12n
0528
(K12n
0528
)
A knot diagram
1
Linearized knot diagam
3 5 10 8 2 11 5 12 3 9 7 4
Solving Sequence
3,9
10
4,12
1 8 5 2 6 7 11
c
9
c
3
c
12
c
8
c
4
c
2
c
5
c
7
c
11
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.69351 × 10
67
u
41
+ 3.55947 × 10
66
u
40
+ ··· + 1.96775 × 10
68
b 6.12388 × 10
68
,
8.52173 × 10
68
u
41
+ 2.62218 × 10
67
u
40
+ ··· + 2.16453 × 10
69
a 5.80462 × 10
68
, u
42
u
41
+ ··· + 7u 11i
I
u
2
= h−u
23
+ 6u
21
+ ··· + b + 1, 2u
23
13u
21
+ ··· + a 8, u
24
7u
22
+ ··· + 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 66 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−4.69×10
67
u
41
+3.56×10
66
u
40
+· · ·+1.97×10
68
b6.12×10
68
, 8.52×
10
68
u
41
+2.62×10
67
u
40
+· · ·+2.16×10
69
a5.80×10
68
, u
42
u
41
+· · ·+7u11i
(i) Arc colorings
a
3
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
12
=
0.393699u
41
0.0121143u
40
+ ··· + 3.32268u + 0.268170
0.238522u
41
0.0180890u
40
+ ··· 1.02660u + 3.11212
a
1
=
0.0278896u
41
0.0937965u
40
+ ··· + 3.36008u + 4.84817
0.449875u
41
+ 0.0226937u
40
+ ··· 3.24732u + 3.95315
a
8
=
0.270147u
41
0.104563u
40
+ ··· + 1.82540u 2.97138
0.123129u
41
+ 0.000949344u
40
+ ··· 2.15974u 3.88780
a
5
=
0.173180u
41
0.00979843u
40
+ ··· + 0.668036u 2.62647
0.153388u
41
0.142217u
40
+ ··· + 7.32309u + 5.63335
a
2
=
0.0278896u
41
0.0937965u
40
+ ··· + 3.36008u + 4.84817
0.296249u
41
+ 0.0542077u
40
+ ··· 2.47919u + 3.22817
a
6
=
0.413508u
41
+ 0.339840u
40
+ ··· 8.97780u 9.77944
0.0992743u
41
0.0250768u
40
+ ··· + 3.47552u + 1.40486
a
7
=
0.363292u
41
0.398230u
40
+ ··· + 9.99588u + 9.98935
0.236749u
41
0.0235247u
40
+ ··· 2.79328u + 0.767418
a
11
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3.35147u
41
0.742817u
40
+ ··· + 14.9249u + 57.1841
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
42
+ 64u
41
+ ··· 29237998u + 1857769
c
2
, c
5
u
42
+ 2u
41
+ ··· 2362u 1363
c
3
, c
9
u
42
+ u
41
+ ··· 7u 11
c
4
, c
7
u
42
+ 3u
41
+ ··· + 10u + 1
c
6
, c
11
u
42
u
41
+ ··· + 237u 367
c
8
u
42
+ u
40
+ ··· 458u + 59
c
10
u
42
9u
41
+ ··· 1765u + 121
c
12
u
42
+ 6u
41
+ ··· + 144391u 29237
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
42
180y
41
+ ··· + 171645687681114y + 3451305657361
c
2
, c
5
y
42
+ 64y
41
+ ··· 29237998y + 1857769
c
3
, c
9
y
42
9y
41
+ ··· 1765y + 121
c
4
, c
7
y
42
+ 37y
41
+ ··· + 386y + 1
c
6
, c
11
y
42
+ 9y
41
+ ··· 699887y + 134689
c
8
y
42
+ 2y
41
+ ··· 127282y + 3481
c
10
y
42
+ 63y
41
+ ··· 706841y + 14641
c
12
y
42
+ 66y
41
+ ··· 9618536811y + 854802169
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.976940 + 0.189570I
a = 0.671991 0.140780I
b = 0.640713 + 0.564843I
0.096118 0.719363I 11.90225 + 0.52877I
u = 0.976940 0.189570I
a = 0.671991 + 0.140780I
b = 0.640713 0.564843I
0.096118 + 0.719363I 11.90225 0.52877I
u = 0.996611 + 0.295480I
a = 1.090500 0.450071I
b = 0.717959 + 0.455088I
0.95171 + 5.32146I 14.6843 4.3710I
u = 0.996611 0.295480I
a = 1.090500 + 0.450071I
b = 0.717959 0.455088I
0.95171 5.32146I 14.6843 + 4.3710I
u = 0.271254 + 0.920102I
a = 0.032414 + 0.826443I
b = 0.107773 + 1.208280I
3.16398 3.11599I 6.81507 + 2.35566I
u = 0.271254 0.920102I
a = 0.032414 0.826443I
b = 0.107773 1.208280I
3.16398 + 3.11599I 6.81507 2.35566I
u = 0.742652 + 0.598949I
a = 0.581796 1.131730I
b = 0.114376 0.798928I
1.67032 + 2.18141I 6.55140 5.10092I
u = 0.742652 0.598949I
a = 0.581796 + 1.131730I
b = 0.114376 + 0.798928I
1.67032 2.18141I 6.55140 + 5.10092I
u = 0.901422 + 0.608862I
a = 0.41986 1.91727I
b = 0.595052 1.146190I
4.01965 + 5.81935I 2.88718 6.41779I
u = 0.901422 0.608862I
a = 0.41986 + 1.91727I
b = 0.595052 + 1.146190I
4.01965 5.81935I 2.88718 + 6.41779I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.026110 + 0.457658I
a = 0.89076 1.58817I
b = 1.201650 0.209885I
3.18164 4.85238I 16.3570 + 7.8732I
u = 1.026110 0.457658I
a = 0.89076 + 1.58817I
b = 1.201650 + 0.209885I
3.18164 + 4.85238I 16.3570 7.8732I
u = 0.762100 + 0.321278I
a = 3.04433 0.63560I
b = 0.139498 0.544927I
4.53677 1.72545I 2.47718 1.65314I
u = 0.762100 0.321278I
a = 3.04433 + 0.63560I
b = 0.139498 + 0.544927I
4.53677 + 1.72545I 2.47718 + 1.65314I
u = 0.709703 + 0.385831I
a = 1.34330 + 1.34754I
b = 1.088080 + 0.084929I
3.75865 + 0.52675I 15.2045 4.6516I
u = 0.709703 0.385831I
a = 1.34330 1.34754I
b = 1.088080 0.084929I
3.75865 0.52675I 15.2045 + 4.6516I
u = 0.055992 + 0.739207I
a = 0.59055 1.78054I
b = 0.966097 0.562046I
5.24825 1.98551I 5.33983 + 2.52760I
u = 0.055992 0.739207I
a = 0.59055 + 1.78054I
b = 0.966097 + 0.562046I
5.24825 + 1.98551I 5.33983 2.52760I
u = 0.928890 + 0.877770I
a = 0.52280 + 1.42327I
b = 0.086373 + 0.854209I
9.64609 3.25422I 3.44885 + 0.I
u = 0.928890 0.877770I
a = 0.52280 1.42327I
b = 0.086373 0.854209I
9.64609 + 3.25422I 3.44885 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.110845 + 0.666061I
a = 0.619219 0.873228I
b = 1.045990 0.541356I
0.96220 + 1.18700I 9.79126 0.55178I
u = 0.110845 0.666061I
a = 0.619219 + 0.873228I
b = 1.045990 + 0.541356I
0.96220 1.18700I 9.79126 + 0.55178I
u = 0.626245 + 0.157018I
a = 1.13195 0.98921I
b = 0.984773 0.837523I
0.58346 + 4.36237I 9.67579 7.91348I
u = 0.626245 0.157018I
a = 1.13195 + 0.98921I
b = 0.984773 + 0.837523I
0.58346 4.36237I 9.67579 + 7.91348I
u = 0.666149 + 1.210860I
a = 0.050312 1.150930I
b = 0.87990 1.25839I
6.84658 4.87263I 10.00000 + 0.I
u = 0.666149 1.210860I
a = 0.050312 + 1.150930I
b = 0.87990 + 1.25839I
6.84658 + 4.87263I 10.00000 + 0.I
u = 0.530306 + 0.145723I
a = 0.925303 + 0.897460I
b = 1.388070 0.265720I
1.33067 + 1.52042I 12.91104 5.67422I
u = 0.530306 0.145723I
a = 0.925303 0.897460I
b = 1.388070 + 0.265720I
1.33067 1.52042I 12.91104 + 5.67422I
u = 0.99651 + 1.16113I
a = 0.510029 + 0.364618I
b = 1.30183 + 1.39531I
16.7577 4.3210I 0
u = 0.99651 1.16113I
a = 0.510029 0.364618I
b = 1.30183 1.39531I
16.7577 + 4.3210I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.461304
a = 0.359897
b = 0.288008
0.654622 15.3870
u = 1.56280
a = 0.170963
b = 0.172890
7.95511 0
u = 1.17709 + 1.02908I
a = 0.669839 + 1.234860I
b = 1.49268 + 1.06354I
16.1321 3.7400I 0
u = 1.17709 1.02908I
a = 0.669839 1.234860I
b = 1.49268 1.06354I
16.1321 + 3.7400I 0
u = 1.23722 + 0.98615I
a = 0.674732 + 1.221550I
b = 1.28035 + 1.24557I
16.5397 + 14.0085I 0
u = 1.23722 0.98615I
a = 0.674732 1.221550I
b = 1.28035 1.24557I
16.5397 14.0085I 0
u = 1.44741 + 0.67124I
a = 0.550696 0.105785I
b = 0.154517 1.136070I
4.06097 2.48143I 0
u = 1.44741 0.67124I
a = 0.550696 + 0.105785I
b = 0.154517 + 1.136070I
4.06097 + 2.48143I 0
u = 0.91039 + 1.31239I
a = 0.494881 + 0.556209I
b = 1.04089 + 1.47723I
17.7875 5.7506I 0
u = 0.91039 1.31239I
a = 0.494881 0.556209I
b = 1.04089 1.47723I
17.7875 + 5.7506I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.13842 + 1.22014I
a = 0.338929 + 0.751534I
b = 0.306293 + 1.180910I
11.22360 + 4.40183I 0
u = 1.13842 1.22014I
a = 0.338929 0.751534I
b = 0.306293 1.180910I
11.22360 4.40183I 0
9
II.
I
u
2
= h−u
23
+6u
21
+· · ·+b+1, 2u
23
13u
21
+· · ·+a8, u
24
7u
22
+· · ·+2u+1i
(i) Arc colorings
a
3
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
12
=
2u
23
+ 13u
21
+ ··· + 7u + 8
u
23
6u
21
+ ··· + u
3
1
a
1
=
u
23
u
22
+ ··· + 5u + 8
3u
23
u
22
+ ··· u 2
a
8
=
2u
23
11u
21
+ ··· 6u 8
2u
21
+ 2u
20
+ ··· + u + 3
a
5
=
5u
23
+ u
22
+ ··· + 8u 2
6u
23
u
22
+ ··· + 3u + 10
a
2
=
u
23
u
22
+ ··· + 5u + 8
3u
23
u
22
+ ··· u
2
1
a
6
=
2u
23
+ 3u
22
+ ··· + 57u
2
11
10u
23
5u
22
+ ··· + 2u + 11
a
7
=
u
23
+ u
22
+ ··· u 11
6u
23
4u
22
+ ··· + 3u + 8
a
11
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 7u
23
2u
22
35u
21
+15u
20
+93u
19
35u
18
173u
17
+60u
16
+216u
15
55u
14
151u
13
21u
12
17u
11
+202u
10
+137u
9
350u
8
118u
7
+346u
6
+38u
5
193u
4
+7u
3
+69u
2
3u1
10
(iv) u-Polynomials at the component
11
Crossings u-Polynomials at each crossing
c
1
u
24
19u
23
+ ··· 13u + 1
c
2
u
24
+ u
23
+ ··· u 1
c
3
u
24
7u
22
+ ··· 2u + 1
c
4
u
24
+ 4u
23
+ ··· + u + 1
c
5
u
24
u
23
+ ··· + u 1
c
6
u
24
4u
22
+ ··· 2u 1
c
7
u
24
4u
23
+ ··· u + 1
c
8
u
24
+ 3u
23
+ ··· + 3u 1
c
9
u
24
7u
22
+ ··· + 2u + 1
c
10
u
24
14u
23
+ ··· 18u + 1
c
11
u
24
4u
22
+ ··· + 2u 1
c
12
u
24
+ u
23
+ ··· + 46u 103
12
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
37y
23
+ ··· + 17y + 1
c
2
, c
5
y
24
+ 19y
23
+ ··· + 13y + 1
c
3
, c
9
y
24
14y
23
+ ··· 18y + 1
c
4
, c
7
y
24
+ 8y
23
+ ··· + 17y + 1
c
6
, c
11
y
24
8y
23
+ ··· 16y + 1
c
8
y
24
11y
23
+ ··· 19y + 1
c
10
y
24
+ 6y
23
+ ··· 26y + 1
c
12
y
24
+ 5y
23
+ ··· 49084y + 10609
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.801340 + 0.736116I
a = 0.21096 1.56855I
b = 0.605197 1.263280I
3.00301 + 5.73538I 10.39480 5.83398I
u = 0.801340 0.736116I
a = 0.21096 + 1.56855I
b = 0.605197 + 1.263280I
3.00301 5.73538I 10.39480 + 5.83398I
u = 1.030300 + 0.360014I
a = 1.118250 0.241019I
b = 0.802224 0.589756I
0.37671 6.12039I 9.63076 + 10.31907I
u = 1.030300 0.360014I
a = 1.118250 + 0.241019I
b = 0.802224 + 0.589756I
0.37671 + 6.12039I 9.63076 10.31907I
u = 1.033250 + 0.446927I
a = 1.21979 1.90987I
b = 1.346880 0.258537I
2.46070 4.50580I 6.63131 + 3.28501I
u = 1.033250 0.446927I
a = 1.21979 + 1.90987I
b = 1.346880 + 0.258537I
2.46070 + 4.50580I 6.63131 3.28501I
u = 0.601908 + 0.599038I
a = 0.182147 0.835112I
b = 1.33970 0.50009I
0.31347 + 2.55641I 8.68969 4.76226I
u = 0.601908 0.599038I
a = 0.182147 + 0.835112I
b = 1.33970 + 0.50009I
0.31347 2.55641I 8.68969 + 4.76226I
u = 1.063590 + 0.527317I
a = 0.632358 + 0.883549I
b = 1.219720 0.405042I
1.85831 + 1.96827I 9.06368 2.03092I
u = 1.063590 0.527317I
a = 0.632358 0.883549I
b = 1.219720 + 0.405042I
1.85831 1.96827I 9.06368 + 2.03092I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.745990 + 0.297929I
a = 0.433446 + 0.100374I
b = 1.000640 0.751291I
0.72691 + 3.28719I 7.46239 1.13118I
u = 0.745990 0.297929I
a = 0.433446 0.100374I
b = 1.000640 + 0.751291I
0.72691 3.28719I 7.46239 + 1.13118I
u = 1.171030 + 0.265644I
a = 0.443531 0.797924I
b = 0.460708 + 0.162456I
2.23108 + 3.70583I 9.26047 4.04767I
u = 1.171030 0.265644I
a = 0.443531 + 0.797924I
b = 0.460708 0.162456I
2.23108 3.70583I 9.26047 + 4.04767I
u = 0.758754 + 0.127493I
a = 3.92397 0.99022I
b = 0.605895 + 0.289636I
3.98670 2.05045I 14.4656 + 4.5172I
u = 0.758754 0.127493I
a = 3.92397 + 0.99022I
b = 0.605895 0.289636I
3.98670 + 2.05045I 14.4656 4.5172I
u = 0.975256 + 0.756613I
a = 0.899803 0.590281I
b = 0.164458 1.085950I
2.47930 0.06362I 6.51040 + 0.07327I
u = 0.975256 0.756613I
a = 0.899803 + 0.590281I
b = 0.164458 + 1.085950I
2.47930 + 0.06362I 6.51040 0.07327I
u = 0.652424 + 0.390106I
a = 0.956679 0.190508I
b = 1.47282 0.31238I
1.09474 + 0.91656I 7.73888 + 4.66446I
u = 0.652424 0.390106I
a = 0.956679 + 0.190508I
b = 1.47282 + 0.31238I
1.09474 0.91656I 7.73888 4.66446I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.926976 + 0.934269I
a = 0.304797 + 1.251840I
b = 0.150225 + 0.737433I
9.18549 3.41839I 12.55837 + 4.87301I
u = 0.926976 0.934269I
a = 0.304797 1.251840I
b = 0.150225 0.737433I
9.18549 + 3.41839I 12.55837 4.87301I
u = 1.54033
a = 0.0892248
b = 0.322461
8.03261 65.8590
u = 0.425538
a = 2.96764
b = 0.961500
3.24533 7.32810
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
24
19u
23
+ ··· 13u + 1)
· (u
42
+ 64u
41
+ ··· 29237998u + 1857769)
c
2
(u
24
+ u
23
+ ··· u 1)(u
42
+ 2u
41
+ ··· 2362u 1363)
c
3
(u
24
7u
22
+ ··· 2u + 1)(u
42
+ u
41
+ ··· 7u 11)
c
4
(u
24
+ 4u
23
+ ··· + u + 1)(u
42
+ 3u
41
+ ··· + 10u + 1)
c
5
(u
24
u
23
+ ··· + u 1)(u
42
+ 2u
41
+ ··· 2362u 1363)
c
6
(u
24
4u
22
+ ··· 2u 1)(u
42
u
41
+ ··· + 237u 367)
c
7
(u
24
4u
23
+ ··· u + 1)(u
42
+ 3u
41
+ ··· + 10u + 1)
c
8
(u
24
+ 3u
23
+ ··· + 3u 1)(u
42
+ u
40
+ ··· 458u + 59)
c
9
(u
24
7u
22
+ ··· + 2u + 1)(u
42
+ u
41
+ ··· 7u 11)
c
10
(u
24
14u
23
+ ··· 18u + 1)(u
42
9u
41
+ ··· 1765u + 121)
c
11
(u
24
4u
22
+ ··· + 2u 1)(u
42
u
41
+ ··· + 237u 367)
c
12
(u
24
+ u
23
+ ··· + 46u 103)(u
42
+ 6u
41
+ ··· + 144391u 29237)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
24
37y
23
+ ··· + 17y + 1)
· (y
42
180y
41
+ ··· + 171645687681114y + 3451305657361)
c
2
, c
5
(y
24
+ 19y
23
+ ··· + 13y + 1)
· (y
42
+ 64y
41
+ ··· 29237998y + 1857769)
c
3
, c
9
(y
24
14y
23
+ ··· 18y + 1)(y
42
9y
41
+ ··· 1765y + 121)
c
4
, c
7
(y
24
+ 8y
23
+ ··· + 17y + 1)(y
42
+ 37y
41
+ ··· + 386y + 1)
c
6
, c
11
(y
24
8y
23
+ ··· 16y + 1)(y
42
+ 9y
41
+ ··· 699887y + 134689)
c
8
(y
24
11y
23
+ ··· 19y + 1)(y
42
+ 2y
41
+ ··· 127282y + 3481)
c
10
(y
24
+ 6y
23
+ ··· 26y + 1)(y
42
+ 63y
41
+ ··· 706841y + 14641)
c
12
(y
24
+ 5y
23
+ ··· 49084y + 10609)
· (y
42
+ 66y
41
+ ··· 9618536811y + 854802169)
19