12n
0520
(K12n
0520
)
A knot diagram
1
Linearized knot diagam
3 5 12 8 2 4 10 6 3 4 6 10
Solving Sequence
4,6 7,11
12 3 10 8 1 2 5 9
c
6
c
11
c
3
c
10
c
7
c
12
c
1
c
5
c
9
c
2
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.00773 × 10
215
u
54
+ 3.95891 × 10
215
u
53
+ ··· + 5.25110 × 10
219
b 1.48407 × 10
220
,
1.77810 × 10
217
u
54
8.41460 × 10
217
u
53
+ ··· + 1.78060 × 10
221
a + 4.35856 × 10
221
,
u
55
+ 3u
54
+ ··· + 4862u 6341i
I
u
2
= h9.41498 × 10
23
u
19
+ 2.05689 × 10
24
u
18
+ ··· + 9.99999 × 10
23
b 4.03582 × 10
24
,
3.23988 × 10
25
u
19
+ 7.09015 × 10
25
u
18
+ ··· + 9.99999 × 10
23
a 1.70850 × 10
26
, u
20
+ 2u
19
+ ··· 14u + 1i
* 2 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.01 × 10
215
u
54
+ 3.96 × 10
215
u
53
+ · · · + 5.25 × 10
219
b 1.48 ×
10
220
, 1.78 × 10
217
u
54
8.41 × 10
217
u
53
+ · · · + 1.78 × 10
221
a + 4.36 ×
10
221
, u
55
+ 3u
54
+ · · · + 4862u 6341i
(i) Arc colorings
a
4
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
11
=
0.0000998597u
54
+ 0.000472571u
53
+ ··· 1.70493u 2.44781
0.0000191908u
54
0.0000753920u
53
+ ··· + 2.51058u + 2.82621
a
12
=
0.000119051u
54
+ 0.000397179u
53
+ ··· + 0.805651u + 0.378407
0.0000191908u
54
0.0000753920u
53
+ ··· + 2.51058u + 2.82621
a
3
=
0.000439453u
54
+ 0.00130155u
53
+ ··· 9.12833u + 2.22261
5.39110 × 10
6
u
54
0.0000762385u
53
+ ··· + 0.556271u + 2.93121
a
10
=
0.0000998597u
54
+ 0.000472571u
53
+ ··· 1.70493u 2.44781
0.0000160377u
54
0.0000345076u
53
+ ··· + 2.71846u + 1.72927
a
8
=
0.0000108886u
54
0.0000519635u
53
+ ··· 1.50476u + 0.832419
0.000450416u
54
0.00135705u
53
+ ··· + 13.8133u 1.51385
a
1
=
8.14406 × 10
8
u
54
0.000279970u
53
+ ··· + 6.32497u + 7.75382
0.000125932u
54
0.000589665u
53
+ ··· + 3.03504u + 3.45260
a
2
=
0.0000620439u
54
0.000144711u
53
+ ··· + 3.04412u + 0.737987
0.000267626u
54
+ 0.000799507u
53
+ ··· 8.68003u + 0.274355
a
5
=
0.000100081u
54
+ 0.000476708u
53
+ ··· 2.36634u 2.92983
0.000135989u
54
+ 0.000606267u
53
+ ··· 0.718613u 4.76962
a
9
=
0.000461305u
54
0.00140901u
53
+ ··· + 12.3085u 0.681429
0.000450416u
54
0.00135705u
53
+ ··· + 13.8133u 1.51385
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00197309u
54
0.00651879u
53
+ ··· + 43.1168u + 3.92550
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
55
+ 34u
54
+ ··· + 261u 169
c
2
, c
5
u
55
+ 17u
53
+ ··· u 13
c
3
u
55
4u
54
+ ··· 29u 1
c
4
u
55
3u
54
+ ··· 160u 29
c
6
u
55
+ 3u
54
+ ··· + 4862u 6341
c
7
, c
11
u
55
+ u
54
+ ··· + 1301u 319
c
8
u
55
+ 9u
54
+ ··· 23423u 2897
c
9
u
55
2u
54
+ ··· 8637u 2059
c
10
u
55
+ 2u
54
+ ··· + 31739u 6187
c
12
u
55
+ 4u
54
+ ··· + 5373u 431
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
55
18y
54
+ ··· + 2763333y 28561
c
2
, c
5
y
55
+ 34y
54
+ ··· + 261y 169
c
3
y
55
6y
54
+ ··· + 581y 1
c
4
y
55
5y
54
+ ··· 35184y 841
c
6
y
55
+ 73y
54
+ ··· 1088711858y 40208281
c
7
, c
11
y
55
+ 63y
54
+ ··· 2658559y 101761
c
8
y
55
+ 35y
54
+ ··· 164702969y 8392609
c
9
y
55
+ 62y
54
+ ··· 51063001y 4239481
c
10
y
55
68y
54
+ ··· + 631132651y 38278969
c
12
y
55
+ 50y
54
+ ··· + 5965789y 185761
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.458700 + 0.836212I
a = 0.47157 + 1.49663I
b = 0.305132 0.747908I
0.11183 + 1.55303I 1.95072 2.89152I
u = 0.458700 0.836212I
a = 0.47157 1.49663I
b = 0.305132 + 0.747908I
0.11183 1.55303I 1.95072 + 2.89152I
u = 0.913175 + 0.260802I
a = 0.223977 0.423038I
b = 0.550856 0.738530I
3.80751 0.71144I 10.81195 1.56897I
u = 0.913175 0.260802I
a = 0.223977 + 0.423038I
b = 0.550856 + 0.738530I
3.80751 + 0.71144I 10.81195 + 1.56897I
u = 1.113670 + 0.091899I
a = 0.65683 + 1.51641I
b = 0.111069 0.811383I
5.06254 + 5.92628I 0. 4.32930I
u = 1.113670 0.091899I
a = 0.65683 1.51641I
b = 0.111069 + 0.811383I
5.06254 5.92628I 0. + 4.32930I
u = 0.797854 + 0.338507I
a = 1.240170 + 0.296206I
b = 0.473741 + 0.512242I
0.29315 1.97385I 5.19969 + 3.03837I
u = 0.797854 0.338507I
a = 1.240170 0.296206I
b = 0.473741 0.512242I
0.29315 + 1.97385I 5.19969 3.03837I
u = 0.591324 + 0.479194I
a = 0.793327 + 0.649542I
b = 0.407085 + 0.865255I
3.30919 4.09772I 10.16062 + 6.84746I
u = 0.591324 0.479194I
a = 0.793327 0.649542I
b = 0.407085 0.865255I
3.30919 + 4.09772I 10.16062 6.84746I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.708799 + 0.253071I
a = 0.831284 + 0.009450I
b = 0.209759 + 0.509237I
1.81477 2.14360I 1.18374 + 4.80550I
u = 0.708799 0.253071I
a = 0.831284 0.009450I
b = 0.209759 0.509237I
1.81477 + 2.14360I 1.18374 4.80550I
u = 0.138897 + 0.673640I
a = 0.011792 0.623544I
b = 0.910818 0.785919I
7.26057 + 1.21645I 0.427980 + 0.554142I
u = 0.138897 0.673640I
a = 0.011792 + 0.623544I
b = 0.910818 + 0.785919I
7.26057 1.21645I 0.427980 0.554142I
u = 0.409118 + 0.518801I
a = 1.81243 0.36306I
b = 0.368450 0.362485I
0.707490 + 1.043870I 2.63060 + 1.21674I
u = 0.409118 0.518801I
a = 1.81243 + 0.36306I
b = 0.368450 + 0.362485I
0.707490 1.043870I 2.63060 1.21674I
u = 0.467933 + 1.326800I
a = 0.355998 + 0.883423I
b = 0.520534 1.220730I
2.57844 + 3.79796I 0
u = 0.467933 1.326800I
a = 0.355998 0.883423I
b = 0.520534 + 1.220730I
2.57844 3.79796I 0
u = 0.177490 + 0.564262I
a = 0.264895 + 0.985043I
b = 1.079970 + 0.527227I
2.81057 + 3.19886I 4.08250 3.76051I
u = 0.177490 0.564262I
a = 0.264895 0.985043I
b = 1.079970 0.527227I
2.81057 3.19886I 4.08250 + 3.76051I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.122496 + 0.504032I
a = 0.083451 1.312890I
b = 1.280030 0.596135I
6.14972 8.50203I 1.50480 + 6.85692I
u = 0.122496 0.504032I
a = 0.083451 + 1.312890I
b = 1.280030 + 0.596135I
6.14972 + 8.50203I 1.50480 6.85692I
u = 0.038547 + 0.511598I
a = 1.50581 + 0.77163I
b = 0.185020 0.254061I
0.38570 + 1.60336I 2.33296 4.99216I
u = 0.038547 0.511598I
a = 1.50581 0.77163I
b = 0.185020 + 0.254061I
0.38570 1.60336I 2.33296 + 4.99216I
u = 0.454497
a = 0.867401
b = 0.487142
0.882935 11.1550
u = 0.35658 + 1.53590I
a = 0.006681 1.169070I
b = 0.22183 + 1.78303I
7.14735 6.72459I 0
u = 0.35658 1.53590I
a = 0.006681 + 1.169070I
b = 0.22183 1.78303I
7.14735 + 6.72459I 0
u = 1.32120 + 0.87148I
a = 0.072899 0.543533I
b = 0.362960 + 0.792328I
0.103767 + 0.867284I 0
u = 1.32120 0.87148I
a = 0.072899 + 0.543533I
b = 0.362960 0.792328I
0.103767 0.867284I 0
u = 0.150297 + 0.353433I
a = 1.088790 0.154193I
b = 1.184760 + 0.246323I
1.04688 1.12802I 3.55524 3.81322I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.150297 0.353433I
a = 1.088790 + 0.154193I
b = 1.184760 0.246323I
1.04688 + 1.12802I 3.55524 + 3.81322I
u = 0.19519 + 1.66111I
a = 0.124385 + 1.042830I
b = 0.23067 1.60897I
4.50056 + 3.53769I 0
u = 0.19519 1.66111I
a = 0.124385 1.042830I
b = 0.23067 + 1.60897I
4.50056 3.53769I 0
u = 0.17081 + 1.69824I
a = 0.260758 1.042020I
b = 0.445170 + 1.129250I
1.68388 + 4.70781I 0
u = 0.17081 1.69824I
a = 0.260758 + 1.042020I
b = 0.445170 1.129250I
1.68388 4.70781I 0
u = 0.37546 + 1.72257I
a = 0.042439 0.816658I
b = 0.01000 + 1.66318I
6.17568 1.37212I 0
u = 0.37546 1.72257I
a = 0.042439 + 0.816658I
b = 0.01000 1.66318I
6.17568 + 1.37212I 0
u = 0.47575 + 1.78827I
a = 0.437619 0.836026I
b = 0.01817 + 1.74737I
10.05530 0.59545I 0
u = 0.47575 1.78827I
a = 0.437619 + 0.836026I
b = 0.01817 1.74737I
10.05530 + 0.59545I 0
u = 0.50496 + 1.78171I
a = 0.451915 + 0.949040I
b = 0.01078 1.76502I
14.8051 + 5.1933I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.50496 1.78171I
a = 0.451915 0.949040I
b = 0.01078 + 1.76502I
14.8051 5.1933I 0
u = 0.47150 + 1.79275I
a = 0.520806 + 0.790076I
b = 0.02767 1.71161I
13.3198 4.9860I 0
u = 0.47150 1.79275I
a = 0.520806 0.790076I
b = 0.02767 + 1.71161I
13.3198 + 4.9860I 0
u = 0.48338 + 1.81853I
a = 0.197047 + 0.819227I
b = 0.06259 1.51621I
6.21422 + 3.83703I 0
u = 0.48338 1.81853I
a = 0.197047 0.819227I
b = 0.06259 + 1.51621I
6.21422 3.83703I 0
u = 1.78497 + 0.62407I
a = 0.272598 + 0.574120I
b = 0.141685 0.657394I
4.48898 5.80054I 0
u = 1.78497 0.62407I
a = 0.272598 0.574120I
b = 0.141685 + 0.657394I
4.48898 + 5.80054I 0
u = 0.40813 + 2.08970I
a = 0.007416 0.968701I
b = 0.45117 + 1.67641I
9.89971 + 9.10784I 0
u = 0.40813 2.08970I
a = 0.007416 + 0.968701I
b = 0.45117 1.67641I
9.89971 9.10784I 0
u = 0.21276 + 2.13416I
a = 0.217139 0.984595I
b = 0.08489 + 1.49140I
8.29738 3.26193I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.21276 2.13416I
a = 0.217139 + 0.984595I
b = 0.08489 1.49140I
8.29738 + 3.26193I 0
u = 0.47216 + 2.09522I
a = 0.031964 + 0.982080I
b = 0.44713 1.72011I
13.6692 14.9575I 0
u = 0.47216 2.09522I
a = 0.031964 0.982080I
b = 0.44713 + 1.72011I
13.6692 + 14.9575I 0
u = 0.33765 + 2.15781I
a = 0.049776 + 1.003920I
b = 0.39293 1.63470I
14.8380 3.7469I 0
u = 0.33765 2.15781I
a = 0.049776 1.003920I
b = 0.39293 + 1.63470I
14.8380 + 3.7469I 0
10
II. I
u
2
=
h9.41×10
23
u
19
+2.06×10
24
u
18
+· · ·+1.00×10
24
b4.04×10
24
, 3.24×10
25
u
19
+
7.09 × 10
25
u
18
+ · · · + 1.00 × 10
24
a 1.71 × 10
26
, u
20
+ 2u
19
+ · · · 14u + 1i
(i) Arc colorings
a
4
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
11
=
32.3988u
19
70.9016u
18
+ ··· 1491.77u + 170.850
0.941499u
19
2.05689u
18
+ ··· 43.9860u + 4.03582
a
12
=
33.3403u
19
72.9585u
18
+ ··· 1535.76u + 174.886
0.941499u
19
2.05689u
18
+ ··· 43.9860u + 4.03582
a
3
=
16.8236u
19
36.8452u
18
+ ··· 771.199u + 85.2522
5.36412u
19
+ 11.7183u
18
+ ··· + 248.289u 28.2108
a
10
=
32.3988u
19
70.9016u
18
+ ··· 1491.77u + 170.850
0.168831u
19
+ 0.351278u
18
+ ··· + 9.07021u 2.06811
a
8
=
26.5155u
19
58.0667u
18
+ ··· 1216.85u + 140.767
0.753809u
19
1.66202u
18
+ ··· 33.7724u + 2.85889
a
1
=
13.0882u
19
28.5954u
18
+ ··· 607.666u + 65.7562
4.56802u
19
+ 9.98468u
18
+ ··· + 210.998u 23.7432
a
2
=
13.1542u
19
28.7857u
18
+ ··· 606.496u + 64.0210
7.11259u
19
+ 15.5565u
18
+ ··· + 326.928u 36.6149
a
5
=
32.6380u
19
71.5392u
18
+ ··· 1489.53u + 168.175
3.97446u
19
+ 8.71120u
18
+ ··· + 182.668u 21.0322
a
9
=
27.2693u
19
59.7288u
18
+ ··· 1250.62u + 143.626
0.753809u
19
1.66202u
18
+ ··· 33.7724u + 2.85889
(ii) Obstruction class = 1
(iii) Cusp Shapes =
62641622421330731218172603
999998536254646311244669
u
19
137124516846403670777326513
999998536254646311244669
u
18
+
···
2878152757722006579821255122
999998536254646311244669
u +
338046622815474243224796674
999998536254646311244669
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
20
11u
19
+ ··· 13u + 1
c
2
u
20
+ 3u
19
+ ··· + 3u + 1
c
3
u
20
+ 3u
19
+ ··· + u + 1
c
4
u
20
2u
19
+ ··· 7u
2
+ 1
c
5
u
20
3u
19
+ ··· 3u + 1
c
6
u
20
+ 2u
19
+ ··· 14u + 1
c
7
u
20
+ 4u
19
+ ··· + 5u + 1
c
8
u
20
+ 2u
18
+ ··· + u + 1
c
9
u
20
u
19
+ ··· + 11u + 1
c
10
u
20
+ u
19
+ ··· 103u + 73
c
11
u
20
4u
19
+ ··· 5u + 1
c
12
u
20
3u
19
+ ··· u + 1
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 3y
19
+ ··· 11y + 1
c
2
, c
5
y
20
+ 11y
19
+ ··· + 13y + 1
c
3
y
20
+ 11y
19
+ ··· + 9y + 1
c
4
y
20
16y
19
+ ··· 14y + 1
c
6
y
20
+ 10y
19
+ ··· 64y + 1
c
7
, c
11
y
20
+ 16y
19
+ ··· + 9y + 1
c
8
y
20
+ 4y
19
+ ··· 25y + 1
c
9
y
20
+ 11y
19
+ ··· 21y + 1
c
10
y
20
7y
19
+ ··· + 8663y + 5329
c
12
y
20
+ 11y
19
+ ··· + 13y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.940992 + 0.620229I
a = 0.773568 + 0.165278I
b = 0.231111 + 0.786500I
3.34471 1.65498I 6.43907 + 4.20509I
u = 0.940992 0.620229I
a = 0.773568 0.165278I
b = 0.231111 0.786500I
3.34471 + 1.65498I 6.43907 4.20509I
u = 0.842075 + 0.871841I
a = 0.793322 + 0.085027I
b = 0.226922 1.109400I
2.16792 3.50657I 3.05923 + 2.59992I
u = 0.842075 0.871841I
a = 0.793322 0.085027I
b = 0.226922 + 1.109400I
2.16792 + 3.50657I 3.05923 2.59992I
u = 0.402447 + 0.588078I
a = 1.56479 + 0.11995I
b = 0.468313 1.079950I
0.64497 + 2.98534I 3.61521 5.29378I
u = 0.402447 0.588078I
a = 1.56479 0.11995I
b = 0.468313 + 1.079950I
0.64497 2.98534I 3.61521 + 5.29378I
u = 1.134020 + 0.818765I
a = 0.079337 1.103920I
b = 0.220466 + 0.561392I
0.85761 + 1.50900I 14.5318 3.4126I
u = 1.134020 0.818765I
a = 0.079337 + 1.103920I
b = 0.220466 0.561392I
0.85761 1.50900I 14.5318 + 3.4126I
u = 0.339290 + 0.111161I
a = 1.95398 + 1.57017I
b = 0.748209 + 0.283121I
1.42125 1.38443I 14.3541 + 3.8433I
u = 0.339290 0.111161I
a = 1.95398 1.57017I
b = 0.748209 0.283121I
1.42125 + 1.38443I 14.3541 3.8433I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.57084 + 1.62511I
a = 0.163422 1.039380I
b = 0.07015 + 1.53272I
7.72375 4.56543I 0.60389 + 5.70350I
u = 0.57084 1.62511I
a = 0.163422 + 1.039380I
b = 0.07015 1.53272I
7.72375 + 4.56543I 0.60389 5.70350I
u = 1.74775 + 0.15837I
a = 0.006275 0.902457I
b = 0.323711 + 0.686202I
3.96953 + 6.70083I 6.00000 9.43611I
u = 1.74775 0.15837I
a = 0.006275 + 0.902457I
b = 0.323711 0.686202I
3.96953 6.70083I 6.00000 + 9.43611I
u = 0.193733 + 0.009969I
a = 2.07668 3.17071I
b = 0.874447 0.085240I
1.40571 + 1.37087I 13.2500 6.0434I
u = 0.193733 0.009969I
a = 2.07668 + 3.17071I
b = 0.874447 + 0.085240I
1.40571 1.37087I 13.2500 + 6.0434I
u = 0.24584 + 1.80696I
a = 0.179807 + 0.867154I
b = 0.12456 1.62181I
5.72982 + 2.73889I 4.19668 0.49415I
u = 0.24584 1.80696I
a = 0.179807 0.867154I
b = 0.12456 + 1.62181I
5.72982 2.73889I 4.19668 + 0.49415I
u = 0.29077 + 1.90159I
a = 0.078632 + 0.972344I
b = 0.415898 1.061560I
0.99873 + 4.79549I 12.00812 6.11844I
u = 0.29077 1.90159I
a = 0.078632 0.972344I
b = 0.415898 + 1.061560I
0.99873 4.79549I 12.00812 + 6.11844I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
20
11u
19
+ ··· 13u + 1)(u
55
+ 34u
54
+ ··· + 261u 169)
c
2
(u
20
+ 3u
19
+ ··· + 3u + 1)(u
55
+ 17u
53
+ ··· u 13)
c
3
(u
20
+ 3u
19
+ ··· + u + 1)(u
55
4u
54
+ ··· 29u 1)
c
4
(u
20
2u
19
+ ··· 7u
2
+ 1)(u
55
3u
54
+ ··· 160u 29)
c
5
(u
20
3u
19
+ ··· 3u + 1)(u
55
+ 17u
53
+ ··· u 13)
c
6
(u
20
+ 2u
19
+ ··· 14u + 1)(u
55
+ 3u
54
+ ··· + 4862u 6341)
c
7
(u
20
+ 4u
19
+ ··· + 5u + 1)(u
55
+ u
54
+ ··· + 1301u 319)
c
8
(u
20
+ 2u
18
+ ··· + u + 1)(u
55
+ 9u
54
+ ··· 23423u 2897)
c
9
(u
20
u
19
+ ··· + 11u + 1)(u
55
2u
54
+ ··· 8637u 2059)
c
10
(u
20
+ u
19
+ ··· 103u + 73)(u
55
+ 2u
54
+ ··· + 31739u 6187)
c
11
(u
20
4u
19
+ ··· 5u + 1)(u
55
+ u
54
+ ··· + 1301u 319)
c
12
(u
20
3u
19
+ ··· u + 1)(u
55
+ 4u
54
+ ··· + 5373u 431)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
20
+ 3y
19
+ ··· 11y + 1)(y
55
18y
54
+ ··· + 2763333y 28561)
c
2
, c
5
(y
20
+ 11y
19
+ ··· + 13y + 1)(y
55
+ 34y
54
+ ··· + 261y 169)
c
3
(y
20
+ 11y
19
+ ··· + 9y + 1)(y
55
6y
54
+ ··· + 581y 1)
c
4
(y
20
16y
19
+ ··· 14y + 1)(y
55
5y
54
+ ··· 35184y 841)
c
6
(y
20
+ 10y
19
+ ··· 64y + 1)
· (y
55
+ 73y
54
+ ··· 1088711858y 40208281)
c
7
, c
11
(y
20
+ 16y
19
+ ··· + 9y + 1)(y
55
+ 63y
54
+ ··· 2658559y 101761)
c
8
(y
20
+ 4y
19
+ ··· 25y + 1)
· (y
55
+ 35y
54
+ ··· 164702969y 8392609)
c
9
(y
20
+ 11y
19
+ ··· 21y + 1)
· (y
55
+ 62y
54
+ ··· 51063001y 4239481)
c
10
(y
20
7y
19
+ ··· + 8663y + 5329)
· (y
55
68y
54
+ ··· + 631132651y 38278969)
c
12
(y
20
+ 11y
19
+ ··· + 13y + 1)
· (y
55
+ 50y
54
+ ··· + 5965789y 185761)
19