12n
0533
(K12n
0533
)
A knot diagram
1
Linearized knot diagam
3 6 12 7 2 9 11 4 6 3 8 10
Solving Sequence
2,6 3,9
7 10 11 1 5 4 8 12
c
2
c
6
c
9
c
10
c
1
c
5
c
4
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 685852313u
18
556454916u
17
+ ··· + 653732120a + 7160013, u
19
u
18
+ ··· u 1i
I
u
2
= h−5.47513 × 10
57
u
27
1.03765 × 10
58
u
26
+ ··· + 1.25931 × 10
60
b + 3.43121 × 10
60
,
2.52837 × 10
60
u
27
+ 8.41887 × 10
58
u
26
+ ··· + 3.70867 × 10
62
a 9.79223 × 10
62
,
2u
28
31u
26
+ ··· 1810u + 589i
I
u
3
= hb + u, 2u
8
+ 8u
7
+ 6u
6
13u
5
23u
4
10u
3
+ 3u
2
+ a + 3u + 1,
u
9
+ 4u
8
+ 3u
7
7u
6
13u
5
5u
4
+ 5u
3
+ 4u
2
1i
I
u
4
= hb + 1, 3a 4u 2, 2u
2
+ 4u + 3i
I
u
5
= hb + 1, a
2
+ 2, u 1i
I
u
6
= h2b a 2, a
2
+ 2, u 1i
I
u
7
= hb + 1, a, u 1i
* 7 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, 6.86 × 10
8
u
18
5.56 × 10
8
u
17
+ · · · + 6.54 × 10
8
a + 7.16 ×
10
6
, u
19
u
18
+ · · · u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
1.04913u
18
+ 0.851197u
17
+ ··· + 7.34496u 0.0109525
u
a
7
=
0.158099u
18
+ 0.275222u
17
+ ··· 2.08930u 3.03953
0.293094u
18
+ 0.271534u
17
+ ··· + 2.24707u + 0.197936
a
10
=
1.04913u
18
+ 0.851197u
17
+ ··· + 7.34496u 0.0109525
0.293094u
18
0.271534u
17
+ ··· 0.247070u 0.197936
a
11
=
1.04913u
18
+ 0.851197u
17
+ ··· + 6.34496u 0.0109525
0.293094u
18
0.271534u
17
+ ··· 0.247070u 0.197936
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
4
=
0.0634274u
18
0.299411u
17
+ ··· 0.158823u + 2.17783
0.309916u
18
0.197991u
17
+ ··· 0.689516u 0.693690
a
8
=
0.489325u
18
+ 0.908085u
17
+ ··· + 2.86952u 2.02077
0.146260u
18
0.320706u
17
+ ··· + 1.12146u + 0.224248
a
12
=
0.652817u
18
1.22239u
17
+ ··· 1.72619u + 2.50033
0.0560035u
18
+ 0.251833u
17
+ ··· 0.0119146u 0.862668
(ii) Obstruction class = 1
(iii) Cusp Shapes =
98599477
81716515
u
18
+
19045887
32686606
u
17
+ ··· +
1773159057
163433030
u +
96551023
32686606
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
+ 29u
18
+ ··· 21u + 1
c
2
, c
5
, c
10
u
19
+ u
18
+ ··· u + 1
c
3
u
19
12u
18
+ ··· 112u + 8
c
4
u
19
+ u
18
+ ··· + 38u + 19
c
6
, c
9
u
19
11u
18
+ ··· + 192u 16
c
7
, c
8
, c
11
u
19
6u
17
+ ··· + 2u + 1
c
12
u
19
2u
18
+ ··· + 640u + 206
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
89y
18
+ ··· + 167y 1
c
2
, c
5
, c
10
y
19
29y
18
+ ··· 21y 1
c
3
y
19
+ 4y
18
+ ··· + 2272y 64
c
4
y
19
+ 17y
18
+ ··· + 342y 361
c
6
, c
9
y
19
+ 9y
18
+ ··· + 10112y 256
c
7
, c
8
, c
11
y
19
12y
18
+ ··· + 20y 1
c
12
y
19
44y
18
+ ··· + 39624y 42436
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.011380 + 0.313488I
a = 0.32432 + 1.42243I
b = 1.011380 + 0.313488I
3.19066 + 0.85534I 5.53948 2.70144I
u = 1.011380 0.313488I
a = 0.32432 1.42243I
b = 1.011380 0.313488I
3.19066 0.85534I 5.53948 + 2.70144I
u = 0.563817 + 0.542216I
a = 1.26815 + 1.02395I
b = 0.563817 + 0.542216I
7.09944 + 1.17461I 4.73931 3.05170I
u = 0.563817 0.542216I
a = 1.26815 1.02395I
b = 0.563817 0.542216I
7.09944 1.17461I 4.73931 + 3.05170I
u = 0.678408
a = 0.230292
b = 0.678408
1.17152 9.47840
u = 0.102826 + 0.584964I
a = 1.67025 1.13096I
b = 0.102826 + 0.584964I
4.80007 6.25425I 1.28229 + 2.73136I
u = 0.102826 0.584964I
a = 1.67025 + 1.13096I
b = 0.102826 0.584964I
4.80007 + 6.25425I 1.28229 2.73136I
u = 0.263709 + 0.494501I
a = 0.994354 0.913393I
b = 0.263709 + 0.494501I
2.36863 1.74565I 1.37224 + 0.88301I
u = 0.263709 0.494501I
a = 0.994354 + 0.913393I
b = 0.263709 0.494501I
2.36863 + 1.74565I 1.37224 0.88301I
u = 0.006101 + 0.333119I
a = 2.12160 + 1.28521I
b = 0.006101 + 0.333119I
0.09772 1.41403I 1.26259 + 3.76239I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.006101 0.333119I
a = 2.12160 1.28521I
b = 0.006101 0.333119I
0.09772 + 1.41403I 1.26259 3.76239I
u = 1.82852 + 0.27307I
a = 0.568825 + 0.667950I
b = 1.82852 + 0.27307I
9.74488 + 5.38592I 1.90391 4.79888I
u = 1.82852 0.27307I
a = 0.568825 0.667950I
b = 1.82852 0.27307I
9.74488 5.38592I 1.90391 + 4.79888I
u = 1.90401 + 0.14512I
a = 0.798373 + 0.448929I
b = 1.90401 + 0.14512I
8.63257 + 5.48554I 4.82467 3.57754I
u = 1.90401 0.14512I
a = 0.798373 0.448929I
b = 1.90401 0.14512I
8.63257 5.48554I 4.82467 + 3.57754I
u = 1.90239 + 0.21588I
a = 0.651528 + 0.330559I
b = 1.90239 + 0.21588I
11.79520 + 2.21872I 6.42414 + 1.59237I
u = 1.90239 0.21588I
a = 0.651528 0.330559I
b = 1.90239 0.21588I
11.79520 2.21872I 6.42414 1.59237I
u = 1.91277 + 0.40668I
a = 0.696362 + 0.544185I
b = 1.91277 + 0.40668I
7.3598 14.6056I 3.48053 + 6.86328I
u = 1.91277 0.40668I
a = 0.696362 0.544185I
b = 1.91277 0.40668I
7.3598 + 14.6056I 3.48053 6.86328I
6
II. I
u
2
= h−5.48 × 10
57
u
27
1.04 × 10
58
u
26
+ · · · + 1.26 × 10
60
b + 3.43 ×
10
60
, 2.53 × 10
60
u
27
+ 8.42 × 10
58
u
26
+ · · · + 3.71 × 10
62
a 9.79 ×
10
62
, 2u
28
31u
26
+ · · · 1810u + 589i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
0.00681744u
27
0.000227005u
26
+ ··· 8.46563u + 2.64036
0.00434772u
27
+ 0.00823983u
26
+ ··· + 3.63527u 2.72467
a
7
=
0.00201318u
27
+ 0.000373266u
26
+ ··· + 1.62410u + 3.93942
0.00381269u
27
+ 0.000556062u
26
+ ··· 0.710321u + 1.46510
a
10
=
0.00681744u
27
0.000227005u
26
+ ··· 8.46563u + 2.64036
0.00232347u
27
+ 0.00897606u
26
+ ··· + 5.43757u 2.65782
a
11
=
0.0111652u
27
0.00846684u
26
+ ··· 12.1009u + 5.36503
0.000787486u
27
+ 0.00285253u
26
+ ··· 0.739078u 0.231186
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
4
=
0.00531622u
27
0.00441396u
26
+ ··· 13.8077u + 0.531340
0.00187207u
27
0.00379823u
26
+ ··· 6.50788u + 0.163980
a
8
=
0.0119948u
27
0.00659420u
26
+ ··· 10.2083u + 8.38054
0.00447526u
27
+ 0.000556236u
26
+ ··· 3.48973u + 1.29218
a
12
=
0.00515768u
27
+ 0.00174483u
26
+ ··· 2.12442u + 4.32190
0.00281226u
27
+ 0.00400340u
26
+ ··· + 4.13143u 0.354315
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0000410394u
27
0.0223862u
26
+ ··· 14.9786u + 4.40670
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
4(4u
28
+ 124u
27
+ ··· + 3496386u + 346921)
c
2
, c
5
, c
10
2(2u
28
31u
26
+ ··· + 1810u + 589)
c
3
(u
14
+ 3u
13
+ ··· + 6u + 2)
2
c
4
4(4u
28
+ 4u
27
+ ··· + 2910u + 1318)
c
6
, c
9
(u
14
+ 4u
13
+ ··· + 6u + 2)
2
c
7
, c
8
, c
11
2(2u
28
3u
26
+ ··· + 18u + 143)
c
12
4(4u
28
+ 4u
27
+ ··· 331822u + 51386)
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
16(16y
28
1192y
27
+ ··· + 1.12038 × 10
13
y + 1.20354 × 10
11
)
c
2
, c
5
, c
10
4(4y
28
124y
27
+ ··· 3496386y + 346921)
c
3
(y
14
+ 7y
13
+ ··· + 40y + 4)
2
c
4
16(16y
28
+ 120y
27
+ ··· + 3.30726 × 10
7
y + 1737124)
c
6
, c
9
(y
14
+ 14y
12
+ ··· 16y + 4)
2
c
7
, c
8
, c
11
4(4y
28
12y
27
+ ··· 208818y + 20449)
c
12
16(16y
28
872y
27
+ ··· + 9.39179 × 10
9
y + 2.64052 × 10
9
)
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.966382 + 0.110966I
a = 0.828099 0.574299I
b = 0.89736 1.22031I
1.97484 7.76173I 3.86929 + 6.38577I
u = 0.966382 0.110966I
a = 0.828099 + 0.574299I
b = 0.89736 + 1.22031I
1.97484 + 7.76173I 3.86929 6.38577I
u = 0.851893 + 0.576043I
a = 0.774805 + 0.118277I
b = 1.41322 0.39522I
0.285405 1.292740I 2.58201 + 4.98724I
u = 0.851893 0.576043I
a = 0.774805 0.118277I
b = 1.41322 + 0.39522I
0.285405 + 1.292740I 2.58201 4.98724I
u = 0.809296 + 0.758852I
a = 0.701976 + 0.470898I
b = 0.656408 + 0.320572I
1.78597 2.14155I 6.76179 + 4.84545I
u = 0.809296 0.758852I
a = 0.701976 0.470898I
b = 0.656408 0.320572I
1.78597 + 2.14155I 6.76179 4.84545I
u = 0.820658 + 0.108803I
a = 0.497392 0.319928I
b = 0.69832 + 1.71552I
0.227845 0.102984I 1.99347 4.00034I
u = 0.820658 0.108803I
a = 0.497392 + 0.319928I
b = 0.69832 1.71552I
0.227845 + 0.102984I 1.99347 + 4.00034I
u = 0.656408 + 0.320572I
a = 1.047290 + 0.742422I
b = 0.809296 + 0.758852I
1.78597 2.14155I 6.76179 + 4.84545I
u = 0.656408 0.320572I
a = 1.047290 0.742422I
b = 0.809296 0.758852I
1.78597 + 2.14155I 6.76179 4.84545I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.130570 + 0.630186I
a = 0.307163 1.004640I
b = 0.261322 0.276894I
5.45172 + 3.41582I 0.19962 2.07440I
u = 1.130570 0.630186I
a = 0.307163 + 1.004640I
b = 0.261322 + 0.276894I
5.45172 3.41582I 0.19962 + 2.07440I
u = 1.41322 + 0.39522I
a = 0.288054 0.467672I
b = 0.851893 0.576043I
0.285405 + 1.292740I 2.58201 4.98724I
u = 1.41322 0.39522I
a = 0.288054 + 0.467672I
b = 0.851893 + 0.576043I
0.285405 1.292740I 2.58201 + 4.98724I
u = 0.89736 + 1.22031I
a = 0.584215 0.278401I
b = 0.966382 0.110966I
1.97484 + 7.76173I 3.86929 6.38577I
u = 0.89736 1.22031I
a = 0.584215 + 0.278401I
b = 0.966382 + 0.110966I
1.97484 7.76173I 3.86929 + 6.38577I
u = 0.261322 + 0.276894I
a = 2.02402 2.94250I
b = 1.130570 0.630186I
5.45172 3.41582I 0.19962 + 2.07440I
u = 0.261322 0.276894I
a = 2.02402 + 2.94250I
b = 1.130570 + 0.630186I
5.45172 + 3.41582I 0.19962 2.07440I
u = 1.77785 + 0.35616I
a = 0.794821 0.439524I
b = 2.03221 0.27091I
10.49050 + 7.03206I 4.68824 5.11742I
u = 1.77785 0.35616I
a = 0.794821 + 0.439524I
b = 2.03221 + 0.27091I
10.49050 7.03206I 4.68824 + 5.11742I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.78768 + 0.39075I
a = 0.782070 0.541782I
b = 1.84939 0.11154I
9.89698 1.84815I 3.80483 0.45512I
u = 1.78768 0.39075I
a = 0.782070 + 0.541782I
b = 1.84939 + 0.11154I
9.89698 + 1.84815I 3.80483 + 0.45512I
u = 0.69832 + 1.71552I
a = 0.082350 + 0.251169I
b = 0.820658 + 0.108803I
0.227845 0.102984I 1.99347 4.00034I
u = 0.69832 1.71552I
a = 0.082350 0.251169I
b = 0.820658 0.108803I
0.227845 + 0.102984I 1.99347 + 4.00034I
u = 1.84939 + 0.11154I
a = 0.680577 0.647893I
b = 1.78768 0.39075I
9.89698 + 1.84815I 3.80483 + 0.45512I
u = 1.84939 0.11154I
a = 0.680577 + 0.647893I
b = 1.78768 + 0.39075I
9.89698 1.84815I 3.80483 0.45512I
u = 2.03221 + 0.27091I
a = 0.676121 0.433678I
b = 1.77785 0.35616I
10.49050 7.03206I 4.00000 + 5.11742I
u = 2.03221 0.27091I
a = 0.676121 + 0.433678I
b = 1.77785 + 0.35616I
10.49050 + 7.03206I 4.00000 5.11742I
12
III. I
u
3
= hb + u, 2u
8
+ 8u
7
+ · · · + a + 1, u
9
+ 4u
8
+ · · · + 4u
2
1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
2u
8
8u
7
6u
6
+ 13u
5
+ 23u
4
+ 10u
3
3u
2
3u 1
u
a
7
=
u
8
+ 3u
7
u
6
10u
5
6u
4
+ 7u
3
+ 9u
2
+ u 2
u
7
3u
6
+ 7u
4
+ 5u
3
u
2
u
a
10
=
2u
8
8u
7
6u
6
+ 13u
5
+ 23u
4
+ 10u
3
3u
2
3u 1
u
7
3u
6
+ 7u
4
+ 5u
3
u
2
3u
a
11
=
2u
8
8u
7
6u
6
+ 13u
5
+ 23u
4
+ 10u
3
3u
2
2u 1
u
7
3u
6
+ 7u
4
+ 6u
3
u
2
3u
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
4
=
u
8
3u
7
+ u
6
+ 10u
5
+ 6u
4
8u
3
9u
2
+ 2u + 2
2u
8
+ 7u
7
+ 2u
6
16u
5
16u
4
+ 2u
3
+ 8u
2
+ u 1
a
8
=
2u
8
+ 5u
7
5u
6
19u
5
3u
4
+ 19u
3
+ 13u
2
4u 3
u
2
+ u 1
a
12
=
u
7
4u
6
3u
5
+ 7u
4
+ 12u
3
+ 3u
2
3u
u
8
3u
7
+ 6u
5
+ 4u
4
+ u
3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
8
+ 22u
7
+ 14u
6
35u
5
59u
4
26u
3
+ 10u
2
4
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
10u
8
+ 39u
7
77u
6
+ 97u
5
91u
4
+ 51u
3
26u
2
+ 8u 1
c
2
, c
10
u
9
+ 4u
8
+ 3u
7
7u
6
13u
5
5u
4
+ 5u
3
+ 4u
2
1
c
3
u
9
+ 2u
8
+ 3u
7
4u
5
6u
4
+ 7u
2
+ 5u + 1
c
4
u
9
u
6
+ 5u
5
14u
4
3u
3
+ 3u
2
+ u 1
c
5
u
9
4u
8
+ 3u
7
+ 7u
6
13u
5
+ 5u
4
+ 5u
3
4u
2
+ 1
c
6
u
9
2u
8
+ 5u
7
6u
6
+ 11u
5
8u
4
+ 10u
3
5u
2
+ 4u 1
c
7
u
9
+ u
8
2u
7
2u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u + 1
c
8
, c
11
u
9
u
8
2u
7
+ 2u
6
+ 2u
5
3u
4
+ 2u
3
2u
2
+ u 1
c
9
u
9
+ 2u
8
+ 5u
7
+ 6u
6
+ 11u
5
+ 8u
4
+ 10u
3
+ 5u
2
+ 4u + 1
c
12
u
9
+ 2u
8
6u
7
7u
6
+ 15u
5
+ 4u
4
8u
3
3u
2
+ 2u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
22y
8
+ ··· + 12y 1
c
2
, c
5
, c
10
y
9
10y
8
+ 39y
7
77y
6
+ 97y
5
91y
4
+ 51y
3
26y
2
+ 8y 1
c
3
y
9
+ 2y
8
+ y
7
2y
5
10y
4
+ 44y
3
37y
2
+ 11y 1
c
4
y
9
+ 10y
7
7y
6
y
5
220y
4
+ 101y
3
43y
2
+ 7y 1
c
6
, c
9
y
9
+ 6y
8
+ 23y
7
+ 62y
6
+ 113y
5
+ 132y
4
+ 96y
3
+ 39y
2
+ 6y 1
c
7
, c
8
, c
11
y
9
5y
8
+ 12y
7
14y
6
+ 6y
5
+ y
4
6y
2
3y 1
c
12
y
9
16y
8
+ 94y
7
261y
6
+ 393y
5
318y
4
+ 134y
3
33y
2
2y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.865294 + 0.634244I
a = 0.435521 1.098430I
b = 0.865294 0.634244I
5.42733 + 5.08303I 0.17320 7.12597I
u = 0.865294 0.634244I
a = 0.435521 + 1.098430I
b = 0.865294 + 0.634244I
5.42733 5.08303I 0.17320 + 7.12597I
u = 0.538784 + 0.553717I
a = 1.116470 + 0.596317I
b = 0.538784 0.553717I
4.45461 + 7.56243I 0.11124 7.39319I
u = 0.538784 0.553717I
a = 1.116470 0.596317I
b = 0.538784 + 0.553717I
4.45461 7.56243I 0.11124 + 7.39319I
u = 1.45391
a = 0.210908
b = 1.45391
0.245409 0.377120
u = 0.526629 + 0.094661I
a = 0.38098 + 1.63789I
b = 0.526629 0.094661I
0.68115 + 1.57729I 9.12272 4.78889I
u = 0.526629 0.094661I
a = 0.38098 1.63789I
b = 0.526629 + 0.094661I
0.68115 1.57729I 9.12272 + 4.78889I
u = 1.84951 + 0.27593I
a = 0.667388 0.551500I
b = 1.84951 0.27593I
10.72300 + 4.06248I 5.12780 2.06389I
u = 1.84951 0.27593I
a = 0.667388 + 0.551500I
b = 1.84951 + 0.27593I
10.72300 4.06248I 5.12780 + 2.06389I
16
IV. I
u
4
= hb + 1, 3a 4u 2, 2u
2
+ 4u + 3i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
2u
3
2
a
9
=
4
3
u +
2
3
1
a
7
=
4
3
u
8
3
u 2
a
10
=
4
3
u +
2
3
2u + 2
a
11
=
4
3
u +
5
3
0.5
a
1
=
2u +
5
2
2u +
15
4
a
5
=
u
u
a
4
=
5
3
u +
4
3
3
2
u + 1
a
8
=
1
3
u
2
3
3
2
u 2
a
12
=
4
3
u +
13
6
u +
11
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
4u
2
4u + 9
c
2
, c
7
2u
2
+ 4u + 3
c
3
, c
6
, c
9
u
2
+ 2
c
4
(2u + 1)
2
c
5
, c
11
2u
2
4u + 3
c
8
(u + 1)
2
c
10
(u 1)
2
c
12
(2u 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
16y
2
+ 56y + 81
c
2
, c
5
, c
7
c
11
4y
2
4y + 9
c
3
, c
6
, c
9
(y + 2)
2
c
4
, c
12
(4y 1)
2
c
8
, c
10
(y 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.000000 + 0.707107I
a = 0.666667 + 0.942809I
b = 1.00000
4.93480 0
u = 1.000000 0.707107I
a = 0.666667 0.942809I
b = 1.00000
4.93480 0
20
V. I
u
5
= hb + 1, a
2
+ 2, u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
1
a
3
=
1
1
a
9
=
a
1
a
7
=
2
a + 1
a
10
=
a
a 1
a
11
=
a + 1
a
a
1
=
0
1
a
5
=
1
1
a
4
=
2a 1
2
a
8
=
a + 1
1
a
12
=
2
a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
10
(u 1)
2
c
3
, c
4
u
2
+ 2u + 3
c
5
, c
8
, c
11
(u + 1)
2
c
6
, c
9
, c
12
u
2
+ 2
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
8
, c
10
c
11
(y 1)
2
c
3
, c
4
y
2
+ 2y + 9
c
6
, c
9
, c
12
(y + 2)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.414210I
b = 1.00000
4.93480 0
u = 1.00000
a = 1.414210I
b = 1.00000
4.93480 0
24
VI. I
u
6
= h2b a 2, a
2
+ 2, u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
1
a
3
=
1
1
a
9
=
a
1
2
a + 1
a
7
=
2
a + 2
a
10
=
a
3
2
a + 1
a
11
=
1
2
a 1
a
a
1
=
0
1
a
5
=
1
1
a
4
=
2a + 1
2a 1
a
8
=
1
2
a + 3
2a + 2
a
12
=
2
a + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
(u 1)
2
c
3
, c
4
, c
6
c
9
, c
12
u
2
+ 2
c
5
, c
11
(u + 1)
2
c
8
2(2u
2
4u + 3)
c
10
2(2u
2
+ 4u + 3)
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
11
(y 1)
2
c
3
, c
4
, c
6
c
9
, c
12
(y + 2)
2
c
8
, c
10
4(4y
2
4y + 9)
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.414210I
b = 1.000000 + 0.707107I
4.93480 0
u = 1.00000
a = 1.414210I
b = 1.000000 0.707107I
4.93480 0
28
VII. I
u
7
= hb + 1, a, u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
1
a
3
=
1
1
a
9
=
0
1
a
7
=
0
1
a
10
=
0
1
a
11
=
1
0
a
1
=
0
1
a
5
=
1
1
a
4
=
1
2
a
8
=
1
1
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
8
, c
10
, c
11
u 1
c
3
, c
5
, c
7
u + 1
c
6
, c
9
, c
12
u
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
7
c
8
, c
10
, c
11
y 1
c
6
, c
9
, c
12
y
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
0 0
32
VIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
(4u
2
4u + 9)
· (u
9
10u
8
+ 39u
7
77u
6
+ 97u
5
91u
4
+ 51u
3
26u
2
+ 8u 1)
· (u
19
+ 29u
18
+ ··· 21u + 1)
· (4u
28
+ 124u
27
+ ··· + 3496386u + 346921)
c
2
(u 1)
5
(2u
2
+ 4u + 3)
· (u
9
+ 4u
8
+ 3u
7
7u
6
13u
5
5u
4
+ 5u
3
+ 4u
2
1)
· (u
19
+ u
18
+ ··· u + 1)(2u
28
31u
26
+ ··· + 1810u + 589)
c
3
(u + 1)(u
2
+ 2)
2
(u
2
+ 2u + 3)(u
9
+ 2u
8
+ ··· + 5u + 1)
· ((u
14
+ 3u
13
+ ··· + 6u + 2)
2
)(u
19
12u
18
+ ··· 112u + 8)
c
4
(u 1)(2u + 1)
2
(u
2
+ 2)(u
2
+ 2u + 3)
· (u
9
u
6
+ ··· + u 1)(u
19
+ u
18
+ ··· + 38u + 19)
· (4u
28
+ 4u
27
+ ··· + 2910u + 1318)
c
5
(u + 1)
5
(2u
2
4u + 3)
· (u
9
4u
8
+ 3u
7
+ 7u
6
13u
5
+ 5u
4
+ 5u
3
4u
2
+ 1)
· (u
19
+ u
18
+ ··· u + 1)(2u
28
31u
26
+ ··· + 1810u + 589)
c
6
u(u
2
+ 2)
3
(u
9
2u
8
+ ··· + 4u 1)
· ((u
14
+ 4u
13
+ ··· + 6u + 2)
2
)(u
19
11u
18
+ ··· + 192u 16)
c
7
(u 1)
4
(u + 1)(2u
2
+ 4u + 3)
· (u
9
+ u
8
2u
7
2u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u + 1)
· (u
19
6u
17
+ ··· + 2u + 1)(2u
28
3u
26
+ ··· + 18u + 143)
c
8
4(u 1)(u + 1)
4
(2u
2
4u + 3)
· (u
9
u
8
2u
7
+ 2u
6
+ 2u
5
3u
4
+ 2u
3
2u
2
+ u 1)
· (u
19
6u
17
+ ··· + 2u + 1)(2u
28
3u
26
+ ··· + 18u + 143)
c
9
u(u
2
+ 2)
3
(u
9
+ 2u
8
+ ··· + 4u + 1)
· ((u
14
+ 4u
13
+ ··· + 6u + 2)
2
)(u
19
11u
18
+ ··· + 192u 16)
c
10
4(u 1)
5
(2u
2
+ 4u + 3)
· (u
9
+ 4u
8
+ 3u
7
7u
6
13u
5
5u
4
+ 5u
3
+ 4u
2
1)
· (u
19
+ u
18
+ ··· u + 1)(2u
28
31u
26
+ ··· + 1810u + 589)
c
11
(u 1)(u + 1)
4
(2u
2
4u + 3)
· (u
9
u
8
2u
7
+ 2u
6
+ 2u
5
3u
4
+ 2u
3
2u
2
+ u 1)
· (u
19
6u
17
+ ··· + 2u + 1)(2u
28
3u
26
+ ··· + 18u + 143)
c
12
u(2u 1)
2
(u
2
+ 2)
2
· (u
9
+ 2u
8
6u
7
7u
6
+ 15u
5
+ 4u
4
8u
3
3u
2
+ 2u 1)
· (u
19
2u
18
+ ··· + 640u + 206)
· (4u
28
+ 4u
27
+ ··· 331822u + 51386)
33
IX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(16y
2
+ 56y + 81)(y
9
22y
8
+ ··· + 12y 1)
· (y
19
89y
18
+ ··· + 167y 1)
· (16y
28
1192y
27
+ ··· + 11203834917014y + 120354180241)
c
2
, c
5
(y 1)
5
(4y
2
4y + 9)
· (y
9
10y
8
+ 39y
7
77y
6
+ 97y
5
91y
4
+ 51y
3
26y
2
+ 8y 1)
· (y
19
29y
18
+ ··· 21y 1)
· (4y
28
124y
27
+ ··· 3496386y + 346921)
c
3
(y 1)(y + 2)
4
(y
2
+ 2y + 9)
· (y
9
+ 2y
8
+ y
7
2y
5
10y
4
+ 44y
3
37y
2
+ 11y 1)
· ((y
14
+ 7y
13
+ ··· + 40y + 4)
2
)(y
19
+ 4y
18
+ ··· + 2272y 64)
c
4
(y 1)(y + 2)
2
(4y 1)
2
(y
2
+ 2y + 9)
· (y
9
+ 10y
7
7y
6
y
5
220y
4
+ 101y
3
43y
2
+ 7y 1)
· (y
19
+ 17y
18
+ ··· + 342y 361)
· (16y
28
+ 120y
27
+ ··· + 33072624y + 1737124)
c
6
, c
9
y(y + 2)
6
· (y
9
+ 6y
8
+ 23y
7
+ 62y
6
+ 113y
5
+ 132y
4
+ 96y
3
+ 39y
2
+ 6y 1)
· ((y
14
+ 14y
12
+ ··· 16y + 4)
2
)(y
19
+ 9y
18
+ ··· + 10112y 256)
c
7
, c
11
(y 1)
5
(4y
2
4y + 9)
· (y
9
5y
8
+ 12y
7
14y
6
+ 6y
5
+ y
4
6y
2
3y 1)
· (y
19
12y
18
+ ··· + 20y 1)(4y
28
12y
27
+ ··· 208818y + 20449)
c
8
16(y 1)
5
(4y
2
4y + 9)
· (y
9
5y
8
+ 12y
7
14y
6
+ 6y
5
+ y
4
6y
2
3y 1)
· (y
19
12y
18
+ ··· + 20y 1)(4y
28
12y
27
+ ··· 208818y + 20449)
c
10
16(y 1)
5
(4y
2
4y + 9)
· (y
9
10y
8
+ 39y
7
77y
6
+ 97y
5
91y
4
+ 51y
3
26y
2
+ 8y 1)
· (y
19
29y
18
+ ··· 21y 1)
· (4y
28
124y
27
+ ··· 3496386y + 346921)
c
12
y(y + 2)
4
(4y 1)
2
· (y
9
16y
8
+ 94y
7
261y
6
+ 393y
5
318y
4
+ 134y
3
33y
2
2y 1)
· (y
19
44y
18
+ ··· + 39624y 42436)
· (16y
28
872y
27
+ ··· + 9391789456y + 2640520996)
34