12n
0531
(K12n
0531
)
A knot diagram
1
Linearized knot diagam
3 6 11 8 2 9 5 12 6 1 4 9
Solving Sequence
2,6 3,9
7 10 1 11 5 8 4 12
c
2
c
6
c
9
c
1
c
10
c
5
c
7
c
4
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h3.98168 × 10
59
u
66
1.61635 × 10
59
u
65
+ ··· + 8.56121 × 10
58
b + 6.93366 × 10
59
,
3.91666 × 10
57
u
66
2.46674 × 10
59
u
65
+ ··· + 8.56121 × 10
58
a + 7.09288 × 10
59
, u
67
u
66
+ ··· u 1i
I
u
2
= h2u
18
2u
17
+ ··· + b 1, 3u
18
u
17
+ ··· + a + 1, u
19
5u
17
+ ··· + u 1i
* 2 irreducible components of dim
C
= 0, with total 86 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h3.98×10
59
u
66
1.62×10
59
u
65
+· · ·+8.56×10
58
b+6.93×10
59
, 3.92×
10
57
u
66
2.47×10
59
u
65
+· · ·+8.56×10
58
a+7.09×10
59
, u
67
u
66
+· · ·u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
0.0457489u
66
+ 2.88130u
65
+ ··· 27.2442u 8.28490
4.65084u
66
+ 1.88799u
65
+ ··· 26.3094u 8.09892
a
7
=
11.1496u
66
+ 2.79842u
65
+ ··· 32.9791u 16.1327
5.95825u
66
0.0553272u
65
+ ··· 0.0564103u 4.23853
a
10
=
0.0457489u
66
+ 2.88130u
65
+ ··· 27.2442u 8.28490
0.178100u
66
+ 1.80249u
65
+ ··· 23.3366u 5.17187
a
1
=
u
2
+ 1
u
4
a
11
=
2.13841u
66
+ 4.49817u
65
+ ··· 47.2572u 13.4375
3.31213u
66
+ 2.20785u
65
+ ··· 30.1781u 8.48270
a
5
=
u
u
a
8
=
11.5127u
66
+ 4.27285u
65
+ ··· 40.5082u 18.4704
6.32132u
66
+ 1.41910u
65
+ ··· 7.58545u 6.57617
a
4
=
4.82960u
66
5.95359u
65
+ ··· + 62.5953u + 18.9033
6.29424u
66
4.13193u
65
+ ··· + 48.8147u + 13.7851
a
12
=
0.918229u
66
+ 1.37577u
65
+ ··· 14.7930u 2.94334
0.625938u
66
+ 2.40274u
65
+ ··· 25.0155u 4.68849
(ii) Obstruction class = 1
(iii) Cusp Shapes = 60.9077u
66
+ 29.1274u
65
+ ··· 300.156u 103.773
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
67
+ 37u
66
+ ··· + 7u + 1
c
2
, c
5
u
67
+ u
66
+ ··· u + 1
c
3
, c
11
u
67
2u
66
+ ··· 89u + 29
c
4
, c
7
u
67
3u
66
+ ··· + 1479u + 1799
c
6
, c
9
u
67
10u
66
+ ··· 14957u + 583
c
8
, c
12
u
67
3u
66
+ ··· + 1963u + 409
c
10
u
67
+ 6u
66
+ ··· + 958404u 46939
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
67
5y
66
+ ··· + 59y 1
c
2
, c
5
y
67
37y
66
+ ··· + 7y 1
c
3
, c
11
y
67
66y
66
+ ··· + 7283y 841
c
4
, c
7
y
67
+ 35y
66
+ ··· 114931057y 3236401
c
6
, c
9
y
67
50y
66
+ ··· 1103445y 339889
c
8
, c
12
y
67
43y
66
+ ··· + 32507091y 167281
c
10
y
67
+ 22y
66
+ ··· + 83085423428y 2203269721
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.252718 + 0.954803I
a = 0.26765 1.61765I
b = 0.0508940 0.0605544I
5.44022 + 9.83317I 3.49519 5.08650I
u = 0.252718 0.954803I
a = 0.26765 + 1.61765I
b = 0.0508940 + 0.0605544I
5.44022 9.83317I 3.49519 + 5.08650I
u = 0.992189 + 0.285907I
a = 0.299845 0.936902I
b = 0.110971 0.511676I
0.72386 + 3.39798I 0
u = 0.992189 0.285907I
a = 0.299845 + 0.936902I
b = 0.110971 + 0.511676I
0.72386 3.39798I 0
u = 1.003700 + 0.377660I
a = 0.36326 2.02909I
b = 0.22611 1.95101I
6.90463 5.17042I 0
u = 1.003700 0.377660I
a = 0.36326 + 2.02909I
b = 0.22611 + 1.95101I
6.90463 + 5.17042I 0
u = 0.407354 + 0.830734I
a = 0.62622 + 1.45214I
b = 0.0808578 0.0470274I
1.53350 1.63271I 4.18307 + 1.16614I
u = 0.407354 0.830734I
a = 0.62622 1.45214I
b = 0.0808578 + 0.0470274I
1.53350 + 1.63271I 4.18307 1.16614I
u = 0.999539 + 0.414079I
a = 0.68465 + 1.36026I
b = 1.62369 + 0.88630I
7.15973 + 0.55296I 0
u = 0.999539 0.414079I
a = 0.68465 1.36026I
b = 1.62369 0.88630I
7.15973 0.55296I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.123677 + 0.896241I
a = 0.46772 1.45771I
b = 0.188411 + 0.059427I
0.54114 5.20408I 0.74353 + 5.07775I
u = 0.123677 0.896241I
a = 0.46772 + 1.45771I
b = 0.188411 0.059427I
0.54114 + 5.20408I 0.74353 5.07775I
u = 0.058282 + 0.894932I
a = 0.22934 + 1.41748I
b = 0.420848 + 0.236426I
1.96860 + 2.63316I 3.47626 2.77896I
u = 0.058282 0.894932I
a = 0.22934 1.41748I
b = 0.420848 0.236426I
1.96860 2.63316I 3.47626 + 2.77896I
u = 0.888129 + 0.007732I
a = 0.216716 + 0.589577I
b = 0.397274 0.090049I
1.42025 + 0.09498I 5.88538 + 0.49320I
u = 0.888129 0.007732I
a = 0.216716 0.589577I
b = 0.397274 + 0.090049I
1.42025 0.09498I 5.88538 0.49320I
u = 0.818749 + 0.312512I
a = 0.261521 + 0.302439I
b = 0.94854 1.42046I
2.49844 1.45815I 5.05080 + 4.52220I
u = 0.818749 0.312512I
a = 0.261521 0.302439I
b = 0.94854 + 1.42046I
2.49844 + 1.45815I 5.05080 4.52220I
u = 0.826794 + 0.261915I
a = 1.15533 0.90370I
b = 1.65362 + 0.22840I
2.29966 + 1.29505I 7.24915 5.10541I
u = 0.826794 0.261915I
a = 1.15533 + 0.90370I
b = 1.65362 0.22840I
2.29966 1.29505I 7.24915 + 5.10541I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.062370 + 0.439025I
a = 0.1189350 + 0.0634968I
b = 0.08475 1.49717I
6.23019 + 6.25320I 0
u = 1.062370 0.439025I
a = 0.1189350 0.0634968I
b = 0.08475 + 1.49717I
6.23019 6.25320I 0
u = 1.078930 + 0.400055I
a = 0.966889 0.461546I
b = 1.50362 + 0.72539I
5.90798 0.58176I 0
u = 1.078930 0.400055I
a = 0.966889 + 0.461546I
b = 1.50362 0.72539I
5.90798 + 0.58176I 0
u = 1.139110 + 0.269989I
a = 1.336930 0.044286I
b = 2.77376 + 0.09507I
3.24471 0.99304I 0
u = 1.139110 0.269989I
a = 1.336930 + 0.044286I
b = 2.77376 0.09507I
3.24471 + 0.99304I 0
u = 0.870317 + 0.790370I
a = 0.382693 0.266135I
b = 0.207034 0.348229I
4.48838 + 2.95750I 0
u = 0.870317 0.790370I
a = 0.382693 + 0.266135I
b = 0.207034 + 0.348229I
4.48838 2.95750I 0
u = 0.790678 + 0.880867I
a = 0.506555 0.282964I
b = 0.109676 + 0.105383I
9.15754 5.60614I 0
u = 0.790678 0.880867I
a = 0.506555 + 0.282964I
b = 0.109676 0.105383I
9.15754 + 5.60614I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.126398 + 0.792019I
a = 0.34046 + 1.55116I
b = 0.141669 + 0.103536I
2.45188 0.35885I 3.63602 + 0.23516I
u = 0.126398 0.792019I
a = 0.34046 1.55116I
b = 0.141669 0.103536I
2.45188 + 0.35885I 3.63602 0.23516I
u = 0.962593 + 0.817723I
a = 0.208169 0.306861I
b = 0.616506 0.727645I
8.63874 0.64633I 0
u = 0.962593 0.817723I
a = 0.208169 + 0.306861I
b = 0.616506 + 0.727645I
8.63874 + 0.64633I 0
u = 1.196810 + 0.425223I
a = 0.992583 + 0.428060I
b = 2.34581 + 0.17564I
2.51573 3.88919I 0
u = 1.196810 0.425223I
a = 0.992583 0.428060I
b = 2.34581 0.17564I
2.51573 + 3.88919I 0
u = 0.095962 + 0.718089I
a = 0.870727 1.075470I
b = 0.514432 + 0.209197I
1.107230 0.185144I 4.79017 0.71844I
u = 0.095962 0.718089I
a = 0.870727 + 1.075470I
b = 0.514432 0.209197I
1.107230 + 0.185144I 4.79017 + 0.71844I
u = 1.222550 + 0.406422I
a = 1.373620 + 0.083582I
b = 2.55563 + 0.01499I
6.39757 + 4.49155I 0
u = 1.222550 0.406422I
a = 1.373620 0.083582I
b = 2.55563 0.01499I
6.39757 4.49155I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.190060 + 0.501845I
a = 0.803790 0.598061I
b = 1.74421 0.52832I
1.97091 + 4.80612I 0
u = 1.190060 0.501845I
a = 0.803790 + 0.598061I
b = 1.74421 + 0.52832I
1.97091 4.80612I 0
u = 1.150470 + 0.612288I
a = 1.177240 + 0.454917I
b = 2.37784 + 0.80163I
0.72397 + 7.05260I 0
u = 1.150470 0.612288I
a = 1.177240 0.454917I
b = 2.37784 0.80163I
0.72397 7.05260I 0
u = 1.205080 + 0.518507I
a = 1.148840 + 0.185650I
b = 2.18745 + 0.58972I
5.59025 4.50406I 0
u = 1.205080 0.518507I
a = 1.148840 0.185650I
b = 2.18745 0.58972I
5.59025 + 4.50406I 0
u = 1.264300 + 0.382115I
a = 1.009520 0.475156I
b = 2.03470 0.67673I
4.90333 + 0.82967I 0
u = 1.264300 0.382115I
a = 1.009520 + 0.475156I
b = 2.03470 + 0.67673I
4.90333 0.82967I 0
u = 1.265610 + 0.421354I
a = 0.943794 0.070930I
b = 1.70252 + 0.53403I
2.14236 + 1.98560I 0
u = 1.265610 0.421354I
a = 0.943794 + 0.070930I
b = 1.70252 0.53403I
2.14236 1.98560I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.308880 + 0.267985I
a = 1.123170 0.336397I
b = 2.17522 0.78717I
0.18085 5.77518I 0
u = 1.308880 0.267985I
a = 1.123170 + 0.336397I
b = 2.17522 + 0.78717I
0.18085 + 5.77518I 0
u = 1.245830 + 0.493179I
a = 1.43974 + 0.17283I
b = 2.43608 0.13299I
1.63829 7.60166I 0
u = 1.245830 0.493179I
a = 1.43974 0.17283I
b = 2.43608 + 0.13299I
1.63829 + 7.60166I 0
u = 1.235560 + 0.521982I
a = 1.234460 + 0.179282I
b = 2.59326 + 0.12435I
3.91456 + 10.33250I 0
u = 1.235560 0.521982I
a = 1.234460 0.179282I
b = 2.59326 0.12435I
3.91456 10.33250I 0
u = 1.225640 + 0.591919I
a = 1.41828 + 0.02698I
b = 2.74705 + 0.09456I
2.4570 15.4421I 0
u = 1.225640 0.591919I
a = 1.41828 0.02698I
b = 2.74705 0.09456I
2.4570 + 15.4421I 0
u = 0.596336 + 0.122603I
a = 2.26885 + 1.87775I
b = 2.01780 + 0.76808I
8.49281 + 2.29820I 6.25286 4.10564I
u = 0.596336 0.122603I
a = 2.26885 1.87775I
b = 2.01780 0.76808I
8.49281 2.29820I 6.25286 + 4.10564I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.592523
a = 0.956423
b = 0.295328
1.13446 10.7330
u = 0.497958 + 0.215908I
a = 0.68502 2.08646I
b = 1.76295 0.08326I
8.74993 + 2.73352I 4.86441 2.29828I
u = 0.497958 0.215908I
a = 0.68502 + 2.08646I
b = 1.76295 + 0.08326I
8.74993 2.73352I 4.86441 + 2.29828I
u = 0.291880 + 0.442830I
a = 0.880180 0.165991I
b = 0.525541 + 0.323507I
1.258410 0.412792I 6.74896 + 1.13109I
u = 0.291880 0.442830I
a = 0.880180 + 0.165991I
b = 0.525541 0.323507I
1.258410 + 0.412792I 6.74896 1.13109I
u = 0.108371 + 0.359754I
a = 2.08944 0.74875I
b = 1.272570 0.328628I
8.55502 2.64869I 5.98628 + 2.06746I
u = 0.108371 0.359754I
a = 2.08944 + 0.74875I
b = 1.272570 + 0.328628I
8.55502 + 2.64869I 5.98628 2.06746I
11
II.
I
u
2
= h2u
18
2u
17
+· · ·+b 1, 3u
18
u
17
+· · ·+a +1, u
19
5u
17
+· · ·+u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
3u
18
+ u
17
+ ··· 4u 1
2u
18
+ 2u
17
+ ··· 5u
2
+ 1
a
7
=
3u
18
3u
17
+ ··· + 4u 4
5u
18
3u
17
+ ··· + 10u 3
a
10
=
3u
18
+ u
17
+ ··· 4u 1
4u
18
+ 3u
17
+ ··· 4u + 2
a
1
=
u
2
+ 1
u
4
a
11
=
3u
18
+ u
17
+ ··· u 2
3u
18
+ 3u
17
+ ··· u + 1
a
5
=
u
u
a
8
=
3u
18
3u
17
+ ··· + 2u 4
5u
18
3u
17
+ ··· + 8u 3
a
4
=
u
18
6u
16
+ ··· 2u
2
+ 8u
2u
18
+ u
17
+ ··· + 2u 1
a
12
=
2u
18
4u
17
+ ··· + 3u 3
3u
18
4u
17
+ ··· + 4u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
18
+ 3u
17
33u
16
14u
15
+ 87u
14
+ 36u
13
144u
12
65u
11
+
165u
10
+ 92u
9
115u
8
96u
7
+ 35u
6
+ 79u
5
+ 21u
4
48u
3
25u
2
+ 11u + 8
12
(iv) u-Polynomials at the component
13
Crossings u-Polynomials at each crossing
c
1
u
19
10u
18
+ ··· + 11u 1
c
2
u
19
5u
17
+ ··· + u 1
c
3
u
19
+ u
18
+ ··· + u 1
c
4
u
19
2u
18
+ ··· u 1
c
5
u
19
5u
17
+ ··· + u + 1
c
6
u
19
3u
18
+ ··· 7u 1
c
7
u
19
+ 2u
18
+ ··· u + 1
c
8
u
19
4u
18
+ ··· + u + 1
c
9
u
19
+ 3u
18
+ ··· 7u + 1
c
10
u
19
u
18
+ ··· + 236u + 43
c
11
u
19
u
18
+ ··· + u + 1
c
12
u
19
+ 4u
18
+ ··· + u 1
14
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
+ 6y
18
+ ··· + 27y 1
c
2
, c
5
y
19
10y
18
+ ··· + 11y 1
c
3
, c
11
y
19
23y
18
+ ··· 13y 1
c
4
, c
7
y
19
+ 10y
18
+ ··· + 3y 1
c
6
, c
9
y
19
3y
18
+ ··· + 35y 1
c
8
, c
12
y
19
16y
18
+ ··· 5y 1
c
10
y
19
3y
18
+ ··· + 26284y 1849
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.978751 + 0.307404I
a = 0.08895 1.68231I
b = 0.094662 0.624680I
7.28503 + 4.10785I 2.95414 2.86490I
u = 0.978751 0.307404I
a = 0.08895 + 1.68231I
b = 0.094662 + 0.624680I
7.28503 4.10785I 2.95414 + 2.86490I
u = 0.904209 + 0.228834I
a = 0.786990 0.518544I
b = 1.44158 + 0.87989I
1.67334 1.02006I 5.81141 0.72669I
u = 0.904209 0.228834I
a = 0.786990 + 0.518544I
b = 1.44158 0.87989I
1.67334 + 1.02006I 5.81141 + 0.72669I
u = 0.818844 + 0.700124I
a = 0.333710 0.781860I
b = 0.51330 1.32368I
10.34880 4.45139I 6.18516 + 3.57443I
u = 0.818844 0.700124I
a = 0.333710 + 0.781860I
b = 0.51330 + 1.32368I
10.34880 + 4.45139I 6.18516 3.57443I
u = 0.880057 + 0.723725I
a = 0.183448 0.085198I
b = 0.138934 0.604807I
4.90128 + 2.76357I 8.38876 + 0.35727I
u = 0.880057 0.723725I
a = 0.183448 + 0.085198I
b = 0.138934 + 0.604807I
4.90128 2.76357I 8.38876 0.35727I
u = 0.787321 + 0.274997I
a = 1.42135 + 0.91420I
b = 2.37267 + 1.42356I
8.01888 1.56355I 1.27949 2.89433I
u = 0.787321 0.274997I
a = 1.42135 0.91420I
b = 2.37267 1.42356I
8.01888 + 1.56355I 1.27949 + 2.89433I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.940062 + 0.692222I
a = 0.550056 + 0.651231I
b = 0.133210 + 0.249610I
9.96906 0.91166I 6.80985 + 1.74521I
u = 0.940062 0.692222I
a = 0.550056 0.651231I
b = 0.133210 0.249610I
9.96906 + 0.91166I 6.80985 1.74521I
u = 0.233447 + 0.755562I
a = 0.49290 + 1.41879I
b = 0.316972 0.038293I
0.214249 0.827859I 0.372742 + 0.698304I
u = 0.233447 0.755562I
a = 0.49290 1.41879I
b = 0.316972 + 0.038293I
0.214249 + 0.827859I 0.372742 0.698304I
u = 1.193260 + 0.407397I
a = 1.117000 0.146511I
b = 2.25532 + 0.23263I
4.05195 2.93073I 3.39124 + 2.59909I
u = 1.193260 0.407397I
a = 1.117000 + 0.146511I
b = 2.25532 0.23263I
4.05195 + 2.93073I 3.39124 2.59909I
u = 1.199490 + 0.536666I
a = 1.122270 + 0.371800I
b = 2.14595 + 0.39527I
3.09315 + 5.79872I 2.42694 4.74421I
u = 1.199490 0.536666I
a = 1.122270 0.371800I
b = 2.14595 0.39527I
3.09315 5.79872I 2.42694 + 4.74421I
u = 0.445385
a = 1.61551
b = 0.739953
0.586933 5.76990
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
19
10u
18
+ ··· + 11u 1)(u
67
+ 37u
66
+ ··· + 7u + 1)
c
2
(u
19
5u
17
+ ··· + u 1)(u
67
+ u
66
+ ··· u + 1)
c
3
(u
19
+ u
18
+ ··· + u 1)(u
67
2u
66
+ ··· 89u + 29)
c
4
(u
19
2u
18
+ ··· u 1)(u
67
3u
66
+ ··· + 1479u + 1799)
c
5
(u
19
5u
17
+ ··· + u + 1)(u
67
+ u
66
+ ··· u + 1)
c
6
(u
19
3u
18
+ ··· 7u 1)(u
67
10u
66
+ ··· 14957u + 583)
c
7
(u
19
+ 2u
18
+ ··· u + 1)(u
67
3u
66
+ ··· + 1479u + 1799)
c
8
(u
19
4u
18
+ ··· + u + 1)(u
67
3u
66
+ ··· + 1963u + 409)
c
9
(u
19
+ 3u
18
+ ··· 7u + 1)(u
67
10u
66
+ ··· 14957u + 583)
c
10
(u
19
u
18
+ ··· + 236u + 43)(u
67
+ 6u
66
+ ··· + 958404u 46939)
c
11
(u
19
u
18
+ ··· + u + 1)(u
67
2u
66
+ ··· 89u + 29)
c
12
(u
19
+ 4u
18
+ ··· + u 1)(u
67
3u
66
+ ··· + 1963u + 409)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
19
+ 6y
18
+ ··· + 27y 1)(y
67
5y
66
+ ··· + 59y 1)
c
2
, c
5
(y
19
10y
18
+ ··· + 11y 1)(y
67
37y
66
+ ··· + 7y 1)
c
3
, c
11
(y
19
23y
18
+ ··· 13y 1)(y
67
66y
66
+ ··· + 7283y 841)
c
4
, c
7
(y
19
+ 10y
18
+ ··· + 3y 1)
· (y
67
+ 35y
66
+ ··· 114931057y 3236401)
c
6
, c
9
(y
19
3y
18
+ ··· + 35y 1)(y
67
50y
66
+ ··· 1103445y 339889)
c
8
, c
12
(y
19
16y
18
+ ··· 5y 1)
· (y
67
43y
66
+ ··· + 32507091y 167281)
c
10
(y
19
3y
18
+ ··· + 26284y 1849)
· (y
67
+ 22y
66
+ ··· + 83085423428y 2203269721)
20