 0.05002 + 3.09525I
10.04640 7.93647I 11.12788 + 4.07397I
u = 1.05678 1.07858I
a = 0.921887 0.849036I
b = 0.05002 3.09525I
10.04640 + 7.93647I 11.12788 4.07397I
16
IV. I
u
4
= h−u
3
+ b + u 1, u
2
+ 2a + u, u
4
u
2
+ 2i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
8
=
1
2
u
2
1
2
u
u
3
u + 1
a
4
=
1
2
u
2
+
1
2
u
1
a
7
=
u
u
3
u
a
9
=
1
2
u
2
+
1
2
u
1
a
10
=
1
2
u
2
+
1
2
u 1
1
a
12
=
1
u
2
+ 2
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
20
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
2
u + 2)
2
c
2
, c
5
, c
6
c
12
u
4
u
2
+ 2
c
3
, c
7
(u 1)
4
c
4
, c
8
, c
9
c
10
(u + 1)
4
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y
2
+ 3y + 4)
2
c
2
, c
5
, c
6
c
12
(y
2
y + 2)
2
c
3
, c
4
, c
7
c
8
, c
9
, c
10
(y 1)
4
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.978318 + 0.676097I
a = 0.239159 + 0.323389I
b = 0.383551 + 0.956145I
2.46740 5.33349I 18.0000 + 5.2915I
u = 0.978318 0.676097I
a = 0.239159 0.323389I
b = 0.383551 0.956145I
2.46740 + 5.33349I 18.0000 5.2915I
u = 0.978318 + 0.676097I
a = 0.739159 0.999486I
b = 2.38355 + 0.95615I
2.46740 + 5.33349I 18.0000 5.2915I
u = 0.978318 0.676097I
a = 0.739159 + 0.999486I
b = 2.38355 0.95615I
2.46740 5.33349I 18.0000 + 5.2915I
20
V. I
u
5
= h2a
3
2a
2
+ b + 5a 3, 2a
4
2a
3
+ 5a
2
4a + 1, u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
1
a
2
=
1
1
a
1
=
0
1
a
5
=
1
0
a
8
=
a
2a
3
+ 2a
2
5a + 3
a
4
=
a
4a
3
+ 2a
2
8a + 4
a
7
=
1
2a
3
+ 5a 1
a
9
=
4a
3
2a
2
+ 9a 4
2a
3
2a
2
+ 5a 3
a
10
=
2a
3
+ 4a 1
2a
3
2a
2
+ 5a 3
a
12
=
1
2a
3
5a
a
11
=
1
2a
3
5a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16a
3
+ 8a
2
32a 4
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
11
c
12
(u 1)
4
c
2
, c
6
(u + 1)
4
c
3
, c
4
, c
7
c
9
u
4
u
2
+ 2
c
8
, c
10
(u
2
+ u + 2)
2
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
y + 2)
2
c
8
, c
10
(y
2
+ 3y + 4)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.04738 + 1.47756I
b = 0.978318 0.676097I
2.46740 5.33349I 18.0000 + 5.2915I
u = 1.00000
a = 0.04738 1.47756I
b = 0.978318 + 0.676097I
2.46740 + 5.33349I 18.0000 5.2915I
u = 1.00000
a = 0.452616 + 0.154683I
b = 0.978318 0.676097I
2.46740 + 5.33349I 18.0000 5.2915I
u = 1.00000
a = 0.452616 0.154683I
b = 0.978318 + 0.676097I
2.46740 5.33349I 18.0000 + 5.2915I
24
VI. I
u
6
= h−u
6
+ 2u
5
u
4
2u
2
+ 2b + 4, u
7
+ 3u
6
+ · · · + 2a 2, u
8
2u
7
+ 2u
6
+ u
4
2u
2
+ 2u + 2i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
8
=
1
2
u
7
3
2
u
6
+ ··· u + 1
1
2
u
6
u
5
+
1
2
u
4
+ u
2
2
a
4
=
1
2
u
7
+
3
2
u
6
+ ··· + u 1
1
2
u
7
3
2
u
6
+ ··· u
2
+ 2
a
7
=
u
1
2
u
7
u
6
+
3
2
u
5
u
4
+ 2u
3
u
2
a
9
=
1
2
u
5
u
4
+
1
2
u
3
1
2
u
7
u
6
+
3
2
u
5
u
4
+ u
3
u + 1
a
10
=
1
2
u
7
+ u
6
u
5
1
2
u
3
+ u 1
1
2
u
7
u
6
+
3
2
u
5
u
4
+ u
3
u + 1
a
12
=
1
1
2
u
6
+ u
5
3
2
u
4
+ u
3
2u
2
+ u + 1
a
11
=
u
4
u
2
+ 1
1
2
u
6
+ u
5
1
2
u
4
+ u
3
2u
2
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
7
2u
6
+ 3u
5
2u
4
+ 4u
3
2u
2
8
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
, c
10
c
11
u
8
+ 6u
6
+ 5u
4
4u
3
+ 8u
2
+ 12u + 4
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
12
u
8
+ 2u
7
+ 2u
6
+ u
4
2u
2
2u + 2
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
10
c
11
y
8
+ 12y
7
+ 46y
6
+ 76y
5
+ 129y
4
+ 112y
3
+ 200y
2
80y + 16
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
12
y
8
+ 6y
6
+ 5y
4
+ 4y
3
+ 8y
2
12y + 4
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.358336 + 1.049708I
a = 0.208739 0.611478I
b = 0.743190 0.752297I
3.87851 7.20933 + 0.I
u = 0.358336 1.049708I
a = 0.208739 + 0.611478I
b = 0.743190 + 0.752297I
3.87851 7.20933 + 0.I
u = 1.001167 + 0.618491I
a = 0.557384 0.409315I
b = 1.16144 + 0.94397I
1.22898 4.85117I 10.92071 + 2.27864I
u = 1.001167 0.618491I
a = 0.557384 + 0.409315I
b = 1.16144 0.94397I
1.22898 + 4.85117I 10.92071 2.27864I
u = 0.696290 + 0.136038I
a = 0.217827 + 1.126200I
b = 1.314927 0.483896I
1.22898 4.85117I 10.92071 + 2.27864I
u = 0.696290 0.136038I
a = 0.217827 1.126200I
b = 1.314927 + 0.483896I
1.22898 + 4.85117I 10.92071 2.27864I
u = 1.05346 + 1.10563I
a = 0.951704 + 0.998833I
b = 1.21955 + 2.32947I
10.0940 10.94925 + 0.I
u = 1.05346 1.10563I
a = 0.951704 0.998833I
b = 1.21955 2.32947I
10.0940 10.94925 + 0.I
28
VII.
I
u
7
= hu
4
+u
3
+bu, 2u
5
4u
4
3u
3
+u
2
+a+2u3, u
6
+u
5
2u
3
+2u1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
8
=
2u
5
+ 4u
4
+ 3u
3
u
2
2u + 3
u
4
u
3
+ u
a
4
=
4u
5
+ 6u
4
+ 4u
3
5u
2
2u + 5
u
2
a
7
=
2u
5
3u
4
2u
3
+ 3u
2
+ 2u 3
u
5
2u
4
2u
3
+ u
2
+ 2u 1
a
9
=
4u
5
+ 8u
4
+ 6u
3
4u
2
4u + 6
u
a
10
=
4u
5
+ 8u
4
+ 6u
3
4u
2
5u + 6
u
a
12
=
u
5
2u
4
2u
3
+ u 1
1
a
11
=
2u
5
4u
4
2u
3
+ 2u
2
+ u 2
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
, c
10
c
11
u
6
+ u
5
+ 4u
4
+ 10u
3
+ 8u
2
+ 4u + 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
12
u
6
u
5
+ 2u
3
2u 1
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
10
c
11
y
6
+ 7y
5
+ 12y
4
42y
3
8y
2
+ 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
12
y
6
y
5
+ 4y
4
10y
3
+ 8y
2
4y + 1
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.14526
a = 2.41334
b = 1.36347
5.87476 10.0000
u = 0.623490 + 0.407699I
a = 0.044073 + 0.916092I
b = 0.900969 0.226256I
0.234991 10.0000
u = 0.623490 0.407699I
a = 0.044073 0.916092I
b = 0.900969 + 0.226256I
0.234991 10.0000
u = 0.700221
a = 3.43751
b = 0.116492
5.87476 10.0000
u = 0.90097 + 1.19801I
a = 0.969501 0.960732I
b = 0.22252 2.69191I
11.0446 10.0000
u = 0.90097 1.19801I
a = 0.969501 + 0.960732I
b = 0.22252 + 2.69191I
11.0446 10.0000
32
VIII. I
u
8
= h2u
5
+ 3u
4
+ 2u
3
2u
2
+ b 2u + 2, 4u
5
+ 6u
4
+ 4u
3
5u
2
+ a
2u + 5, u
6
+ u
5
2u
3
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
8
=
4u
5
6u
4
4u
3
+ 5u
2
+ 2u 5
2u
5
3u
4
2u
3
+ 2u
2
+ 2u 2
a
4
=
2u
5
+ 4u
4
+ 3u
3
2u
2
2u + 4
u
5
+ 2u
4
+ u
3
2u
2
u + 2
a
7
=
2u
5
3u
4
2u
3
+ 3u
2
+ 2u 3
u
5
2u
4
2u
3
+ u
2
+ 2u 1
a
9
=
3u
5
5u
4
4u
3
+ 4u
2
+ 2u 4
u
5
2u
4
2u
3
+ u
2
+ u 1
a
10
=
2u
5
3u
4
2u
3
+ 3u
2
+ u 3
u
5
2u
4
2u
3
+ u
2
+ u 1
a
12
=
u
5
2u
4
2u
3
+ u 1
1
a
11
=
2u
5
4u
4
2u
3
+ 2u
2
+ u 2
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
, c
10
c
11
u
6
+ u
5
+ 4u
4
+ 10u
3
+ 8u
2
+ 4u + 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
12
u
6
u
5
+ 2u
3
2u 1
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
10
c
11
y
6
+ 7y
5
+ 12y
4
42y
3
8y
2
+ 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
12
y
6
y
5
+ 4y
4
10y
3
+ 8y
2
4y + 1
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.14526
a = 2.83514
b = 0.116492
5.87476 10.0000
u = 0.623490 + 0.407699I
a = 0.222521 + 0.145506I
b = 0.900969 + 0.226256I
0.234991 10.0000
u = 0.623490 0.407699I
a = 0.222521 0.145506I
b = 0.900969 0.226256I
0.234991 10.0000
u = 0.700221
a = 4.63708
b = 1.36347
5.87476 10.0000
u = 0.90097 + 1.19801I
a = 0.623490 + 0.829051I
b = 0.22252 + 2.69191I
11.0446 10.0000
u = 0.90097 1.19801I
a = 0.623490 0.829051I
b = 0.22252 2.69191I
11.0446 10.0000
36
IX. I
u
9
= hb 5u 6, 2a 5, u
2
+ 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
2u + 1
a
1
=
2u + 2
2u + 1
a
5
=
u
2u 2
a
8
=
2.5
5u + 6
a
4
=
3
2
u
2u + 3
a
7
=
3u + 4
4u + 4
a
9
=
u +
1
2
u + 2
a
10
=
2u
3
2
u + 2
a
12
=
2u 3
2u 3
a
11
=
4u 5
2u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
37
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
, c
11
, c
12
(u 1)
2
c
2
, c
4
, c
6
c
8
, c
9
, c
10
(u + 1)
2
38
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
(y 1)
2
39
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 1.00000
a = 2.50000
b = 1.00000
6.57974 24.0000
u = 1.00000
a = 2.50000
b = 1.00000
6.57974 24.0000
40
X. I
u
10
= hb + u, 2a + 3, u
2
+ 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
2u + 1
a
1
=
2u + 2
2u + 1
a
5
=
u
2u 2
a
8
=
1.5
u
a
4
=
1
2
u 3
2u 1
a
7
=
3u + 4
0
a
9
=
5u
15
2
u
a
10
=
4u
15
2
u
a
12
=
2u 3
2u + 1
a
11
=
4u 5
2u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
41
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
, c
11
, c
12
(u 1)
2
c
2
, c
4
, c
6
c
8
, c
9
, c
10
(u + 1)
2
42
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
(y 1)
2
43
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.50000
b = 1.00000
6.57974 24.0000
u = 1.00000
a = 1.50000
b = 1.00000
6.57974 24.0000
44
XI. I
u
11
= hb, a + 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
1
a
2
=
1
1
a
1
=
0
1
a
5
=
1
0
a
8
=
1
0
a
4
=
1
0
a
7
=
1
0
a
9
=
1
0
a
10
=
1
0
a
12
=
1
1
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
45
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
11
u 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
u
c
5
, c
12
u + 1
46
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
y 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
y
47
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
11
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
3.28987 12.0000
48
XII. I
u
12
= hu
3
+ b u + 1, u
3
+ u
2
+ 2a u + 1, u
4
+ 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
8
=
1
2
u
3
1
2
u
2
+
1
2
u
1
2
u
3
+ u 1
a
4
=
1
2
u
3
+
1
2
u
2
+
1
2
u +
1
2
1
a
7
=
u
u
3
+ u
a
9
=
1
2
u
3
1
2
u
2
1
2
u
1
2
1
a
10
=
1
2
u
3
1
2
u
2
1
2
u +
1
2
1
a
12
=
u
2
1
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16
49
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
2
+ 1)
2
c
2
, c
5
, c
6
c
12
u
4
+ 1
c
3
, c
7
, c
8
c
10
(u + 1)
4
c
4
, c
9
(u 1)
4
50
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y + 1)
4
c
2
, c
5
, c
6
c
12
(y
2
+ 1)
2
c
3
, c
4
, c
7
c
8
, c
9
, c
10
(y 1)
4
51
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
12
1(vol +
1CS) Cusp shape
u = 0.707107 + 0.707107I
a = 0.500000 + 0.207107I
b = 0.414214
1.64493 16.0000
u = 0.707107 0.707107I
a = 0.500000 0.207107I
b = 0.414214
1.64493 16.0000
u = 0.707107 + 0.707107I
a = 0.500000 + 1.207107I
b = 2.41421
1.64493 16.0000
u = 0.707107 0.707107I
a = 0.500000 1.207107I
b = 2.41421
1.64493 16.0000
52
XIII. I
u
13
= h2a
3
+ 4a
2
+ b + 6a + 3, 2a
4
+ 4a
3
+ 6a
2
+ 4a + 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
1
a
2
=
1
1
a
1
=
0
1
a
5
=
1
0
a
8
=
a
2a
3
4a
2
6a 3
a
4
=
a
4a
3
6a
2
8a 3
a
7
=
1
2a
2
2a 2
a
9
=
4a
3
+ 6a
2
+ 9a + 3
2a
3
+ 2a
2
+ 4a + 1
a
10
=
2a
3
+ 4a
2
+ 5a + 2
2a
3
+ 2a
2
+ 4a + 1
a
12
=
1
2a
2
2a 3
a
11
=
1
2a
2
2a 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16
53
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
11
(u 1)
4
c
3
, c
4
, c
7
c
9
u
4
+ 1
c
5
, c
12
(u + 1)
4
c
8
, c
10
(u
2
+ 1)
2
54
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
+ 1)
2
c
8
, c
10
(y + 1)
4
55
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
13
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 1.207107I
b = 0.707107 0.707107I
1.64493 16.0000
u = 1.00000
a = 0.500000 1.207107I
b = 0.707107 + 0.707107I
1.64493 16.0000
u = 1.00000
a = 0.500000 + 0.207107I
b = 0.707107 0.707107I
1.64493 16.0000
u = 1.00000
a = 0.500000 0.207107I
b = 0.707107 + 0.707107I
1.64493 16.0000
56
XIV. I
u
14
= hb 1, u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
1
a
2
=
1
1
a
1
=
0
1
a
5
=
1
0
a
8
=
a
1
a
4
=
a 1
1
a
7
=
1
0
a
9
=
a 1
1
a
10
=
a 2
1
a
12
=
1
1
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
57
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
14
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
6.57974 24.0000
58
XV. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
1
0
a
2
=
1
0
a
1
=
1
0
a
5
=
1
0
a
8
=
0
1
a
4
=
1
1
a
7
=
1
0
a
9
=
1
1
a
10
=
2
1
a
12
=
1
0
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
59
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
u
c
3
, c
7
, c
8
c
10
u + 1
c
4
, c
9
u 1
60
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
y
c
3
, c
4
, c
7
c
8
, c
9
, c
10
y 1
61
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
62
XVI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
u(u 1)
13
(u
2
+ 1)
2
(u
2
u + 2)
2
(u
5
+ 3u
4
+ 9u
3
+ 10u
2
+ 8u + 1)
· (u
6
+ u
5
+ 4u
4
+ 10u
3
+ 8u
2
+ 4u + 1)
2
· (u
7
+ u
6
+ 8u
5
+ 3u
4
+ 13u
3
+ 3u
2
+ 2u + 1)
2
· (u
8
+ 6u
6
+ ··· + 12u + 4)(u
14
+ 5u
13
+ ··· + 44u + 49)
c
2
, c
4
, c
6
c
9
u(u 1)
5
(u + 1)
8
(u
4
+ 1)(u
4
u
2
+ 2)(u
5
+ u
4
+ ··· + 2u + 1)
· (u
6
u
5
+ 2u
3
2u 1)
2
(u
7
u
6
+ u
4
+ 3u
3
u
2
+ 1)
2
· (u
8
+ 2u
7
+ 2u
6
+ u
4
2u
2
2u + 2)(u
14
+ 3u
13
+ ··· + 18u + 7)
c
3
, c
5
, c
7
c
12
u(u 1)
8
(u + 1)
5
(u
4
+ 1)(u
4
u
2
+ 2)(u
5
+ u
4
+ ··· + 2u + 1)
· (u
6
u
5
+ 2u
3
2u 1)
2
(u
7
u
6
+ u
4
+ 3u
3
u
2
+ 1)
2
· (u
8
+ 2u
7
+ 2u
6
+ u
4
2u
2
2u + 2)(u
14
+ 3u
13
+ ··· + 18u + 7)
c
8
, c
10
u(u + 1)
13
(u
2
+ 1)
2
(u
2
+ u + 2)
2
(u
5
+ 3u
4
+ 9u
3
+ 10u
2
+ 8u + 1)
· (u
6
+ u
5
+ 4u
4
+ 10u
3
+ 8u
2
+ 4u + 1)
2
· (u
7
+ u
6
+ 8u
5
+ 3u
4
+ 13u
3
+ 3u
2
+ 2u + 1)
2
· (u
8
+ 6u
6
+ ··· + 12u + 4)(u
14
+ 5u
13
+ ··· + 44u + 49)
63
XVII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
10
c
11
y(y 1)
13
(y + 1)
4
(y
2
+ 3y + 4)
2
(y
5
+ 9y
4
+ ··· + 44y 1)
· (y
6
+ 7y
5
+ 12y
4
42y
3
8y
2
+ 1)
2
· (y
7
+ 15y
6
+ 84y
5
+ 197y
4
+ 181y
3
+ 37y
2
2y 1)
2
· (y
8
+ 12y
7
+ 46y
6
+ 76y
5
+ 129y
4
+ 112y
3
+ 200y
2
80y + 16)
· (y
14
+ 7y
13
+ ··· + 1984y + 2401)
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
12
y(y 1)
13
(y
2
+ 1)
2
(y
2
y + 2)
2
(y
5
3y
4
+ 9y
3
10y
2
+ 8y 1)
· (y
6
y
5
+ 4y
4
10y
3
+ 8y
2
4y + 1)
2
· (y
7
y
6
+ 8y
5
3y
4
+ 13y
3
3y
2
+ 2y 1)
2
· (y
8
+ 6y
6
+ ··· 12y + 4)(y
14
5y
13
+ ··· 44y + 49)
64