12n
0527
(K12n
0527
)
A knot diagram
1
Linearized knot diagam
3 6 10 1 8 2 10 12 6 1 9 5
Solving Sequence
2,6 3,10
4 7 8 1 11 5 9 12
c
2
c
3
c
6
c
7
c
1
c
10
c
5
c
9
c
12
c
4
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h378975u
30
+ 3018590u
29
+ ··· + 228821b 6857553,
12363803u
30
+ 93404174u
29
+ ··· + 2288210a 220745786, u
31
+ 8u
30
+ ··· 62u 10i
I
u
2
= h3u
18
6u
17
+ ··· + 2b + 2, 2u
18
a + 10u
18
+ ··· 3a + 21, u
19
3u
18
+ ··· + 6u 1i
I
u
3
= hu
14
4u
13
+ 12u
12
24u
11
+ 40u
10
52u
9
+ 57u
8
49u
7
+ 34u
6
18u
5
+ 6u
4
2u
3
+ b u 1,
u
14
3u
13
+ 7u
12
8u
11
+ 4u
10
+ 12u
9
34u
8
+ 58u
7
68u
6
+ 62u
5
44u
4
+ 24u
3
11u
2
+ 2a + 5u 4,
u
15
5u
14
+ ··· + 4u 2i
I
u
4
= ha
3
u a
3
+ a
2
u a
2
+ 3au + 3b + u 1, a
4
3a
2
u a
2
+ 2au + 2a 2u 2, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 92 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3.79 × 10
5
u
30
+ 3 .02 × 10
6
u
29
+ · · · + 2.29 × 10
5
b 6.86 × 10
6
, 1.24 ×
10
7
u
30
+9.34×10
7
u
29
+· · ·+2.29×10
6
a2.21×10
8
, u
31
+8u
30
+· · ·62u10i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
5.40326u
30
40.8198u
29
+ ··· + 422.621u + 96.4709
1.65621u
30
13.1919u
29
+ ··· + 143.370u + 29.9691
a
4
=
7.59786u
30
57.1445u
29
+ ··· + 582.083u + 133.417
2.53663u
30
19.5572u
29
+ ··· + 189.049u + 39.5947
a
7
=
u
u
a
8
=
5.06123u
30
37.5873u
29
+ ··· + 394.034u + 92.8223
1.48595u
30
10.9890u
29
+ ··· + 92.6272u + 21.5867
a
1
=
u
2
+ 1
u
4
a
11
=
2.01783u
30
15.2733u
29
+ ··· + 183.285u + 43.3542
0.349286u
30
3.00908u
29
+ ··· + 131.287u + 29.6924
a
5
=
4.17727u
30
31.3609u
29
+ ··· + 302.304u + 68.6386
2.36578u
30
18.6263u
29
+ ··· + 194.064u + 41.2391
a
9
=
5.40326u
30
40.8198u
29
+ ··· + 422.621u + 96.4709
0.906058u
30
7.88315u
29
+ ··· + 48.2085u + 5.90550
a
12
=
2.85487u
30
+ 20.6866u
29
+ ··· 172.102u 39.1897
0.816394u
30
6.48291u
29
+ ··· + 188.974u + 41.4018
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1324375
228821
u
30
9572041
228821
u
29
+ ··· +
117530906
228821
u +
30556088
228821
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
31
+ 20u
30
+ ··· + 684u 100
c
2
, c
6
u
31
8u
30
+ ··· 62u + 10
c
3
, c
9
u
31
+ u
30
+ ··· + u + 1
c
4
, c
5
, c
12
u
31
u
30
+ ··· + 4u + 1
c
7
, c
10
u
31
3u
30
+ ··· + 5u + 1
c
8
, c
11
u
31
11u
30
+ ··· 122u + 10
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
31
12y
30
+ ··· + 1252656y 10000
c
2
, c
6
y
31
+ 20y
30
+ ··· + 684y 100
c
3
, c
9
y
31
29y
30
+ ··· + 23y 1
c
4
, c
5
, c
12
y
31
+ 25y
30
+ ··· 6y 1
c
7
, c
10
y
31
29y
30
+ ··· 105y 1
c
8
, c
11
y
31
+ 11y
30
+ ··· 756y 100
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.443501 + 0.881894I
a = 1.036980 0.315517I
b = 1.093880 0.219923I
1.62568 2.07908I 8.15071 + 3.76851I
u = 0.443501 0.881894I
a = 1.036980 + 0.315517I
b = 1.093880 + 0.219923I
1.62568 + 2.07908I 8.15071 3.76851I
u = 0.123465 + 0.920678I
a = 0.63652 + 1.53942I
b = 0.45891 + 1.91281I
2.16097 0.39271I 5.96156 1.22021I
u = 0.123465 0.920678I
a = 0.63652 1.53942I
b = 0.45891 1.91281I
2.16097 + 0.39271I 5.96156 + 1.22021I
u = 0.068946 + 1.101890I
a = 0.291434 0.967985I
b = 0.88132 1.46936I
0.870446 + 0.149756I 6.74421 + 0.11134I
u = 0.068946 1.101890I
a = 0.291434 + 0.967985I
b = 0.88132 + 1.46936I
0.870446 0.149756I 6.74421 0.11134I
u = 1.104440 + 0.109617I
a = 1.138250 0.420860I
b = 0.173388 0.107344I
4.10069 3.26217I 7.80399 + 3.14222I
u = 1.104440 0.109617I
a = 1.138250 + 0.420860I
b = 0.173388 + 0.107344I
4.10069 + 3.26217I 7.80399 3.14222I
u = 1.120450 + 0.048451I
a = 1.313720 0.318482I
b = 0.155061 + 0.121217I
1.92223 + 10.09630I 6.60164 5.79982I
u = 1.120450 0.048451I
a = 1.313720 + 0.318482I
b = 0.155061 0.121217I
1.92223 10.09630I 6.60164 + 5.79982I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.805043 + 0.864131I
a = 0.256473 + 0.055333I
b = 0.056375 0.617551I
6.77889 + 0.72800I 1.42894 3.61029I
u = 0.805043 0.864131I
a = 0.256473 0.055333I
b = 0.056375 + 0.617551I
6.77889 0.72800I 1.42894 + 3.61029I
u = 0.106357 + 1.194790I
a = 0.585604 + 0.611175I
b = 0.11850 + 1.64905I
4.49263 + 1.56261I 18.4490 2.4112I
u = 0.106357 1.194790I
a = 0.585604 0.611175I
b = 0.11850 1.64905I
4.49263 1.56261I 18.4490 + 2.4112I
u = 0.255201 + 0.720413I
a = 0.353004 0.498369I
b = 0.074523 0.477887I
0.379147 1.186170I 4.44708 + 5.86244I
u = 0.255201 0.720413I
a = 0.353004 + 0.498369I
b = 0.074523 + 0.477887I
0.379147 + 1.186170I 4.44708 5.86244I
u = 0.287076 + 1.208000I
a = 0.591625 1.023160I
b = 0.45808 2.00681I
0.11428 4.16519I 8.00000 + 3.45619I
u = 0.287076 1.208000I
a = 0.591625 + 1.023160I
b = 0.45808 + 2.00681I
0.11428 + 4.16519I 8.00000 3.45619I
u = 0.839144 + 0.959645I
a = 0.126368 + 0.182032I
b = 0.546509 + 0.211498I
6.52389 + 5.44822I 3.50283 + 0.I
u = 0.839144 0.959645I
a = 0.126368 0.182032I
b = 0.546509 0.211498I
6.52389 5.44822I 3.50283 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.55841 + 1.36375I
a = 0.031464 1.250450I
b = 0.13295 2.63897I
6.0602 16.0464I 0
u = 0.55841 1.36375I
a = 0.031464 + 1.250450I
b = 0.13295 + 2.63897I
6.0602 + 16.0464I 0
u = 0.523642 + 0.015251I
a = 1.36675 + 1.50756I
b = 0.340155 + 0.377383I
3.48762 1.00607I 1.97801 + 2.70347I
u = 0.523642 0.015251I
a = 1.36675 1.50756I
b = 0.340155 0.377383I
3.48762 + 1.00607I 1.97801 2.70347I
u = 0.47698 + 1.40113I
a = 0.090020 + 1.114860I
b = 0.12726 + 2.47258I
8.91065 8.81717I 0
u = 0.47698 1.40113I
a = 0.090020 1.114860I
b = 0.12726 2.47258I
8.91065 + 8.81717I 0
u = 0.59892 + 1.37175I
a = 0.349486 + 0.852345I
b = 0.51025 + 1.90344I
8.00712 2.87739I 0
u = 0.59892 1.37175I
a = 0.349486 0.852345I
b = 0.51025 1.90344I
8.00712 + 2.87739I 0
u = 0.48869 + 1.42613I
a = 0.291444 0.902646I
b = 0.69470 2.05198I
6.65609 + 4.30866I 0
u = 0.48869 1.42613I
a = 0.291444 + 0.902646I
b = 0.69470 + 2.05198I
6.65609 4.30866I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.322569
a = 1.42830
b = 0.609341
1.08738 6.65470
8
II. I
u
2
=
h3u
18
6u
17
+· · ·+2b+2, 2u
18
a+10u
18
+· · ·3a+21, u
19
3u
18
+· · ·+6u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
a
3
2
u
18
+ 3u
17
+ ··· +
9
2
u 1
a
4
=
3
2
u
18
+ 4u
17
+ ··· +
39
2
u 4
3
2
u
18
a
1
2
u
18
+ ···
3
2
a + 3
a
7
=
u
u
a
8
=
3
2
u
18
a + u
18
+ ···
5
2
a + 4
1
2
u
18
a 2u
18
+ ···
3
2
a + 1
a
1
=
u
2
+ 1
u
4
a
11
=
u
18
5
2
u
17
+ ··· + a +
5
2
5
2
u
18
+
13
2
u
17
+ ··· + 8u
3
2
a
5
=
1
2
u
18
a
3
2
u
18
+ ··· + a 5
u
18
a
1
2
u
18
+ ···
5
2
a + 3
a
9
=
a
3
2
u
18
+ 3u
17
+ ··· +
9
2
u 1
a
12
=
1
2
u
18
a + u
18
+ ··· +
3
2
a +
5
2
u
18
a
3
2
u
18
+ ··· +
1
2
a +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 8u
18
+ 25u
17
84u
16
+ 166u
15
312u
14
+ 471u
13
637u
12
+ 808u
11
877u
10
+
947u
9
869u
8
+ 754u
7
616u
6
+ 432u
5
334u
4
+ 206u
3
115u
2
+ 43u 11
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
19
+ 13u
18
+ ··· + 2u 1)
2
c
2
, c
6
(u
19
+ 3u
18
+ ··· + 6u + 1)
2
c
3
, c
9
u
38
+ u
37
+ ··· + 5696u + 908
c
4
, c
5
, c
12
u
38
3u
37
+ ··· + 10u
2
+ 4
c
7
, c
10
u
38
5u
37
+ ··· 28450u + 4625
c
8
, c
11
(u
19
+ 5u
18
+ ··· + 20u + 7)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
19
11y
18
+ ··· + 38y 1)
2
c
2
, c
6
(y
19
+ 13y
18
+ ··· + 2y 1)
2
c
3
, c
9
y
38
35y
37
+ ··· 10830384y + 824464
c
4
, c
5
, c
12
y
38
+ 5y
37
+ ··· + 80y + 16
c
7
, c
10
y
38
37y
37
+ ··· + 236310000y + 21390625
c
8
, c
11
(y
19
+ 11y
18
+ ··· 300y 49)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.041110 + 0.058191I
a = 1.346300 0.087992I
b = 0.070727 + 0.324415I
4.78729 1.81592I 6.58607 + 3.74202I
u = 1.041110 + 0.058191I
a = 1.44689 0.14447I
b = 0.184376 + 0.150737I
4.78729 1.81592I 6.58607 + 3.74202I
u = 1.041110 0.058191I
a = 1.346300 + 0.087992I
b = 0.070727 0.324415I
4.78729 + 1.81592I 6.58607 3.74202I
u = 1.041110 0.058191I
a = 1.44689 + 0.14447I
b = 0.184376 0.150737I
4.78729 + 1.81592I 6.58607 3.74202I
u = 0.228070 + 1.071510I
a = 0.328351 0.989425I
b = 0.07397 3.02445I
0.90159 + 7.11721I 6.24817 10.02307I
u = 0.228070 + 1.071510I
a = 1.72904 + 1.08620I
b = 1.44083 + 0.92301I
0.90159 + 7.11721I 6.24817 10.02307I
u = 0.228070 1.071510I
a = 0.328351 + 0.989425I
b = 0.07397 + 3.02445I
0.90159 7.11721I 6.24817 + 10.02307I
u = 0.228070 1.071510I
a = 1.72904 1.08620I
b = 1.44083 0.92301I
0.90159 7.11721I 6.24817 + 10.02307I
u = 0.624126 + 0.935674I
a = 0.798110 0.979366I
b = 0.076909 1.392880I
2.36034 1.09097I 8.98199 1.95962I
u = 0.624126 + 0.935674I
a = 0.346295 0.494801I
b = 1.004870 0.509384I
2.36034 1.09097I 8.98199 1.95962I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.624126 0.935674I
a = 0.798110 + 0.979366I
b = 0.076909 + 1.392880I
2.36034 + 1.09097I 8.98199 + 1.95962I
u = 0.624126 0.935674I
a = 0.346295 + 0.494801I
b = 1.004870 + 0.509384I
2.36034 + 1.09097I 8.98199 + 1.95962I
u = 0.616732 + 0.611232I
a = 0.432266 + 0.956807I
b = 0.430328 0.206177I
3.24466 3.79929I 3.99786 + 7.09998I
u = 0.616732 + 0.611232I
a = 1.37057 + 0.50609I
b = 0.46061 + 1.35578I
3.24466 3.79929I 3.99786 + 7.09998I
u = 0.616732 0.611232I
a = 0.432266 0.956807I
b = 0.430328 + 0.206177I
3.24466 + 3.79929I 3.99786 7.09998I
u = 0.616732 0.611232I
a = 1.37057 0.50609I
b = 0.46061 1.35578I
3.24466 + 3.79929I 3.99786 7.09998I
u = 0.081532 + 1.192440I
a = 0.965035 + 0.213609I
b = 0.296783 + 0.704590I
4.55800 + 1.47269I 15.5511 4.2071I
u = 0.081532 + 1.192440I
a = 0.237799 + 0.845382I
b = 0.16123 + 2.37600I
4.55800 + 1.47269I 15.5511 4.2071I
u = 0.081532 1.192440I
a = 0.965035 0.213609I
b = 0.296783 0.704590I
4.55800 1.47269I 15.5511 + 4.2071I
u = 0.081532 1.192440I
a = 0.237799 0.845382I
b = 0.16123 2.37600I
4.55800 1.47269I 15.5511 + 4.2071I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.116911 + 1.229070I
a = 0.18036 1.53816I
b = 0.50210 2.49405I
2.01094 5.15095I 12.30071 + 5.73853I
u = 0.116911 + 1.229070I
a = 0.180096 0.187932I
b = 1.54583 0.63107I
2.01094 5.15095I 12.30071 + 5.73853I
u = 0.116911 1.229070I
a = 0.18036 + 1.53816I
b = 0.50210 + 2.49405I
2.01094 + 5.15095I 12.30071 5.73853I
u = 0.116911 1.229070I
a = 0.180096 + 0.187932I
b = 1.54583 + 0.63107I
2.01094 + 5.15095I 12.30071 5.73853I
u = 0.54636 + 1.32865I
a = 0.262991 + 1.071060I
b = 0.65067 + 2.41212I
8.72835 + 7.47965I 8.40298 6.61968I
u = 0.54636 + 1.32865I
a = 0.186121 1.293220I
b = 0.03780 2.40287I
8.72835 + 7.47965I 8.40298 6.61968I
u = 0.54636 1.32865I
a = 0.262991 1.071060I
b = 0.65067 2.41212I
8.72835 7.47965I 8.40298 + 6.61968I
u = 0.54636 1.32865I
a = 0.186121 + 1.293220I
b = 0.03780 + 2.40287I
8.72835 7.47965I 8.40298 + 6.61968I
u = 0.47814 + 1.36384I
a = 0.059304 0.997948I
b = 0.53165 2.02906I
9.27627 + 3.56613I 9.74898 + 0.43427I
u = 0.47814 + 1.36384I
a = 0.186195 + 1.207920I
b = 0.11776 + 2.60978I
9.27627 + 3.56613I 9.74898 + 0.43427I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.47814 1.36384I
a = 0.059304 + 0.997948I
b = 0.53165 + 2.02906I
9.27627 3.56613I 9.74898 0.43427I
u = 0.47814 1.36384I
a = 0.186195 1.207920I
b = 0.11776 2.60978I
9.27627 3.56613I 9.74898 0.43427I
u = 0.308272 + 0.388000I
a = 2.35893 + 0.54355I
b = 0.114594 0.630026I
2.82450 4.64371I 0.81427 + 2.09655I
u = 0.308272 + 0.388000I
a = 1.78966 + 1.71963I
b = 1.44880 + 0.41504I
2.82450 4.64371I 0.81427 + 2.09655I
u = 0.308272 0.388000I
a = 2.35893 0.54355I
b = 0.114594 + 0.630026I
2.82450 + 4.64371I 0.81427 2.09655I
u = 0.308272 0.388000I
a = 1.78966 1.71963I
b = 1.44880 0.41504I
2.82450 + 4.64371I 0.81427 2.09655I
u = 0.348561
a = 1.45571 + 0.80946I
b = 0.684266 + 0.183801I
1.06383 4.73570
u = 0.348561
a = 1.45571 0.80946I
b = 0.684266 0.183801I
1.06383 4.73570
15
III.
I
u
3
= hu
14
4u
13
+· · ·+b1, u
14
3u
13
+· · ·+2a4, u
15
5u
14
+· · ·+4u2i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
1
2
u
14
+
3
2
u
13
+ ···
5
2
u + 2
u
14
+ 4u
13
+ ··· + u + 1
a
4
=
3
2
u
14
+
15
2
u
13
+ ··· +
11
2
u + 1
u
14
+ 6u
13
+ ··· + 9u 3
a
7
=
u
u
a
8
=
1
2
u
14
3
2
u
13
+ ··· +
9
2
u 3
u
14
4u
13
+ ··· u 1
a
1
=
u
2
+ 1
u
4
a
11
=
1
2
u
14
+
3
2
u
13
+ ···
3
2
u + 1
u
14
+ 3u
13
+ ··· + u + 1
a
5
=
3
2
u
14
+
13
2
u
13
+ ··· +
5
2
u + 2
u
14
+ 5u
13
+ ··· + 7u 1
a
9
=
1
2
u
14
+
3
2
u
13
+ ···
5
2
u + 2
u
14
+ 3u
13
+ ··· 2u + 3
a
12
=
1
2
u
14
7
2
u
13
+ ···
17
2
u + 2
u
14
+ 3u
13
+ ··· 6u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
14
+ 25u
13
82u
12
+ 189u
11
343u
10
+ 505u
9
614u
8
+
627u
7
530u
6
+ 382u
5
230u
4
+ 128u
3
69u
2
+ 30u 22
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
9u
14
+ ··· 36u + 4
c
2
u
15
5u
14
+ ··· + 4u 2
c
3
, c
9
u
15
u
14
+ ··· + 2u + 1
c
4
u
15
+ u
14
+ ··· + u + 1
c
5
, c
12
u
15
u
14
+ ··· + u 1
c
6
u
15
+ 5u
14
+ ··· + 4u + 2
c
7
, c
10
u
15
3u
14
+ ··· 2u 1
c
8
u
15
8u
14
+ ··· 13u
2
+ 2
c
11
u
15
+ 8u
14
+ ··· + 13u
2
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
+ y
14
+ ··· + 8y 16
c
2
, c
6
y
15
+ 9y
14
+ ··· 36y 4
c
3
, c
9
y
15
7y
14
+ ··· + 10y 1
c
4
, c
5
, c
12
y
15
+ 7y
14
+ ··· 3y 1
c
7
, c
10
y
15
15y
14
+ ··· + 2y 1
c
8
, c
11
y
15
+ 4y
14
+ ··· + 52y 4
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.04105
a = 1.34448
b = 0.0574551
5.05234 7.86790
u = 0.142498 + 1.177400I
a = 0.797818 + 0.992560I
b = 0.36789 + 2.16887I
0.25982 + 6.07751I 9.42891 6.08368I
u = 0.142498 1.177400I
a = 0.797818 0.992560I
b = 0.36789 2.16887I
0.25982 6.07751I 9.42891 + 6.08368I
u = 0.148124 + 1.190680I
a = 0.655334 0.497245I
b = 0.05017 1.63184I
4.01281 1.46048I 1.86959 1.16010I
u = 0.148124 1.190680I
a = 0.655334 + 0.497245I
b = 0.05017 + 1.63184I
4.01281 + 1.46048I 1.86959 + 1.16010I
u = 0.887881 + 0.860290I
a = 0.167268 0.597728I
b = 0.258465 0.613512I
6.43693 + 6.13733I 4.68757 9.65401I
u = 0.887881 0.860290I
a = 0.167268 + 0.597728I
b = 0.258465 + 0.613512I
6.43693 6.13733I 4.68757 + 9.65401I
u = 0.875773 + 0.967963I
a = 0.497404 + 0.294113I
b = 0.306201 + 0.669414I
6.12254 + 0.37048I 8.78610 + 1.49023I
u = 0.875773 0.967963I
a = 0.497404 0.294113I
b = 0.306201 0.669414I
6.12254 0.37048I 8.78610 1.49023I
u = 0.033850 + 0.679992I
a = 1.52172 0.70551I
b = 1.200660 + 0.615415I
1.81263 5.19090I 8.70220 + 5.73716I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.033850 0.679992I
a = 1.52172 + 0.70551I
b = 1.200660 0.615415I
1.81263 + 5.19090I 8.70220 5.73716I
u = 0.336015 + 0.511815I
a = 0.171836 + 0.846334I
b = 0.756395 0.011183I
1.61892 0.67704I 12.66646 + 4.31369I
u = 0.336015 0.511815I
a = 0.171836 0.846334I
b = 0.756395 + 0.011183I
1.61892 + 0.67704I 12.66646 4.31369I
u = 0.52361 + 1.34992I
a = 0.166332 1.108050I
b = 0.27395 2.30620I
9.24424 + 5.57231I 9.92521 3.30109I
u = 0.52361 1.34992I
a = 0.166332 + 1.108050I
b = 0.27395 + 2.30620I
9.24424 5.57231I 9.92521 + 3.30109I
20
IV. I
u
4
=
ha
3
ua
3
+a
2
ua
2
+3au+3b+u1, a
4
3a
2
ua
2
+2au+2a2u2, u
2
+u+1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u + 1
a
10
=
a
1
3
a
3
u
1
3
a
2
u + ··· +
1
3
a
2
+
1
3
a
4
=
1
3
a
3
u
1
3
a
2
u + ··· a +
7
3
a
3
u + a
2
au 2a + 3
a
7
=
u
u
a
8
=
2
3
a
3
u
1
3
a
2
u + ··· + a
2
3
2
3
a
3
u
1
3
a
2
u + ··· + a +
1
3
a
1
=
u
u
a
11
=
1
3
a
3
u +
1
3
a
2
u + ··· + a +
2
3
a
3
+ a
2
2au + 1
a
5
=
2
3
a
3
u +
1
3
a
2
u + ··· 2a +
11
3
4
3
a
3
u +
2
3
a
2
u + ··· 3a +
13
3
a
9
=
a
1
3
a
3
u
1
3
a
2
u + ··· + a +
1
3
a
12
=
a
3
u + a
3
au + 2a + u
a
3
u + a
3
a
2
u au + 2a + u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
2
u + 1)
4
c
2
(u
2
+ u + 1)
4
c
3
, c
9
u
8
5u
6
+ 2u
5
+ 11u
4
2u
3
6u
2
+ 4u + 4
c
4
u
8
+ 2u
7
+ 7u
6
+ 8u
5
+ 15u
4
+ 10u
3
+ 10u
2
+ 4u + 4
c
5
, c
12
u
8
2u
7
+ 7u
6
8u
5
+ 15u
4
10u
3
+ 10u
2
4u + 4
c
7
, c
8
, c
10
c
11
(u
2
+ 1)
4
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
(y
2
+ y + 1)
4
c
3
, c
9
y
8
10y
7
+ 47y
6
126y
5
+ 197y
4
192y
3
+ 140y
2
64y + 16
c
4
, c
5
, c
12
y
8
+ 10y
7
+ 47y
6
+ 126y
5
+ 197y
4
+ 192y
3
+ 140y
2
+ 64y + 16
c
7
, c
8
, c
10
c
11
(y + 1)
8
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.178142 0.892797I
b = 0.687884 0.392797I
3.28987 2.02988I 2.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 0.603323 + 0.513523I
b = 1.46935 + 0.01352I
3.28987 2.02988I 2.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 0.68788 + 1.39280I
b = 0.17814 + 1.89280I
3.28987 2.02988I 2.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 1.46935 1.01352I
b = 0.60332 1.51352I
3.28987 2.02988I 2.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.178142 + 0.892797I
b = 0.687884 + 0.392797I
3.28987 + 2.02988I 2.00000 3.46410I
u = 0.500000 0.866025I
a = 0.603323 0.513523I
b = 1.46935 0.01352I
3.28987 + 2.02988I 2.00000 3.46410I
u = 0.500000 0.866025I
a = 0.68788 1.39280I
b = 0.17814 1.89280I
3.28987 + 2.02988I 2.00000 3.46410I
u = 0.500000 0.866025I
a = 1.46935 + 1.01352I
b = 0.60332 + 1.51352I
3.28987 + 2.02988I 2.00000 3.46410I
24
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
4
)(u
15
9u
14
+ ··· 36u + 4)
· ((u
19
+ 13u
18
+ ··· + 2u 1)
2
)(u
31
+ 20u
30
+ ··· + 684u 100)
c
2
((u
2
+ u + 1)
4
)(u
15
5u
14
+ ··· + 4u 2)(u
19
+ 3u
18
+ ··· + 6u + 1)
2
· (u
31
8u
30
+ ··· 62u + 10)
c
3
, c
9
(u
8
5u
6
+ ··· + 4u + 4)(u
15
u
14
+ ··· + 2u + 1)
· (u
31
+ u
30
+ ··· + u + 1)(u
38
+ u
37
+ ··· + 5696u + 908)
c
4
(u
8
+ 2u
7
+ 7u
6
+ 8u
5
+ 15u
4
+ 10u
3
+ 10u
2
+ 4u + 4)
· (u
15
+ u
14
+ ··· + u + 1)(u
31
u
30
+ ··· + 4u + 1)
· (u
38
3u
37
+ ··· + 10u
2
+ 4)
c
5
, c
12
(u
8
2u
7
+ 7u
6
8u
5
+ 15u
4
10u
3
+ 10u
2
4u + 4)
· (u
15
u
14
+ ··· + u 1)(u
31
u
30
+ ··· + 4u + 1)
· (u
38
3u
37
+ ··· + 10u
2
+ 4)
c
6
((u
2
u + 1)
4
)(u
15
+ 5u
14
+ ··· + 4u + 2)(u
19
+ 3u
18
+ ··· + 6u + 1)
2
· (u
31
8u
30
+ ··· 62u + 10)
c
7
, c
10
((u
2
+ 1)
4
)(u
15
3u
14
+ ··· 2u 1)(u
31
3u
30
+ ··· + 5u + 1)
· (u
38
5u
37
+ ··· 28450u + 4625)
c
8
((u
2
+ 1)
4
)(u
15
8u
14
+ ··· 13u
2
+ 2)(u
19
+ 5u
18
+ ··· + 20u + 7)
2
· (u
31
11u
30
+ ··· 122u + 10)
c
11
((u
2
+ 1)
4
)(u
15
+ 8u
14
+ ··· + 13u
2
2)(u
19
+ 5u
18
+ ··· + 20u + 7)
2
· (u
31
11u
30
+ ··· 122u + 10)
25
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
4
)(y
15
+ y
14
+ ··· + 8y 16)
· (y
19
11y
18
+ ··· + 38y 1)
2
· (y
31
12y
30
+ ··· + 1252656y 10000)
c
2
, c
6
((y
2
+ y + 1)
4
)(y
15
+ 9y
14
+ ··· 36y 4)
· ((y
19
+ 13y
18
+ ··· + 2y 1)
2
)(y
31
+ 20y
30
+ ··· + 684y 100)
c
3
, c
9
(y
8
10y
7
+ 47y
6
126y
5
+ 197y
4
192y
3
+ 140y
2
64y + 16)
· (y
15
7y
14
+ ··· + 10y 1)(y
31
29y
30
+ ··· + 23y 1)
· (y
38
35y
37
+ ··· 10830384y + 824464)
c
4
, c
5
, c
12
(y
8
+ 10y
7
+ 47y
6
+ 126y
5
+ 197y
4
+ 192y
3
+ 140y
2
+ 64y + 16)
· (y
15
+ 7y
14
+ ··· 3y 1)(y
31
+ 25y
30
+ ··· 6y 1)
· (y
38
+ 5y
37
+ ··· + 80y + 16)
c
7
, c
10
((y + 1)
8
)(y
15
15y
14
+ ··· + 2y 1)(y
31
29y
30
+ ··· 105y 1)
· (y
38
37y
37
+ ··· + 236310000y + 21390625)
c
8
, c
11
((y + 1)
8
)(y
15
+ 4y
14
+ ··· + 52y 4)
· ((y
19
+ 11y
18
+ ··· 300y 49)
2
)(y
31
+ 11y
30
+ ··· 756y 100)
26