12n
0524
(K12n
0524
)
A knot diagram
1
Linearized knot diagam
3 6 12 9 8 2 11 5 3 12 7 9
Solving Sequence
4,9 5,12
1 3 10 11 8 6 2 7
c
4
c
12
c
3
c
9
c
10
c
8
c
5
c
2
c
7
c
1
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1096u
18
+ 7571u
17
+ ··· + 2606b + 15844, 3961u
18
+ 29496u
17
+ ··· + 5212a + 60062,
u
19
+ 8u
18
+ ··· + 40u + 8i
I
u
2
= hu
22
7u
21
+ ··· + 4b 16, 80u
22
a + 97u
22
+ ··· 45a + 3, u
23
3u
22
+ ··· 11u + 5i
I
u
3
= hu
9
u
8
+ 5u
7
5u
6
+ 9u
5
7u
4
+ 7u
3
2u
2
+ b + u, u
8
u
7
+ 5u
6
5u
5
+ 9u
4
7u
3
+ 7u
2
+ a 2u + 1,
u
10
u
9
+ 6u
8
5u
7
+ 13u
6
7u
5
+ 12u
4
u
3
+ 4u
2
+ 2u + 1i
I
u
4
= hau + b + 1, u
4
a + u
4
+ 3u
2
a + a
2
+ 4u
2
+ 2a + 4, u
5
+ 3u
3
+ 2u 1i
* 4 irreducible components of dim
C
= 0, with total 85 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1096u
18
+ 7571u
17
+ · · · + 2606b + 15844, 3961u
18
+ 29496u
17
+
· · · + 5212a + 60062, u
19
+ 8u
18
+ · · · + 40u + 8i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
12
=
0.759977u
18
5.65925u
17
+ ··· 37.0253u 11.5238
0.420568u
18
2.90522u
17
+ ··· 18.8753u 6.07982
a
1
=
0.759977u
18
5.65925u
17
+ ··· 37.0253u 11.5238
0.879893u
18
5.90982u
17
+ ··· 29.6182u 9.44436
a
3
=
1.19052u
18
8.97371u
17
+ ··· 54.1759u 15.1274
0.550460u
18
4.31504u
17
+ ··· 31.4935u 9.52417
a
10
=
1.44561u
18
+ 10.7231u
17
+ ··· + 56.3331u + 15.2068
0.930353u
18
+ 7.22487u
17
+ ··· + 56.1117u + 15.9685
a
11
=
0.640061u
18
+ 4.65867u
17
+ ··· + 21.6825u + 6.60322
0.550460u
18
+ 4.31504u
17
+ ··· + 32.4935u + 9.52417
a
8
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
0.399079u
18
3.11992u
17
+ ··· 23.7630u 7.95165
0.129893u
18
0.909823u
17
+ ··· 2.11819u 1.44436
a
7
=
0.879029u
18
+ 6.38162u
17
+ ··· + 29.0679u + 7.33653
0.118764u
18
0.712970u
17
+ ··· + 2.14083u + 1.38987
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3773
1303
u
18
+
27698
1303
u
17
+ ··· +
165236
1303
u +
31950
1303
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
19
+ 11u
18
+ ··· 9u 1
c
2
, c
6
, c
7
c
11
u
19
u
18
+ ··· u + 1
c
3
, c
12
u
19
u
18
+ ··· + 2u + 1
c
4
, c
5
, c
8
u
19
8u
18
+ ··· + 40u 8
c
9
u
19
+ 17u
18
+ ··· + 672u + 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
19
+ 3y
18
+ ··· 5y 1
c
2
, c
6
, c
7
c
11
y
19
+ 11y
18
+ ··· 9y 1
c
3
, c
12
y
19
25y
18
+ ··· 8y 1
c
4
, c
5
, c
8
y
19
+ 16y
18
+ ··· + 32y 64
c
9
y
19
9y
18
+ ··· 7168y 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.616811 + 0.855089I
a = 1.021840 0.627553I
b = 1.166890 + 0.486679I
3.17455 + 2.33222I 9.09826 1.94044I
u = 0.616811 0.855089I
a = 1.021840 + 0.627553I
b = 1.166890 0.486679I
3.17455 2.33222I 9.09826 + 1.94044I
u = 1.120010 + 0.195383I
a = 1.52958 + 0.02914I
b = 1.71883 0.26621I
9.12103 + 9.62063I 8.08284 6.41226I
u = 1.120010 0.195383I
a = 1.52958 0.02914I
b = 1.71883 + 0.26621I
9.12103 9.62063I 8.08284 + 6.41226I
u = 0.678394 + 0.473924I
a = 0.638948 0.805280I
b = 0.815100 0.243485I
3.94120 + 2.37372I 9.61488 3.89895I
u = 0.678394 0.473924I
a = 0.638948 + 0.805280I
b = 0.815100 + 0.243485I
3.94120 2.37372I 9.61488 + 3.89895I
u = 0.643620
a = 2.20220
b = 1.41738
2.91062 2.04050
u = 0.283257 + 1.330640I
a = 0.629985 0.965924I
b = 1.46374 + 0.56468I
1.36748 + 3.35758I 0.130533 0.838590I
u = 0.283257 1.330640I
a = 0.629985 + 0.965924I
b = 1.46374 0.56468I
1.36748 3.35758I 0.130533 + 0.838590I
u = 0.72609 + 1.25708I
a = 0.602034 + 0.850739I
b = 1.50658 0.13910I
5.96103 3.19218I 6.11033 + 3.75659I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.72609 1.25708I
a = 0.602034 0.850739I
b = 1.50658 + 0.13910I
5.96103 + 3.19218I 6.11033 3.75659I
u = 0.344998 + 0.346579I
a = 0.494258 + 0.345842I
b = 0.050657 0.290614I
0.136375 0.955727I 2.79406 + 6.93579I
u = 0.344998 0.346579I
a = 0.494258 0.345842I
b = 0.050657 + 0.290614I
0.136375 + 0.955727I 2.79406 6.93579I
u = 0.20896 + 1.50540I
a = 0.164518 0.451521I
b = 0.645343 0.342017I
2.53796 + 5.54235I 7.14543 3.27743I
u = 0.20896 1.50540I
a = 0.164518 + 0.451521I
b = 0.645343 + 0.342017I
2.53796 5.54235I 7.14543 + 3.27743I
u = 0.49084 + 1.46047I
a = 0.735940 + 0.906077I
b = 1.68453 0.63008I
3.8953 + 15.3465I 4.88591 8.00097I
u = 0.49084 1.46047I
a = 0.735940 0.906077I
b = 1.68453 + 0.63008I
3.8953 15.3465I 4.88591 + 8.00097I
u = 0.10117 + 1.56824I
a = 0.115543 + 0.288337I
b = 0.440490 0.210371I
6.50755 2.80738I 1.61751 + 0.28698I
u = 0.10117 1.56824I
a = 0.115543 0.288337I
b = 0.440490 + 0.210371I
6.50755 + 2.80738I 1.61751 0.28698I
6
II. I
u
2
= hu
22
7u
21
+ · · · + 4b 16, 80u
22
a + 97u
22
+ · · · 45a + 3, u
23
3u
22
+ · · · 11u + 5i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
12
=
a
1
4
u
22
+
7
4
u
21
+ ···
37
4
u + 4
a
1
=
a
1
4
u
22
+
7
4
u
21
+ ···
37
4
u + 4
a
3
=
0.350000u
22
2.05000u
21
+ ··· + 10.7000u 3.85000
u
22
a
7
4
u
22
+ ···
5
4
a +
29
4
a
10
=
0.0500000u
22
1.15000u
21
+ ··· + 8.35000u 4.55000
3
2
u
22
a
3
2
u
22
+ ···
15
4
a
13
4
a
11
=
1
4
u
22
a +
27
20
u
22
+ ··· + 4a
31
10
u
22
+
9
4
u
21
+ ··· +
33
4
u
2
7
4
a
8
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
1
2
u
21
a +
11
10
u
22
+ ··· +
5
2
a
97
20
1
2
u
22
a u
22
+ ··· 7u + 1
a
7
=
3
4
u
22
a +
13
20
u
22
+ ··· 2a
29
10
3
4
u
22
a +
1
2
u
22
+ ··· +
5
4
a 4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
21
5u
20
+ 25u
19
48u
18
+ 126u
17
191u
16
+ 333u
15
398u
14
+ 484u
13
437u
12
+
341u
11
191u
10
+ 29u
9
+ 56u
8
78u
7
+ 72u
6
+ 8u
5
+ 13u
4
+ 23u
3
+ 6u
2
8u 2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
46
+ 26u
45
+ ··· + 2067u + 121
c
2
, c
6
, c
7
c
11
u
46
2u
45
+ ··· 45u + 11
c
3
, c
12
u
46
2u
45
+ ··· + 117u + 7
c
4
, c
5
, c
8
(u
23
+ 3u
22
+ ··· 11u 5)
2
c
9
(u
23
8u
22
+ ··· 26u + 5)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
46
6y
45
+ ··· 691857y + 14641
c
2
, c
6
, c
7
c
11
y
46
+ 26y
45
+ ··· + 2067y + 121
c
3
, c
12
y
46
42y
45
+ ··· + 4707y + 49
c
4
, c
5
, c
8
(y
23
+ 21y
22
+ ··· + 51y 25)
2
c
9
(y
23
32y
22
+ ··· + 36y 25)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.949457 + 0.274301I
a = 1.53072 + 0.32112I
b = 1.70279 0.29302I
6.21980 4.08700I 6.45479 + 3.28019I
u = 0.949457 + 0.274301I
a = 1.73757 0.19337I
b = 1.54144 + 0.11499I
6.21980 4.08700I 6.45479 + 3.28019I
u = 0.949457 0.274301I
a = 1.53072 0.32112I
b = 1.70279 + 0.29302I
6.21980 + 4.08700I 6.45479 3.28019I
u = 0.949457 0.274301I
a = 1.73757 + 0.19337I
b = 1.54144 0.11499I
6.21980 + 4.08700I 6.45479 3.28019I
u = 0.129915 + 1.043420I
a = 0.493058 + 0.848090I
b = 1.94953 0.23067I
5.55917 0.57299I 3.52244 2.34138I
u = 0.129915 + 1.043420I
a = 0.44678 1.81277I
b = 0.948973 + 0.404288I
5.55917 0.57299I 3.52244 2.34138I
u = 0.129915 1.043420I
a = 0.493058 0.848090I
b = 1.94953 + 0.23067I
5.55917 + 0.57299I 3.52244 + 2.34138I
u = 0.129915 1.043420I
a = 0.44678 + 1.81277I
b = 0.948973 0.404288I
5.55917 + 0.57299I 3.52244 + 2.34138I
u = 0.157565 + 1.169780I
a = 0.170495 0.884679I
b = 0.525087 + 1.299010I
2.81400 1.37485I 2.47637 + 0.94605I
u = 0.157565 + 1.169780I
a = 1.031300 0.587788I
b = 1.061750 0.060047I
2.81400 1.37485I 2.47637 + 0.94605I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.157565 1.169780I
a = 0.170495 + 0.884679I
b = 0.525087 1.299010I
2.81400 + 1.37485I 2.47637 0.94605I
u = 0.157565 1.169780I
a = 1.031300 + 0.587788I
b = 1.061750 + 0.060047I
2.81400 + 1.37485I 2.47637 0.94605I
u = 0.297704 + 1.164290I
a = 0.315648 0.681415I
b = 0.02755 + 1.63095I
1.67762 + 7.26897I 4.60706 6.86727I
u = 0.297704 + 1.164290I
a = 1.309170 + 0.358408I
b = 0.887336 + 0.164646I
1.67762 + 7.26897I 4.60706 6.86727I
u = 0.297704 1.164290I
a = 0.315648 + 0.681415I
b = 0.02755 1.63095I
1.67762 7.26897I 4.60706 + 6.86727I
u = 0.297704 1.164290I
a = 1.309170 0.358408I
b = 0.887336 0.164646I
1.67762 7.26897I 4.60706 + 6.86727I
u = 0.701104 + 1.024510I
a = 0.679056 + 0.799381I
b = 1.62187 0.29006I
4.06293 1.56405I 5.53705 + 2.00718I
u = 0.701104 + 1.024510I
a = 0.930638 0.946208I
b = 1.295060 + 0.135249I
4.06293 1.56405I 5.53705 + 2.00718I
u = 0.701104 1.024510I
a = 0.679056 0.799381I
b = 1.62187 + 0.29006I
4.06293 + 1.56405I 5.53705 2.00718I
u = 0.701104 1.024510I
a = 0.930638 + 0.946208I
b = 1.295060 0.135249I
4.06293 + 1.56405I 5.53705 2.00718I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.700899
a = 2.31801 + 0.38865I
b = 1.62469 0.27240I
11.2801 11.1210
u = 0.700899
a = 2.31801 0.38865I
b = 1.62469 + 0.27240I
11.2801 11.1210
u = 0.098502 + 1.344050I
a = 0.866199 0.095805I
b = 0.845917 0.031157I
5.30060 3.06078I 0.29039 + 3.85817I
u = 0.098502 + 1.344050I
a = 0.022822 + 0.627708I
b = 0.214088 1.154780I
5.30060 3.06078I 0.29039 + 3.85817I
u = 0.098502 1.344050I
a = 0.866199 + 0.095805I
b = 0.845917 + 0.031157I
5.30060 + 3.06078I 0.29039 3.85817I
u = 0.098502 1.344050I
a = 0.022822 0.627708I
b = 0.214088 + 1.154780I
5.30060 + 3.06078I 0.29039 3.85817I
u = 0.314282 + 1.335820I
a = 0.636808 + 0.819242I
b = 1.79937 0.02411I
7.00942 + 3.66737I 5.63248 4.77182I
u = 0.314282 + 1.335820I
a = 0.317399 + 1.272340I
b = 1.29450 0.59319I
7.00942 + 3.66737I 5.63248 4.77182I
u = 0.314282 1.335820I
a = 0.636808 0.819242I
b = 1.79937 + 0.02411I
7.00942 3.66737I 5.63248 + 4.77182I
u = 0.314282 1.335820I
a = 0.317399 1.272340I
b = 1.29450 + 0.59319I
7.00942 3.66737I 5.63248 + 4.77182I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.540846 + 0.315918I
a = 0.051854 0.150163I
b = 0.539179 1.227400I
0.93518 3.99671I 9.62845 + 1.40973I
u = 0.540846 + 0.315918I
a = 0.24507 2.12626I
b = 0.0193942 0.0975969I
0.93518 3.99671I 9.62845 + 1.40973I
u = 0.540846 0.315918I
a = 0.051854 + 0.150163I
b = 0.539179 + 1.227400I
0.93518 + 3.99671I 9.62845 1.40973I
u = 0.540846 0.315918I
a = 0.24507 + 2.12626I
b = 0.0193942 + 0.0975969I
0.93518 + 3.99671I 9.62845 1.40973I
u = 0.499495 + 0.232325I
a = 0.80490 + 1.31816I
b = 0.0999299 0.0558064I
0.125631 0.991368I 5.18428 + 5.58556I
u = 0.499495 + 0.232325I
a = 0.207202 + 0.015352I
b = 0.095801 0.845413I
0.125631 0.991368I 5.18428 + 5.58556I
u = 0.499495 0.232325I
a = 0.80490 1.31816I
b = 0.0999299 + 0.0558064I
0.125631 + 0.991368I 5.18428 5.58556I
u = 0.499495 0.232325I
a = 0.207202 0.015352I
b = 0.095801 + 0.845413I
0.125631 + 0.991368I 5.18428 5.58556I
u = 0.40672 + 1.44182I
a = 0.563943 + 0.961951I
b = 1.54904 0.71550I
0.79781 8.96070I 2.64189 + 5.31157I
u = 0.40672 + 1.44182I
a = 0.740402 0.865507I
b = 1.61633 + 0.42186I
0.79781 8.96070I 2.64189 + 5.31157I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.40672 1.44182I
a = 0.563943 0.961951I
b = 1.54904 + 0.71550I
0.79781 + 8.96070I 2.64189 5.31157I
u = 0.40672 1.44182I
a = 0.740402 + 0.865507I
b = 1.61633 0.42186I
0.79781 + 8.96070I 2.64189 5.31157I
u = 0.06052 + 1.52562I
a = 0.443758 0.312131I
b = 0.775017 0.227308I
5.50209 2.76341I 4.54493 + 5.66390I
u = 0.06052 + 1.52562I
a = 0.128639 + 0.513106I
b = 0.503049 0.658113I
5.50209 2.76341I 4.54493 + 5.66390I
u = 0.06052 1.52562I
a = 0.443758 + 0.312131I
b = 0.775017 + 0.227308I
5.50209 + 2.76341I 4.54493 5.66390I
u = 0.06052 1.52562I
a = 0.128639 0.513106I
b = 0.503049 + 0.658113I
5.50209 + 2.76341I 4.54493 5.66390I
14
III. I
u
3
= hu
9
u
8
+ · · · + b + u, u
8
u
7
+ · · · + a + 1, u
10
u
9
+ · · · + 2u + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
12
=
u
8
+ u
7
5u
6
+ 5u
5
9u
4
+ 7u
3
7u
2
+ 2u 1
u
9
+ u
8
5u
7
+ 5u
6
9u
5
+ 7u
4
7u
3
+ 2u
2
u
a
1
=
u
8
+ u
7
5u
6
+ 5u
5
9u
4
+ 7u
3
7u
2
+ 2u 1
u
9
+ 2u
8
5u
7
+ 9u
6
9u
5
+ 12u
4
6u
3
+ 5u
2
+ u + 1
a
3
=
u
8
u
7
+ 5u
6
4u
5
+ 8u
4
3u
3
+ 4u
2
+ 2u
u
9
u
8
+ 5u
7
4u
6
+ 8u
5
3u
4
+ 4u
3
+ 2u
2
u
a
10
=
2u
8
u
7
+ 9u
6
4u
5
+ 13u
4
2u
3
+ 8u
2
+ 4u + 2
2u
9
2u
8
+ 10u
7
9u
6
+ 17u
5
10u
4
+ 11u
3
+ u 1
a
11
=
u
9
+ 2u
8
6u
7
+ 9u
6
12u
5
+ 11u
4
7u
3
+ 2u
2
+ 2u 1
u
9
u
8
+ 5u
7
4u
6
+ 8u
5
3u
4
+ 4u
3
+ 2u
2
a
8
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
8
u
7
+ 5u
6
3u
5
+ 7u
4
+ 2u
2
+ 4u
u
9
+ 5u
7
+ 8u
5
+ 2u
4
+ 5u
3
+ 5u
2
+ u + 1
a
7
=
u
9
+ u
8
6u
7
+ 6u
6
13u
5
+ 10u
4
12u
3
+ 4u
2
3u + 1
u
8
+ 4u
6
+ 5u
4
+ 2u
3
+ 3u
2
+ 4u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
9
4u
8
+ 24u
7
20u
6
+ 44u
5
28u
4
+ 40u
3
8u
2
+ 12u
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
10
7u
9
+ ··· 8u + 1
c
2
, c
7
u
10
u
9
+ 4u
8
3u
7
+ 7u
6
4u
5
+ 7u
4
3u
3
+ 4u
2
+ 1
c
3
, c
12
u
10
+ u
9
2u
8
4u
7
3u
6
+ u
5
+ 6u
4
+ 7u
3
+ 6u
2
+ 3u + 1
c
4
, c
5
u
10
u
9
+ 6u
8
5u
7
+ 13u
6
7u
5
+ 12u
4
u
3
+ 4u
2
+ 2u + 1
c
6
, c
11
u
10
+ u
9
+ 4u
8
+ 3u
7
+ 7u
6
+ 4u
5
+ 7u
4
+ 3u
3
+ 4u
2
+ 1
c
8
u
10
+ u
9
+ 6u
8
+ 5u
7
+ 13u
6
+ 7u
5
+ 12u
4
+ u
3
+ 4u
2
2u + 1
c
9
u
10
4u
9
+ 6u
8
10u
7
+ 17u
6
13u
5
+ 11u
4
7u
3
2u
2
+ u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
10
y
9
19y
7
21y
6
+ 34y
5
+ 145y
4
+ 217y
3
+ 102y
2
4y + 1
c
2
, c
6
, c
7
c
11
y
10
+ 7y
9
+ ··· + 8y + 1
c
3
, c
12
y
10
5y
9
+ 6y
8
+ 6y
7
9y
6
9y
5
+ 6y
4
+ 11y
3
+ 6y
2
+ 3y + 1
c
4
, c
5
, c
8
y
10
+ 11y
9
+ ··· + 4y + 1
c
9
y
10
4y
9
+ ··· 5y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.250000 + 0.998657I
a = 0.59595 1.38352I
b = 1.53065 + 0.24927I
8.30263 0.98508I 8.00878 + 0.35212I
u = 0.250000 0.998657I
a = 0.59595 + 1.38352I
b = 1.53065 0.24927I
8.30263 + 0.98508I 8.00878 0.35212I
u = 0.692359 + 0.857180I
a = 0.929090 + 0.709584I
b = 1.251510 0.305111I
2.35435 2.60043I 0.40869 + 4.75693I
u = 0.692359 0.857180I
a = 0.929090 0.709584I
b = 1.251510 + 0.305111I
2.35435 + 2.60043I 0.40869 4.75693I
u = 0.159586 + 1.376540I
a = 0.576417 0.085459I
b = 0.025649 + 0.807097I
3.84271 + 6.23098I 0.71193 5.55731I
u = 0.159586 1.376540I
a = 0.576417 + 0.085459I
b = 0.025649 0.807097I
3.84271 6.23098I 0.71193 + 5.55731I
u = 0.00345 + 1.56150I
a = 0.310078 + 0.314723I
b = 0.492510 0.483102I
6.88666 3.66525I 2.21222 + 7.64965I
u = 0.00345 1.56150I
a = 0.310078 0.314723I
b = 0.492510 + 0.483102I
6.88666 + 3.66525I 2.21222 7.64965I
u = 0.286221 + 0.289922I
a = 0.93320 + 1.99841I
b = 0.312283 0.842541I
0.07240 4.46416I 0.40020 + 6.18186I
u = 0.286221 0.289922I
a = 0.93320 1.99841I
b = 0.312283 + 0.842541I
0.07240 + 4.46416I 0.40020 6.18186I
18
IV. I
u
4
= hau + b + 1, u
4
a + u
4
+ 3u
2
a + a
2
+ 4u
2
+ 2a + 4, u
5
+ 3u
3
+ 2u 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
12
=
a
au 1
a
1
=
a
u
2
a au 1
a
3
=
u
3
2u
u
4
au + 2u
2
+ u 1
a
10
=
u
3
u
2
+ 2u 1
u
3
a 2u
4
+ 2au 4u
2
a + 1
a
11
=
u
4
+ u
3
+ 2u
2
+ a + 2u + 1
u
4
2u
2
a
8
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
3
a u
3
au + a 2u
u
4
+ u
2
a au + 2u
2
+ u 1
a
7
=
u
3
a u
2
a 2au
u
2
a + u
3
+ 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
3u
3
+ 8u
2
6u 3
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
10
7u
9
+ ··· 7u + 1
c
2
, c
7
u
10
u
9
+ 4u
8
3u
7
+ 7u
6
3u
5
+ 7u
4
3u
3
+ 4u
2
u + 1
c
3
, c
12
u
10
+ 5u
9
+ 8u
8
+ 2u
7
8u
6
10u
5
2u
4
+ 5u
3
+ 6u
2
+ 3u + 1
c
4
, c
5
(u
5
+ 3u
3
+ 2u 1)
2
c
6
, c
11
u
10
+ u
9
+ 4u
8
+ 3u
7
+ 7u
6
+ 3u
5
+ 7u
4
+ 3u
3
+ 4u
2
+ u + 1
c
8
(u
5
+ 3u
3
+ 2u + 1)
2
c
9
(u
5
+ 2u
4
+ u
3
+ 2u
2
+ 2u 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
10
y
9
+ ··· y + 1
c
2
, c
6
, c
7
c
11
y
10
+ 7y
9
+ ··· + 7y + 1
c
3
, c
12
y
10
9y
9
+ 28y
8
36y
7
+ 34y
6
20y
5
+ 12y
4
5y
3
+ 2y
2
+ 3y + 1
c
4
, c
5
, c
8
(y
5
+ 6y
4
+ 13y
3
+ 12y
2
+ 4y 1)
2
c
9
(y
5
2y
4
3y
3
+ 4y
2
+ 8y 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.351694 + 0.989493I
a = 0.548693 0.777335I
b = 1.96214 + 0.26954I
5.97351 + 1.36579I 9.71244 4.93711I
u = 0.351694 + 0.989493I
a = 0.86761 + 1.67460I
b = 0.962140 0.269544I
5.97351 + 1.36579I 9.71244 4.93711I
u = 0.351694 0.989493I
a = 0.548693 + 0.777335I
b = 1.96214 0.26954I
5.97351 1.36579I 9.71244 + 4.93711I
u = 0.351694 0.989493I
a = 0.86761 1.67460I
b = 0.962140 + 0.269544I
5.97351 1.36579I 9.71244 + 4.93711I
u = 0.15201 + 1.49915I
a = 0.311870 + 0.594201I
b = 0.156612 0.557863I
5.78657 2.10101I 0.31723 3.66297I
u = 0.15201 + 1.49915I
a = 0.378818 + 0.066057I
b = 0.843388 + 0.557863I
5.78657 2.10101I 0.31723 3.66297I
u = 0.15201 1.49915I
a = 0.311870 0.594201I
b = 0.156612 + 0.557863I
5.78657 + 2.10101I 0.31723 + 3.66297I
u = 0.15201 1.49915I
a = 0.378818 0.066057I
b = 0.843388 0.557863I
5.78657 + 2.10101I 0.31723 + 3.66297I
u = 0.399372
a = 1.25197 + 1.75955I
b = 0.500000 0.702714I
0.373884 4.20960
u = 0.399372
a = 1.25197 1.75955I
b = 0.500000 + 0.702714I
0.373884 4.20960
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
10
7u
9
+ ··· 7u + 1)(u
10
7u
9
+ ··· 8u + 1)
· (u
19
+ 11u
18
+ ··· 9u 1)(u
46
+ 26u
45
+ ··· + 2067u + 121)
c
2
, c
7
(u
10
u
9
+ 4u
8
3u
7
+ 7u
6
4u
5
+ 7u
4
3u
3
+ 4u
2
+ 1)
· (u
10
u
9
+ 4u
8
3u
7
+ 7u
6
3u
5
+ 7u
4
3u
3
+ 4u
2
u + 1)
· (u
19
u
18
+ ··· u + 1)(u
46
2u
45
+ ··· 45u + 11)
c
3
, c
12
(u
10
+ u
9
2u
8
4u
7
3u
6
+ u
5
+ 6u
4
+ 7u
3
+ 6u
2
+ 3u + 1)
· (u
10
+ 5u
9
+ 8u
8
+ 2u
7
8u
6
10u
5
2u
4
+ 5u
3
+ 6u
2
+ 3u + 1)
· (u
19
u
18
+ ··· + 2u + 1)(u
46
2u
45
+ ··· + 117u + 7)
c
4
, c
5
(u
5
+ 3u
3
+ 2u 1)
2
· (u
10
u
9
+ 6u
8
5u
7
+ 13u
6
7u
5
+ 12u
4
u
3
+ 4u
2
+ 2u + 1)
· (u
19
8u
18
+ ··· + 40u 8)(u
23
+ 3u
22
+ ··· 11u 5)
2
c
6
, c
11
(u
10
+ u
9
+ 4u
8
+ 3u
7
+ 7u
6
+ 3u
5
+ 7u
4
+ 3u
3
+ 4u
2
+ u + 1)
· (u
10
+ u
9
+ 4u
8
+ 3u
7
+ 7u
6
+ 4u
5
+ 7u
4
+ 3u
3
+ 4u
2
+ 1)
· (u
19
u
18
+ ··· u + 1)(u
46
2u
45
+ ··· 45u + 11)
c
8
(u
5
+ 3u
3
+ 2u + 1)
2
· (u
10
+ u
9
+ 6u
8
+ 5u
7
+ 13u
6
+ 7u
5
+ 12u
4
+ u
3
+ 4u
2
2u + 1)
· (u
19
8u
18
+ ··· + 40u 8)(u
23
+ 3u
22
+ ··· 11u 5)
2
c
9
(u
5
+ 2u
4
+ u
3
+ 2u
2
+ 2u 1)
2
· (u
10
4u
9
+ 6u
8
10u
7
+ 17u
6
13u
5
+ 11u
4
7u
3
2u
2
+ u + 1)
· (u
19
+ 17u
18
+ ··· + 672u + 64)(u
23
8u
22
+ ··· 26u + 5)
2
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
10
y
9
19y
7
21y
6
+ 34y
5
+ 145y
4
+ 217y
3
+ 102y
2
4y + 1)
· (y
10
y
9
+ ··· y + 1)(y
19
+ 3y
18
+ ··· 5y 1)
· (y
46
6y
45
+ ··· 691857y + 14641)
c
2
, c
6
, c
7
c
11
(y
10
+ 7y
9
+ ··· + 8y + 1)(y
10
+ 7y
9
+ ··· + 7y + 1)
· (y
19
+ 11y
18
+ ··· 9y 1)(y
46
+ 26y
45
+ ··· + 2067y + 121)
c
3
, c
12
(y
10
9y
9
+ 28y
8
36y
7
+ 34y
6
20y
5
+ 12y
4
5y
3
+ 2y
2
+ 3y + 1)
· (y
10
5y
9
+ 6y
8
+ 6y
7
9y
6
9y
5
+ 6y
4
+ 11y
3
+ 6y
2
+ 3y + 1)
· (y
19
25y
18
+ ··· 8y 1)(y
46
42y
45
+ ··· + 4707y + 49)
c
4
, c
5
, c
8
((y
5
+ 6y
4
+ 13y
3
+ 12y
2
+ 4y 1)
2
)(y
10
+ 11y
9
+ ··· + 4y + 1)
· (y
19
+ 16y
18
+ ··· + 32y 64)(y
23
+ 21y
22
+ ··· + 51y 25)
2
c
9
((y
5
2y
4
3y
3
+ 4y
2
+ 8y 1)
2
)(y
10
4y
9
+ ··· 5y + 1)
· (y
19
9y
18
+ ··· 7168y 4096)(y
23
32y
22
+ ··· + 36y 25)
2
24