12n
0525
(K12n
0525
)
A knot diagram
1
Linearized knot diagam
3 5 9 7 2 11 1 4 3 12 6 4
Solving Sequence
3,9
4
5,10
2 6 1 8 7 12 11
c
3
c
9
c
2
c
5
c
1
c
8
c
7
c
12
c
11
c
4
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h730697u
21
+ 8724191u
20
+ ··· + 1495432b + 38274232,
1973739u
21
26703501u
20
+ ··· + 5981728a 159009976, u
22
+ 11u
21
+ ··· + 232u + 32i
I
u
2
= h−10u
29
+ 31u
28
+ ··· + 8b 6, 54u
29
a + 37u
29
+ ··· + 104a 100, u
30
5u
29
+ ··· 2u + 1i
I
u
3
= hu
11
+ 2u
10
+ 7u
9
+ 10u
8
+ 18u
7
+ 15u
6
+ 19u
5
+ 5u
4
+ 7u
3
2u
2
+ b + 2u,
u
11
u
10
5u
9
3u
8
8u
7
+ 3u
6
4u
5
+ 14u
4
2u
3
+ 8u
2
+ a 4u + 1,
u
12
+ 2u
11
+ 7u
10
+ 10u
9
+ 19u
8
+ 17u
7
+ 24u
6
+ 11u
5
+ 15u
4
+ 2u
3
+ 6u
2
+ 1i
I
u
4
= h−u
2
a + u
3
u
2
+ b + u, u
5
a 2u
4
a 4u
5
+ 5u
3
a + 5u
4
6u
2
a 11u
3
+ a
2
+ 5au + 9u
2
2a 10u,
u
6
u
5
+ 3u
4
2u
3
+ 3u
2
+ 1i
* 4 irreducible components of dim
C
= 0, with total 106 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h7.31×10
5
u
21
+8.72×10
6
u
20
+· · · +1.50×10
6
b+3.83×10
7
, 1.97×10
6
u
21
2.67 × 10
7
u
20
+ · · · + 5.98 × 10
6
a 1.59 × 10
8
, u
22
+ 11u
21
+ · · · + 232u + 32i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
0.329961u
21
+ 4.46418u
20
+ ··· + 167.160u + 26.5826
0.488619u
21
5.83389u
20
+ ··· 164.041u 25.5941
a
10
=
u
u
a
2
=
0.678659u
21
6.54536u
20
+ ··· 66.3494u 8.74650
0.549186u
21
+ 5.23031u
20
+ ··· + 73.2841u + 11.2249
a
6
=
0.309352u
21
2.39786u
20
+ ··· + 59.0207u + 10.7541
0.730680u
21
8.31181u
20
+ ··· 218.761u 33.2810
a
1
=
0.129473u
21
1.31505u
20
+ ··· + 6.93466u + 2.47838
0.549186u
21
+ 5.23031u
20
+ ··· + 73.2841u + 11.2249
a
8
=
u
u
3
+ u
a
7
=
0.770630u
21
+ 8.00468u
20
+ ··· + 111.293u + 15.5266
0.580458u
21
+ 6.16373u
20
+ ··· + 148.964u + 22.7178
a
12
=
0.459930u
21
4.72878u
20
+ ··· 87.5298u 12.2394
0.109153u
21
+ 1.41941u
20
+ ··· + 32.5161u + 4.14313
a
11
=
0.709930u
21
7.22878u
20
+ ··· 117.030u 16.7394
0.359153u
21
+ 3.66941u
20
+ ··· + 37.0161u + 4.14313
(ii) Obstruction class = 1
(iii) Cusp Shapes =
297700
186929
u
21
2758587
186929
u
20
+ ···
6073132
186929
u
1067206
186929
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
22
+ 13u
21
+ ··· + 6u + 1
c
2
, c
5
, c
6
c
11
u
22
+ u
21
+ ··· 2u + 1
c
3
, c
8
, c
9
u
22
+ 11u
21
+ ··· + 232u + 32
c
4
u
22
15u
21
+ ··· 480u + 64
c
7
, c
12
u
22
+ 13u
20
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
22
+ y
21
+ ··· + 34y + 1
c
2
, c
5
, c
6
c
11
y
22
+ 13y
21
+ ··· + 6y + 1
c
3
, c
8
, c
9
y
22
+ 11y
21
+ ··· + 3264y + 1024
c
4
y
22
+ 7y
21
+ ··· + 39936y + 4096
c
7
, c
12
y
22
+ 26y
21
+ ··· + 17y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.767910 + 0.699836I
a = 0.888145 0.307129I
b = 0.688888 0.277789I
0.286662 + 0.737446I 3.26178 2.36364I
u = 0.767910 0.699836I
a = 0.888145 + 0.307129I
b = 0.688888 + 0.277789I
0.286662 0.737446I 3.26178 + 2.36364I
u = 0.350255 + 1.075900I
a = 0.81263 1.53152I
b = 0.240178 + 0.810554I
2.88260 + 1.01233I 4.09792 + 3.96823I
u = 0.350255 1.075900I
a = 0.81263 + 1.53152I
b = 0.240178 0.810554I
2.88260 1.01233I 4.09792 3.96823I
u = 1.033280 + 0.527627I
a = 0.721729 0.194727I
b = 0.417851 1.163520I
8.25550 1.54810I 5.19018 + 2.03970I
u = 1.033280 0.527627I
a = 0.721729 + 0.194727I
b = 0.417851 + 1.163520I
8.25550 + 1.54810I 5.19018 2.03970I
u = 0.755708 + 0.364616I
a = 0.685218 + 0.575896I
b = 0.063685 + 1.154200I
4.85462 1.77876I 4.79807 + 3.91708I
u = 0.755708 0.364616I
a = 0.685218 0.575896I
b = 0.063685 1.154200I
4.85462 + 1.77876I 4.79807 3.91708I
u = 0.774895 + 1.020220I
a = 0.766277 + 0.769605I
b = 0.885411 0.402143I
0.61034 + 5.16314I 3.96974 2.90756I
u = 0.774895 1.020220I
a = 0.766277 0.769605I
b = 0.885411 + 0.402143I
0.61034 5.16314I 3.96974 + 2.90756I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.221500 + 0.677927I
a = 0.567702 0.117730I
b = 0.558982 + 1.253320I
6.12965 9.37239I 3.35170 + 5.78555I
u = 1.221500 0.677927I
a = 0.567702 + 0.117730I
b = 0.558982 1.253320I
6.12965 + 9.37239I 3.35170 5.78555I
u = 0.127935 + 1.398640I
a = 1.71401 0.32772I
b = 0.565971 + 0.644936I
6.04024 + 2.92164I 4.28614 + 0.75325I
u = 0.127935 1.398640I
a = 1.71401 + 0.32772I
b = 0.565971 0.644936I
6.04024 2.92164I 4.28614 0.75325I
u = 0.304981 + 0.451421I
a = 0.960223 0.185150I
b = 0.310004 0.375864I
0.090652 + 0.977959I 1.72728 6.82657I
u = 0.304981 0.451421I
a = 0.960223 + 0.185150I
b = 0.310004 + 0.375864I
0.090652 0.977959I 1.72728 + 6.82657I
u = 0.76091 + 1.25738I
a = 1.92912 + 0.01305I
b = 0.557890 1.095380I
5.97217 + 8.17735I 2.07600 6.92513I
u = 0.76091 1.25738I
a = 1.92912 0.01305I
b = 0.557890 + 1.095380I
5.97217 8.17735I 2.07600 + 6.92513I
u = 0.89339 + 1.20903I
a = 1.79322 + 0.05043I
b = 0.663517 + 1.230310I
4.4232 + 16.8853I 1.04656 9.40882I
u = 0.89339 1.20903I
a = 1.79322 0.05043I
b = 0.663517 1.230310I
4.4232 16.8853I 1.04656 + 9.40882I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.02066 + 1.63363I
a = 0.972799 + 0.791268I
b = 0.386878 1.096150I
3.03407 4.86939I 4.68451 + 3.83035I
u = 0.02066 1.63363I
a = 0.972799 0.791268I
b = 0.386878 + 1.096150I
3.03407 + 4.86939I 4.68451 3.83035I
7
II. I
u
2
= h−10u
29
+ 31u
28
+ · · · + 8b 6, 54u
29
a + 37u
29
+ · · · + 104a
100, u
30
5u
29
+ · · · 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
a
5
4
u
29
31
8
u
28
+ ··· +
25
8
u +
3
4
a
10
=
u
u
a
2
=
3
2
u
29
a +
5
4
u
29
+ ···
7
8
a +
3
8
7
8
u
29
a
1
8
u
29
+ ···
3
4
a
29
8
a
6
=
0.500000au
29
+ 2.12500u
29
+ ··· 1.62500a 2.75000
3
2
u
29
a
11
2
u
29
+ ··· + 2a +
69
8
a
1
=
5
8
u
29
a +
9
8
u
29
+ ···
13
8
a
13
4
7
8
u
29
a
1
8
u
29
+ ···
3
4
a
29
8
a
8
=
u
u
3
+ u
a
7
=
4u
29
a + 4u
29
+ ··· +
19
4
a
19
4
u
29
a +
9
4
u
29
+ ··· +
3
4
a
9
8
a
12
=
2u
29
a
5
8
u
29
+ ··· +
3
8
a +
15
8
5
4
u
29
a +
13
4
u
29
+ ···
5
8
a
49
8
a
11
=
3u
29
a +
15
8
u
29
+ ··· +
11
2
a
5
2
3
4
u
29
a
13
4
u
29
+ ···
5
4
a
1
8
(ii) Obstruction class = 1
(iii) Cusp Shapes = 19u
29
169
2
u
28
+ ··· + 26u
5
2
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
60
+ 30u
59
+ ··· + 31603u + 2209
c
2
, c
5
, c
6
c
11
u
60
2u
59
+ ··· + 81u + 47
c
3
, c
8
, c
9
(u
30
5u
29
+ ··· 2u + 1)
2
c
4
(u
30
+ 6u
29
+ ··· + 9u + 1)
2
c
7
, c
12
u
60
+ 5u
59
+ ··· 18u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
60
+ 6y
59
+ ··· 90081877y + 4879681
c
2
, c
5
, c
6
c
11
y
60
+ 30y
59
+ ··· + 31603y + 2209
c
3
, c
8
, c
9
(y
30
+ 9y
29
+ ··· + 14y + 1)
2
c
4
(y
30
+ 10y
29
+ ··· 9y + 1)
2
c
7
, c
12
y
60
+ 39y
59
+ ··· 40y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.408738 + 0.809128I
a = 1.47348 + 0.03228I
b = 0.881093 0.652728I
1.95297 + 0.83755I 3.80919 0.73546I
u = 0.408738 + 0.809128I
a = 0.65867 + 1.49537I
b = 0.483976 0.827208I
1.95297 + 0.83755I 3.80919 0.73546I
u = 0.408738 0.809128I
a = 1.47348 0.03228I
b = 0.881093 + 0.652728I
1.95297 0.83755I 3.80919 + 0.73546I
u = 0.408738 0.809128I
a = 0.65867 1.49537I
b = 0.483976 + 0.827208I
1.95297 0.83755I 3.80919 + 0.73546I
u = 0.204797 + 0.865298I
a = 0.913167 + 0.827489I
b = 0.717809 1.010560I
0.86908 + 5.05707I 0.52377 4.80046I
u = 0.204797 + 0.865298I
a = 0.79610 2.03259I
b = 0.378609 + 0.969447I
0.86908 + 5.05707I 0.52377 4.80046I
u = 0.204797 0.865298I
a = 0.913167 0.827489I
b = 0.717809 + 1.010560I
0.86908 5.05707I 0.52377 + 4.80046I
u = 0.204797 0.865298I
a = 0.79610 + 2.03259I
b = 0.378609 0.969447I
0.86908 5.05707I 0.52377 + 4.80046I
u = 0.846145 + 0.766192I
a = 0.742838 + 0.117308I
b = 0.633812 0.058357I
5.03543 2.48830I 2.08110 + 3.16963I
u = 0.846145 + 0.766192I
a = 0.161640 + 0.601130I
b = 0.123075 + 1.176780I
5.03543 2.48830I 2.08110 + 3.16963I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.846145 0.766192I
a = 0.742838 0.117308I
b = 0.633812 + 0.058357I
5.03543 + 2.48830I 2.08110 3.16963I
u = 0.846145 0.766192I
a = 0.161640 0.601130I
b = 0.123075 1.176780I
5.03543 + 2.48830I 2.08110 3.16963I
u = 0.476164 + 0.624124I
a = 1.065700 + 0.769850I
b = 0.560439 + 1.270490I
0.16540 7.91184I 1.25799 + 13.37489I
u = 0.476164 + 0.624124I
a = 3.03202 0.17816I
b = 0.670131 1.010730I
0.16540 7.91184I 1.25799 + 13.37489I
u = 0.476164 0.624124I
a = 1.065700 0.769850I
b = 0.560439 1.270490I
0.16540 + 7.91184I 1.25799 13.37489I
u = 0.476164 0.624124I
a = 3.03202 + 0.17816I
b = 0.670131 + 1.010730I
0.16540 + 7.91184I 1.25799 13.37489I
u = 0.843824 + 0.910765I
a = 0.922245 + 0.095668I
b = 0.146948 + 1.374310I
5.24308 3.14036I 3.38309 + 6.95597I
u = 0.843824 + 0.910765I
a = 0.418535 + 0.014710I
b = 0.036650 + 0.609588I
5.24308 3.14036I 3.38309 + 6.95597I
u = 0.843824 0.910765I
a = 0.922245 0.095668I
b = 0.146948 1.374310I
5.24308 + 3.14036I 3.38309 6.95597I
u = 0.843824 0.910765I
a = 0.418535 0.014710I
b = 0.036650 0.609588I
5.24308 + 3.14036I 3.38309 6.95597I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.535931 + 0.532997I
a = 1.74162 0.15387I
b = 0.945912 + 0.839676I
1.99448 4.75213I 1.25920 + 8.38226I
u = 0.535931 + 0.532997I
a = 1.15336 2.63260I
b = 0.461109 0.821998I
1.99448 4.75213I 1.25920 + 8.38226I
u = 0.535931 0.532997I
a = 1.74162 + 0.15387I
b = 0.945912 0.839676I
1.99448 + 4.75213I 1.25920 8.38226I
u = 0.535931 0.532997I
a = 1.15336 + 2.63260I
b = 0.461109 + 0.821998I
1.99448 + 4.75213I 1.25920 8.38226I
u = 0.009746 + 0.748854I
a = 0.263930 0.170722I
b = 0.891285 0.086936I
3.73099 + 2.66963I 10.94282 2.46654I
u = 0.009746 + 0.748854I
a = 2.60774 1.78017I
b = 0.695330 + 0.857378I
3.73099 + 2.66963I 10.94282 2.46654I
u = 0.009746 0.748854I
a = 0.263930 + 0.170722I
b = 0.891285 + 0.086936I
3.73099 2.66963I 10.94282 + 2.46654I
u = 0.009746 0.748854I
a = 2.60774 + 1.78017I
b = 0.695330 0.857378I
3.73099 2.66963I 10.94282 + 2.46654I
u = 1.008520 + 0.761169I
a = 1.152310 + 0.354766I
b = 0.976428 + 0.128566I
2.70377 + 3.89986I 0.32016 2.93300I
u = 1.008520 + 0.761169I
a = 0.479203 0.132479I
b = 0.523001 1.118150I
2.70377 + 3.89986I 0.32016 2.93300I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.008520 0.761169I
a = 1.152310 0.354766I
b = 0.976428 0.128566I
2.70377 3.89986I 0.32016 + 2.93300I
u = 1.008520 0.761169I
a = 0.479203 + 0.132479I
b = 0.523001 + 1.118150I
2.70377 3.89986I 0.32016 + 2.93300I
u = 0.716463 + 1.086870I
a = 0.985703 + 0.963170I
b = 0.637549 0.440747I
4.00624 3.41764I 0.54348 + 2.60438I
u = 0.716463 + 1.086870I
a = 1.73164 + 0.46125I
b = 0.354117 + 1.056240I
4.00624 3.41764I 0.54348 + 2.60438I
u = 0.716463 1.086870I
a = 0.985703 0.963170I
b = 0.637549 + 0.440747I
4.00624 + 3.41764I 0.54348 2.60438I
u = 0.716463 1.086870I
a = 1.73164 0.46125I
b = 0.354117 1.056240I
4.00624 + 3.41764I 0.54348 2.60438I
u = 0.464563 + 0.517217I
a = 0.810151 0.727418I
b = 0.576786 1.098220I
0.97854 + 2.53138I 0.41612 5.99517I
u = 0.464563 + 0.517217I
a = 0.46286 + 1.86979I
b = 0.737137 0.620730I
0.97854 + 2.53138I 0.41612 5.99517I
u = 0.464563 0.517217I
a = 0.810151 + 0.727418I
b = 0.576786 + 1.098220I
0.97854 2.53138I 0.41612 + 5.99517I
u = 0.464563 0.517217I
a = 0.46286 1.86979I
b = 0.737137 + 0.620730I
0.97854 2.53138I 0.41612 + 5.99517I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.037400 + 0.901379I
a = 1.183640 + 0.552154I
b = 0.465103 + 1.121610I
7.97522 + 6.40080I 3.44445 6.75759I
u = 1.037400 + 0.901379I
a = 0.145261 + 0.219918I
b = 0.19421 1.45130I
7.97522 + 6.40080I 3.44445 6.75759I
u = 1.037400 0.901379I
a = 1.183640 0.552154I
b = 0.465103 1.121610I
7.97522 6.40080I 3.44445 + 6.75759I
u = 1.037400 0.901379I
a = 0.145261 0.219918I
b = 0.19421 + 1.45130I
7.97522 6.40080I 3.44445 + 6.75759I
u = 0.862751 + 1.092420I
a = 1.077000 0.739852I
b = 1.047710 + 0.340566I
1.66664 10.74240I 0. + 6.67563I
u = 0.862751 + 1.092420I
a = 1.77506 0.35041I
b = 0.627078 1.150130I
1.66664 10.74240I 0. + 6.67563I
u = 0.862751 1.092420I
a = 1.077000 + 0.739852I
b = 1.047710 0.340566I
1.66664 + 10.74240I 0. 6.67563I
u = 0.862751 1.092420I
a = 1.77506 + 0.35041I
b = 0.627078 + 1.150130I
1.66664 + 10.74240I 0. 6.67563I
u = 0.173166 + 1.400750I
a = 1.367910 0.170007I
b = 0.212711 0.577463I
4.99765 + 1.93280I 0. 5.83991I
u = 0.173166 + 1.400750I
a = 1.38631 0.99061I
b = 0.646364 + 0.999117I
4.99765 + 1.93280I 0. 5.83991I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.173166 1.400750I
a = 1.367910 + 0.170007I
b = 0.212711 + 0.577463I
4.99765 1.93280I 0. + 5.83991I
u = 0.173166 1.400750I
a = 1.38631 + 0.99061I
b = 0.646364 0.999117I
4.99765 1.93280I 0. + 5.83991I
u = 1.00992 + 1.06850I
a = 1.291960 + 0.152355I
b = 0.39965 1.37579I
7.50048 + 1.00444I 0
u = 1.00992 + 1.06850I
a = 0.154134 + 0.113540I
b = 0.344881 + 1.084600I
7.50048 + 1.00444I 0
u = 1.00992 1.06850I
a = 1.291960 0.152355I
b = 0.39965 + 1.37579I
7.50048 1.00444I 0
u = 1.00992 1.06850I
a = 0.154134 0.113540I
b = 0.344881 1.084600I
7.50048 1.00444I 0
u = 0.237396 + 0.363229I
a = 0.87244 1.36981I
b = 0.849393 + 0.936354I
1.67828 1.77422I 0.88602 3.46618I
u = 0.237396 + 0.363229I
a = 0.74915 + 5.11939I
b = 0.392284 + 0.725566I
1.67828 1.77422I 0.88602 3.46618I
u = 0.237396 0.363229I
a = 0.87244 + 1.36981I
b = 0.849393 0.936354I
1.67828 + 1.77422I 0.88602 + 3.46618I
u = 0.237396 0.363229I
a = 0.74915 5.11939I
b = 0.392284 0.725566I
1.67828 + 1.77422I 0.88602 + 3.46618I
16
III.
I
u
3
= hu
11
+2u
10
+· · ·+b+2u, u
11
u
10
+· · ·+a+1, u
12
+2u
11
+· · ·+6u
2
+1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
u
11
+ u
10
+ 5u
9
+ 3u
8
+ 8u
7
3u
6
+ 4u
5
14u
4
+ 2u
3
8u
2
+ 4u 1
u
11
2u
10
+ ··· + 2u
2
2u
a
10
=
u
u
a
2
=
2u
11
2u
10
+ ··· u + 6
2u
11
+ 4u
10
+ ··· + 4u 1
a
6
=
u
11
+ 3u
9
4u
8
2u
7
22u
6
13u
5
38u
4
10u
3
24u
2
+ u 7
2u
11
4u
10
+ ··· 6u + 1
a
1
=
2u
10
+ 5u
9
+ ··· + 3u + 5
2u
11
+ 4u
10
+ ··· + 4u 1
a
8
=
u
u
3
+ u
a
7
=
u
11
3u
10
+ ··· 2u 3
u
10
+ 2u
9
+ 6u
8
+ 8u
7
+ 13u
6
+ 9u
5
+ 11u
4
+ 2u
3
+ 3u
2
u + 1
a
12
=
u
11
u
10
+ ··· u + 4
2u
11
+ 5u
10
+ ··· + 3u
2
+ 5u
a
11
=
u
11
2u
10
+ ··· 4u 2
u
11
+ 3u
10
+ 8u
9
+ 14u
8
+ 21u
7
+ 22u
6
+ 20u
5
+ 12u
4
+ 4u
3
+ u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 7u
11
13u
10
41u
9
49u
8
86u
7
47u
6
71u
5
+ 13u
4
26u
3
+ 32u
2
13u + 14
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
12
7u
11
+ ··· 9u + 1
c
2
, c
6
u
12
+ u
11
+ ··· + u + 1
c
3
u
12
+ 2u
11
+ ··· + 6u
2
+ 1
c
4
u
12
2u
11
+ ··· 2u + 1
c
5
, c
11
u
12
u
11
+ ··· u + 1
c
7
, c
12
u
12
+ 2u
10
u
9
+ u
8
2u
7
+ u
6
+ 4u
4
+ 3u
3
2u
2
+ 1
c
8
, c
9
u
12
2u
11
+ ··· + 6u
2
+ 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
12
+ 3y
11
+ ··· 11y + 1
c
2
, c
5
, c
6
c
11
y
12
+ 7y
11
+ ··· + 9y + 1
c
3
, c
8
, c
9
y
12
+ 10y
11
+ ··· + 12y + 1
c
4
y
12
+ 6y
11
+ ··· 2y + 1
c
7
, c
12
y
12
+ 4y
11
+ ··· 4y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.398201 + 0.944382I
a = 0.90750 1.42868I
b = 0.101632 + 0.556849I
2.45692 + 1.58415I 2.68356 4.01575I
u = 0.398201 0.944382I
a = 0.90750 + 1.42868I
b = 0.101632 0.556849I
2.45692 1.58415I 2.68356 + 4.01575I
u = 0.009554 + 1.336590I
a = 1.96403 + 0.31123I
b = 0.618206 0.752212I
6.04841 3.70923I 4.35790 + 9.04746I
u = 0.009554 1.336590I
a = 1.96403 0.31123I
b = 0.618206 + 0.752212I
6.04841 + 3.70923I 4.35790 9.04746I
u = 0.321162 + 0.526918I
a = 2.45149 + 1.05480I
b = 0.642424 + 1.102360I
0.26042 7.07580I 3.22594 + 4.98075I
u = 0.321162 0.526918I
a = 2.45149 1.05480I
b = 0.642424 1.102360I
0.26042 + 7.07580I 3.22594 4.98075I
u = 0.008480 + 0.565991I
a = 0.23065 + 2.01576I
b = 0.746714 0.688145I
2.91227 + 3.67114I 6.22425 5.54178I
u = 0.008480 0.565991I
a = 0.23065 2.01576I
b = 0.746714 + 0.688145I
2.91227 3.67114I 6.22425 + 5.54178I
u = 1.04086 + 1.00123I
a = 0.678256 0.226364I
b = 0.116334 1.202190I
7.51749 + 3.74982I 4.74315 3.41984I
u = 1.04086 1.00123I
a = 0.678256 + 0.226364I
b = 0.116334 + 1.202190I
7.51749 3.74982I 4.74315 + 3.41984I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.11683 + 1.44227I
a = 0.803868 0.992511I
b = 0.488896 + 1.051410I
4.04318 + 5.16032I 4.25149 6.22222I
u = 0.11683 1.44227I
a = 0.803868 + 0.992511I
b = 0.488896 1.051410I
4.04318 5.16032I 4.25149 + 6.22222I
21
IV. I
u
4
=
h−u
2
a+u
3
u
2
+b+u, u
5
a4u
5
+· · ·+a
2
2a, u
6
u
5
+3 u
4
2u
3
+3 u
2
+1 i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
a
u
2
a u
3
+ u
2
u
a
10
=
u
u
a
2
=
u
5
a + u
4
a 2u
5
u
3
a + 2u
4
4u
3
+ 3u
2
a 4u + 2
u
5
a u
4
a + u
5
+ 2u
3
a u
4
u
2
a + 2u
3
+ au u
2
+ 2u 1
a
6
=
u
3
a 2u
4
+ 3u
3
5u
2
+ a + 3u 3
u
5
u
3
a + u
2
a au + 2u
2
u + 2
a
1
=
u
5
+ u
3
a + u
4
u
2
a 2u
3
+ au + 2u
2
a 2u + 1
u
5
a u
4
a + u
5
+ 2u
3
a u
4
u
2
a + 2u
3
+ au u
2
+ 2u 1
a
8
=
u
u
3
+ u
a
7
=
u
5
a u
4
a u
5
+ 3u
3
a + u
4
2u
2
a 3u
3
+ 2au + 2u
2
2u
u
3
a + u
4
au + 2u
2
+ 1
a
12
=
u
5
+ 2u
4
u
2
a 3u
3
+ 4u
2
a 3u + 2
u
4
a + u
5
+ u
3
a 2u
4
u
2
a + 3u
3
+ au 3u
2
+ 2u 2
a
11
=
u
5
a u
4
a u
5
+ 2u
3
a + 2u
4
2u
2
a 3u
3
+ au + 4u
2
3u + 1
u
5
a u
3
a u
4
+ u
3
2u
2
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
+ 5u
4
u
3
+ 11u
2
9u + 9
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
12
7u
11
+ ··· 7u + 1
c
2
, c
6
u
12
+ u
11
+ ··· + u + 1
c
3
(u
6
u
5
+ 3u
4
2u
3
+ 3u
2
+ 1)
2
c
4
(u
6
+ 2u
4
+ 2u
3
+ u + 1)
2
c
5
, c
11
u
12
u
11
+ ··· u + 1
c
7
, c
12
u
12
+ 4u
10
+ 5u
9
+ 6u
8
+ 11u
7
+ 9u
6
+ 6u
5
+ 2u
4
2u
3
2u
2
+ 1
c
8
, c
9
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 3u
2
+ 1)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
12
+ 3y
11
+ ··· + 3y + 1
c
2
, c
5
, c
6
c
11
y
12
+ 7y
11
+ ··· + 7y + 1
c
3
, c
8
, c
9
(y
6
+ 5y
5
+ 11y
4
+ 16y
3
+ 15y
2
+ 6y + 1)
2
c
4
(y
6
+ 4y
5
+ 4y
4
2y
3
y + 1)
2
c
7
, c
12
y
12
+ 8y
11
+ ··· 4y + 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.751720 + 0.952459I
a = 1.161910 + 0.208933I
b = 0.169435 + 1.321240I
5.66414 2.84527I 10.09526 1.04786I
u = 0.751720 + 0.952459I
a = 0.214542 + 0.486127I
b = 0.095489 0.744618I
5.66414 2.84527I 10.09526 1.04786I
u = 0.751720 0.952459I
a = 1.161910 0.208933I
b = 0.169435 1.321240I
5.66414 + 2.84527I 10.09526 + 1.04786I
u = 0.751720 0.952459I
a = 0.214542 0.486127I
b = 0.095489 + 0.744618I
5.66414 + 2.84527I 10.09526 + 1.04786I
u = 0.081708 + 1.363140I
a = 1.41421 + 0.28398I
b = 0.456929 + 0.708982I
5.25930 1.24964I 4.40551 3.55084I
u = 0.081708 + 1.363140I
a = 1.40363 + 1.20387I
b = 0.642260 0.996545I
5.25930 1.24964I 4.40551 3.55084I
u = 0.081708 1.363140I
a = 1.41421 0.28398I
b = 0.456929 0.708982I
5.25930 + 1.24964I 4.40551 + 3.55084I
u = 0.081708 1.363140I
a = 1.40363 1.20387I
b = 0.642260 + 0.996545I
5.25930 + 1.24964I 4.40551 + 3.55084I
u = 0.170012 + 0.579072I
a = 1.72240 + 0.01156I
b = 0.828025 0.974687I
2.04978 + 2.32699I 7.18975 6.61882I
u = 0.170012 + 0.579072I
a = 1.35194 3.13856I
b = 0.506239 + 0.595906I
2.04978 + 2.32699I 7.18975 6.61882I
25
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.170012 0.579072I
a = 1.72240 0.01156I
b = 0.828025 + 0.974687I
2.04978 2.32699I 7.18975 + 6.61882I
u = 0.170012 0.579072I
a = 1.35194 + 3.13856I
b = 0.506239 0.595906I
2.04978 2.32699I 7.18975 + 6.61882I
26
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
12
7u
11
+ ··· 7u + 1)(u
12
7u
11
+ ··· 9u + 1)
· (u
22
+ 13u
21
+ ··· + 6u + 1)(u
60
+ 30u
59
+ ··· + 31603u + 2209)
c
2
, c
6
(u
12
+ u
11
+ ··· + u + 1)(u
12
+ u
11
+ ··· + u + 1)(u
22
+ u
21
+ ··· 2u + 1)
· (u
60
2u
59
+ ··· + 81u + 47)
c
3
((u
6
u
5
+ 3u
4
2u
3
+ 3u
2
+ 1)
2
)(u
12
+ 2u
11
+ ··· + 6u
2
+ 1)
· (u
22
+ 11u
21
+ ··· + 232u + 32)(u
30
5u
29
+ ··· 2u + 1)
2
c
4
((u
6
+ 2u
4
+ 2u
3
+ u + 1)
2
)(u
12
2u
11
+ ··· 2u + 1)
· (u
22
15u
21
+ ··· 480u + 64)(u
30
+ 6u
29
+ ··· + 9u + 1)
2
c
5
, c
11
(u
12
u
11
+ ··· u + 1)(u
12
u
11
+ ··· u + 1)(u
22
+ u
21
+ ··· 2u + 1)
· (u
60
2u
59
+ ··· + 81u + 47)
c
7
, c
12
(u
12
+ 2u
10
u
9
+ u
8
2u
7
+ u
6
+ 4u
4
+ 3u
3
2u
2
+ 1)
· (u
12
+ 4u
10
+ 5u
9
+ 6u
8
+ 11u
7
+ 9u
6
+ 6u
5
+ 2u
4
2u
3
2u
2
+ 1)
· (u
22
+ 13u
20
+ ··· u + 1)(u
60
+ 5u
59
+ ··· 18u + 1)
c
8
, c
9
((u
6
+ u
5
+ 3u
4
+ 2u
3
+ 3u
2
+ 1)
2
)(u
12
2u
11
+ ··· + 6u
2
+ 1)
· (u
22
+ 11u
21
+ ··· + 232u + 32)(u
30
5u
29
+ ··· 2u + 1)
2
27
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
12
+ 3y
11
+ ··· + 3y + 1)(y
12
+ 3y
11
+ ··· 11y + 1)
· (y
22
+ y
21
+ ··· + 34y + 1)(y
60
+ 6y
59
+ ··· 9.00819 × 10
7
y + 4879681)
c
2
, c
5
, c
6
c
11
(y
12
+ 7y
11
+ ··· + 9y + 1)(y
12
+ 7y
11
+ ··· + 7y + 1)
· (y
22
+ 13y
21
+ ··· + 6y + 1)(y
60
+ 30y
59
+ ··· + 31603y + 2209)
c
3
, c
8
, c
9
(y
6
+ 5y
5
+ 11y
4
+ 16y
3
+ 15y
2
+ 6y + 1)
2
· (y
12
+ 10y
11
+ ··· + 12y + 1)(y
22
+ 11y
21
+ ··· + 3264y + 1024)
· (y
30
+ 9y
29
+ ··· + 14y + 1)
2
c
4
((y
6
+ 4y
5
+ 4y
4
2y
3
y + 1)
2
)(y
12
+ 6y
11
+ ··· 2y + 1)
· (y
22
+ 7y
21
+ ··· + 39936y + 4096)(y
30
+ 10y
29
+ ··· 9y + 1)
2
c
7
, c
12
(y
12
+ 4y
11
+ ··· 4y + 1)(y
12
+ 8y
11
+ ··· 4y + 1)
· (y
22
+ 26y
21
+ ··· + 17y + 1)(y
60
+ 39y
59
+ ··· 40y + 1)
28