12n
0537
(K12n
0537
)
A knot diagram
1
Linearized knot diagam
3 5 7 12 2 11 10 5 4 3 9 8
Solving Sequence
4,12 5,9
10 8 1 7 3 2 6 11
c
4
c
9
c
8
c
12
c
7
c
3
c
2
c
5
c
11
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.81893 × 10
17
u
27
6.03500 × 10
17
u
26
+ ··· + 5.35730 × 10
17
b 3.43509 × 10
18
,
3.83926 × 10
18
u
27
+ 2.85325 × 10
18
u
26
+ ··· + 5.35730 × 10
17
a 4.31215 × 10
18
, u
28
+ 2u
26
+ ··· + 2u + 1i
I
u
2
= h6.36861 × 10
214
u
67
+ 1.23983 × 10
215
u
66
+ ··· + 2.21361 × 10
214
b + 4.99066 × 10
215
,
6.89986 × 10
215
u
67
1.24081 × 10
216
u
66
+ ··· + 2.21361 × 10
214
a 3.68206 × 10
216
,
u
68
+ 2u
67
+ ··· + 21u + 1i
I
u
3
= h−2.25962 × 10
48
u
35
8.58758 × 10
47
u
34
+ ··· + 1.17942 × 10
46
b + 5.94065 × 10
48
,
1.61303 × 10
48
u
35
6.16039 × 10
47
u
34
+ ··· + 1.17942 × 10
46
a + 4.20101 × 10
48
, u
36
+ 5u
34
+ ··· 6u
2
+ 1i
I
u
4
= hb, 2u
4
+ u
3
+ 3u
2
+ a u 2, u
5
+ u
3
u
2
u + 1i
I
u
5
= hb 1, a + 1, u
2
u + 1i
* 5 irreducible components of dim
C
= 0, with total 139 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−4.82×10
17
u
27
6.04×10
17
u
26
+· · ·+5.36×10
17
b3.44×10
18
, 3.84×
10
18
u
27
+2.85×10
18
u
26
+· · ·+5.36×10
17
a4.31×10
18
, u
28
+2u
26
+· · ·+2u+1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
9
=
7.16640u
27
5.32591u
26
+ ··· + 6.13836u + 8.04910
0.899507u
27
+ 1.12650u
26
+ ··· + 4.01358u + 6.41197
a
10
=
8.06591u
27
4.19941u
26
+ ··· + 10.1519u + 14.4611
0.899507u
27
+ 1.12650u
26
+ ··· + 4.01358u + 6.41197
a
8
=
5.18943u
27
2.77194u
26
+ ··· + 6.66653u + 9.13517
0.163984u
27
+ 0.536152u
26
+ ··· + 0.882630u + 3.85801
a
1
=
6.83813u
27
3.91955u
26
+ ··· + 6.32359u + 12.0959
1.93722u
27
+ 1.48121u
26
+ ··· 1.00772u 2.61673
a
7
=
14.1808u
27
+ 9.53294u
26
+ ··· 9.14159u 22.3381
u
a
3
=
9.53294u
27
+ 6.37147u
26
+ ··· 6.02353u 13.1808
u
2
a
2
=
13.4897u
27
+ 8.98078u
26
+ ··· 9.23353u 19.5523
1.82185u
27
+ 1.25415u
26
+ ··· 1.26190u 2.60931
a
6
=
5.48144u
27
3.48713u
26
+ ··· + 3.70672u + 8.83761
1.93722u
27
1.48121u
26
+ ··· + 1.00772u + 2.61673
a
11
=
19.2062u
27
12.8410u
26
+ ··· + 15.9255u + 27.6152
0.163984u
27
+ 0.536152u
26
+ ··· + 0.882630u + 3.85801
(ii) Obstruction class = 1
(iii) Cusp Shapes =
18680269678576763267
535729943333344787
u
27
+
8598753415343829290
535729943333344787
u
26
+ ···
35223182169748815025
535729943333344787
u
23029573736888830965
535729943333344787
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
28
+ 27u
27
+ ··· + 13748u + 1296
c
2
, c
5
u
28
+ 3u
27
+ ··· + 2u + 36
c
3
, c
4
u
28
+ 2u
26
+ ··· + 2u + 1
c
6
, c
12
u
28
+ 8u
27
+ ··· + 224u + 32
c
7
, c
11
u
28
+ 3u
27
+ ··· + 13u + 1
c
8
, c
10
u
28
+ u
27
+ ··· 3u + 1
c
9
u
28
+ 5u
27
+ ··· + 320u + 128
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
28
49y
27
+ ··· 825712y + 1679616
c
2
, c
5
y
28
+ 27y
27
+ ··· + 13748y + 1296
c
3
, c
4
y
28
+ 4y
27
+ ··· + 6y + 1
c
6
, c
12
y
28
+ 30y
27
+ ··· + 29696y + 1024
c
7
, c
11
y
28
y
27
+ ··· y + 1
c
8
, c
10
y
28
29y
27
+ ··· 45y + 1
c
9
y
28
y
27
+ ··· + 233472y + 16384
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.668779 + 0.723827I
a = 1.042480 + 0.230333I
b = 0.533282 + 0.983247I
0.10356 + 2.64453I 1.22282 3.18892I
u = 0.668779 0.723827I
a = 1.042480 0.230333I
b = 0.533282 0.983247I
0.10356 2.64453I 1.22282 + 3.18892I
u = 0.635506 + 0.698040I
a = 1.370710 + 0.155616I
b = 2.42228 0.22270I
8.72712 8.29781I 3.70457 + 10.88184I
u = 0.635506 0.698040I
a = 1.370710 0.155616I
b = 2.42228 + 0.22270I
8.72712 + 8.29781I 3.70457 10.88184I
u = 0.048408 + 0.902686I
a = 1.55642 0.39395I
b = 0.456492 + 0.690736I
6.94969 1.95373I 0.13138 + 3.39783I
u = 0.048408 0.902686I
a = 1.55642 + 0.39395I
b = 0.456492 0.690736I
6.94969 + 1.95373I 0.13138 3.39783I
u = 0.983916 + 0.634599I
a = 0.837957 + 0.541891I
b = 0.560930 + 1.151500I
2.43111 6.54317I 6.80530 + 6.55208I
u = 0.983916 0.634599I
a = 0.837957 0.541891I
b = 0.560930 1.151500I
2.43111 + 6.54317I 6.80530 6.55208I
u = 0.278802 + 0.692018I
a = 1.019280 0.484379I
b = 2.06902 + 0.53469I
0.15480 + 3.78570I 3.46312 12.68951I
u = 0.278802 0.692018I
a = 1.019280 + 0.484379I
b = 2.06902 0.53469I
0.15480 3.78570I 3.46312 + 12.68951I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.262782 + 0.616933I
a = 0.103884 0.340572I
b = 0.836041 + 0.476997I
0.01742 + 1.41732I 1.09305 2.14471I
u = 0.262782 0.616933I
a = 0.103884 + 0.340572I
b = 0.836041 0.476997I
0.01742 1.41732I 1.09305 + 2.14471I
u = 0.659524 + 0.003319I
a = 2.13553 + 2.39966I
b = 0.278963 + 0.671140I
9.47298 + 2.59610I 14.8510 6.7959I
u = 0.659524 0.003319I
a = 2.13553 2.39966I
b = 0.278963 0.671140I
9.47298 2.59610I 14.8510 + 6.7959I
u = 0.572072 + 0.249132I
a = 2.09983 + 0.65588I
b = 0.562847 + 0.942357I
2.94382 1.92479I 11.20798 + 2.16356I
u = 0.572072 0.249132I
a = 2.09983 0.65588I
b = 0.562847 0.942357I
2.94382 + 1.92479I 11.20798 2.16356I
u = 0.163734 + 0.512554I
a = 0.561467 0.153031I
b = 0.152593 + 0.805696I
0.027219 + 1.275630I 0.54017 5.75782I
u = 0.163734 0.512554I
a = 0.561467 + 0.153031I
b = 0.152593 0.805696I
0.027219 1.275630I 0.54017 + 5.75782I
u = 0.20976 + 1.48222I
a = 0.275606 0.434449I
b = 0.209091 + 0.559595I
2.42708 + 1.71113I 8.50690 8.37300I
u = 0.20976 1.48222I
a = 0.275606 + 0.434449I
b = 0.209091 0.559595I
2.42708 1.71113I 8.50690 + 8.37300I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.15979 + 1.04033I
a = 1.179480 + 0.124327I
b = 0.87720 1.53540I
12.9356 + 18.0876I 5.50986 8.24727I
u = 1.15979 1.04033I
a = 1.179480 0.124327I
b = 0.87720 + 1.53540I
12.9356 18.0876I 5.50986 + 8.24727I
u = 1.14462 + 1.07762I
a = 0.343283 + 0.540527I
b = 0.060499 1.217480I
12.42660 + 1.51018I 8.64520 + 0.I
u = 1.14462 1.07762I
a = 0.343283 0.540527I
b = 0.060499 + 1.217480I
12.42660 1.51018I 8.64520 + 0.I
u = 1.15228 + 1.07906I
a = 0.632964 + 0.320798I
b = 0.526893 1.288980I
4.70997 + 4.71020I 6.97281 3.71311I
u = 1.15228 1.07906I
a = 0.632964 0.320798I
b = 0.526893 + 1.288980I
4.70997 4.71020I 6.97281 + 3.71311I
u = 1.17094 + 1.06658I
a = 0.903598 + 0.197693I
b = 0.74443 1.44446I
4.94640 12.28330I 5.06082 + 8.01009I
u = 1.17094 1.06658I
a = 0.903598 0.197693I
b = 0.74443 + 1.44446I
4.94640 + 12.28330I 5.06082 8.01009I
7
II. I
u
2
= h6.37 × 10
214
u
67
+ 1.24 × 10
215
u
66
+ · · · + 2.21 × 10
214
b + 4.99 ×
10
215
, 6.90 × 10
215
u
67
1.24 × 10
216
u
66
+ · · · + 2.21 × 10
214
a 3.68 ×
10
216
, u
68
+ 2u
67
+ · · · + 21u + 1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
9
=
31.1702u
67
+ 56.0539u
66
+ ··· + 2647.88u + 166.338
2.87703u
67
5.60095u
66
+ ··· 328.693u 22.5454
a
10
=
28.2932u
67
+ 50.4529u
66
+ ··· + 2319.19u + 143.792
2.87703u
67
5.60095u
66
+ ··· 328.693u 22.5454
a
8
=
26.7127u
67
+ 47.8406u
66
+ ··· + 2218.34u + 137.506
2.95446u
67
5.72854u
66
+ ··· 338.974u 23.2473
a
1
=
88.0011u
67
+ 162.387u
66
+ ··· + 8091.09u + 542.171
5.68870u
67
10.3246u
66
+ ··· 569.445u 41.1034
a
7
=
5.00717u
67
+ 8.61197u
66
+ ··· + 214.047u 9.36045
3.79980u
67
7.12911u
66
+ ··· 372.019u 24.6242
a
3
=
63.6091u
67
117.431u
66
+ ··· 5857.97u 389.038
4.84840u
67
+ 8.68921u
66
+ ··· + 432.644u + 30.6341
a
2
=
69.4105u
67
128.375u
66
+ ··· 6432.53u 429.459
4.85010u
67
+ 8.61831u
66
+ ··· + 424.612u + 29.9753
a
6
=
63.3932u
67
117.128u
66
+ ··· 6447.05u 489.180
3.77612u
67
6.57578u
66
+ ··· 244.295u 13.6639
a
11
=
102.661u
67
+ 190.241u
66
+ ··· + 9665.96u + 654.485
5.94412u
67
11.0219u
66
+ ··· 591.464u 42.5143
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.381385u
67
+ 4.09349u
66
+ ··· + 460.637u + 29.8348
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
34
+ 44u
33
+ ··· + 211167u + 11664)
2
c
2
, c
5
(u
34
2u
33
+ ··· 27u + 108)
2
c
3
, c
4
u
68
+ 2u
67
+ ··· + 21u + 1
c
6
, c
12
u
68
6u
67
+ ··· + 218203862u + 59673407
c
7
, c
11
u
68
+ 3u
67
+ ··· + 311u + 59
c
8
, c
10
u
68
+ u
67
+ ··· + 927119u + 1344671
c
9
(u
34
u
33
+ ··· 71u + 209)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
34
92y
33
+ ··· + 1741335327y + 136048896)
2
c
2
, c
5
(y
34
+ 44y
33
+ ··· + 211167y + 11664)
2
c
3
, c
4
y
68
2y
67
+ ··· 119y + 1
c
6
, c
12
y
68
+ 24y
67
+ ··· + 109187012423296144y + 3560915502987649
c
7
, c
11
y
68
35y
67
+ ··· + 19745y + 3481
c
8
, c
10
y
68
13y
67
+ ··· 6278009008341y + 1808140098241
c
9
(y
34
+ 27y
33
+ ··· + 812985y + 43681)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.988229 + 0.036641I
a = 0.541719 0.076017I
b = 0.092881 + 0.993847I
2.68708 + 3.24701I 7.49713 2.56448I
u = 0.988229 0.036641I
a = 0.541719 + 0.076017I
b = 0.092881 0.993847I
2.68708 3.24701I 7.49713 + 2.56448I
u = 1.048190 + 0.084796I
a = 0.740063 + 0.401409I
b = 0.74542 1.31472I
11.74950 + 0.99052I 0
u = 1.048190 0.084796I
a = 0.740063 0.401409I
b = 0.74542 + 1.31472I
11.74950 0.99052I 0
u = 0.897611 + 0.299654I
a = 0.81753 2.31884I
b = 0.899935 0.657412I
10.05820 + 4.24924I 11.45347 2.51859I
u = 0.897611 0.299654I
a = 0.81753 + 2.31884I
b = 0.899935 + 0.657412I
10.05820 4.24924I 11.45347 + 2.51859I
u = 0.316205 + 1.016990I
a = 1.18839 + 1.71559I
b = 0.263043 1.081580I
7.73519 5.04941I 0
u = 0.316205 1.016990I
a = 1.18839 1.71559I
b = 0.263043 + 1.081580I
7.73519 + 5.04941I 0
u = 0.685355 + 0.849666I
a = 0.268449 + 0.431117I
b = 0.223062 + 0.797775I
6.57994 2.99755I 0
u = 0.685355 0.849666I
a = 0.268449 0.431117I
b = 0.223062 0.797775I
6.57994 + 2.99755I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.468927 + 0.753341I
a = 1.82075 + 0.71765I
b = 0.601383 0.937913I
0.30115 + 6.48305I 2.75382 11.37072I
u = 0.468927 0.753341I
a = 1.82075 0.71765I
b = 0.601383 + 0.937913I
0.30115 6.48305I 2.75382 + 11.37072I
u = 0.247431 + 0.841447I
a = 0.006812 0.392523I
b = 0.608249 + 1.119590I
0.134730 + 1.289890I 2.62841 5.51442I
u = 0.247431 0.841447I
a = 0.006812 + 0.392523I
b = 0.608249 1.119590I
0.134730 1.289890I 2.62841 + 5.51442I
u = 0.799604 + 0.350430I
a = 1.359860 0.075744I
b = 0.899935 0.657412I
10.05820 + 4.24924I 11.45347 2.51859I
u = 0.799604 0.350430I
a = 1.359860 + 0.075744I
b = 0.899935 + 0.657412I
10.05820 4.24924I 11.45347 + 2.51859I
u = 0.863696 + 0.007111I
a = 1.55464 + 0.90908I
b = 0.360465 + 0.686126I
3.46175 + 1.42507I 10.51067 4.72604I
u = 0.863696 0.007111I
a = 1.55464 0.90908I
b = 0.360465 0.686126I
3.46175 1.42507I 10.51067 + 4.72604I
u = 0.790910 + 0.123927I
a = 1.041290 + 0.463826I
b = 1.26373 1.89895I
12.11020 + 6.39851I 11.48496 5.28007I
u = 0.790910 0.123927I
a = 1.041290 0.463826I
b = 1.26373 + 1.89895I
12.11020 6.39851I 11.48496 + 5.28007I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.744234 + 0.181720I
a = 0.77241 + 1.52342I
b = 0.404490 + 0.921778I
2.66841 5.52402I 9.8516 + 10.9069I
u = 0.744234 0.181720I
a = 0.77241 1.52342I
b = 0.404490 0.921778I
2.66841 + 5.52402I 9.8516 10.9069I
u = 0.139920 + 1.247210I
a = 0.063353 + 1.141210I
b = 0.059202 0.623325I
4.42322 + 2.94331I 0
u = 0.139920 1.247210I
a = 0.063353 1.141210I
b = 0.059202 + 0.623325I
4.42322 2.94331I 0
u = 1.089210 + 0.651528I
a = 1.127320 + 0.267005I
b = 0.404490 + 0.921778I
2.66841 5.52402I 0
u = 1.089210 0.651528I
a = 1.127320 0.267005I
b = 0.404490 0.921778I
2.66841 + 5.52402I 0
u = 0.559625 + 0.428522I
a = 1.65845 0.12542I
b = 0.86109 1.26732I
1.33870 6.60010I 6.29119 + 6.93498I
u = 0.559625 0.428522I
a = 1.65845 + 0.12542I
b = 0.86109 + 1.26732I
1.33870 + 6.60010I 6.29119 6.93498I
u = 0.641696 + 1.127080I
a = 0.464741 0.402605I
b = 1.078840 + 0.695928I
0.362177 + 0.737675I 0
u = 0.641696 1.127080I
a = 0.464741 + 0.402605I
b = 1.078840 0.695928I
0.362177 0.737675I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.692090 + 0.104185I
a = 1.62625 0.34239I
b = 0.360465 0.686126I
3.46175 1.42507I 10.51067 + 4.72604I
u = 0.692090 0.104185I
a = 1.62625 + 0.34239I
b = 0.360465 + 0.686126I
3.46175 + 1.42507I 10.51067 4.72604I
u = 0.630362 + 1.147050I
a = 0.606718 0.469413I
b = 0.89698 + 1.81746I
1.23903 + 3.47975I 0
u = 0.630362 1.147050I
a = 0.606718 + 0.469413I
b = 0.89698 1.81746I
1.23903 3.47975I 0
u = 1.214430 + 0.596977I
a = 1.203930 + 0.263018I
b = 0.624993 + 0.841916I
10.68940 + 6.84316I 0
u = 1.214430 0.596977I
a = 1.203930 0.263018I
b = 0.624993 0.841916I
10.68940 6.84316I 0
u = 1.055410 + 0.872464I
a = 0.935528 0.245342I
b = 0.092881 + 0.993847I
2.68708 + 3.24701I 0
u = 1.055410 0.872464I
a = 0.935528 + 0.245342I
b = 0.092881 0.993847I
2.68708 3.24701I 0
u = 0.505178 + 0.289459I
a = 1.303920 0.401547I
b = 1.078840 0.695928I
0.362177 0.737675I 3.01494 2.57610I
u = 0.505178 0.289459I
a = 1.303920 + 0.401547I
b = 1.078840 + 0.695928I
0.362177 + 0.737675I 3.01494 + 2.57610I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.03822 + 0.97416I
a = 1.292760 0.248045I
b = 1.26373 + 1.89895I
12.11020 6.39851I 0
u = 1.03822 0.97416I
a = 1.292760 + 0.248045I
b = 1.26373 1.89895I
12.11020 + 6.39851I 0
u = 0.95320 + 1.07772I
a = 0.470263 1.062870I
b = 0.74542 + 1.31472I
11.74950 0.99052I 0
u = 0.95320 1.07772I
a = 0.470263 + 1.062870I
b = 0.74542 1.31472I
11.74950 + 0.99052I 0
u = 0.541931 + 0.113704I
a = 0.169744 0.186828I
b = 0.89698 + 1.81746I
1.23903 + 3.47975I 11.86128 + 7.58185I
u = 0.541931 0.113704I
a = 0.169744 + 0.186828I
b = 0.89698 1.81746I
1.23903 3.47975I 11.86128 7.58185I
u = 0.486109 + 0.250377I
a = 0.54394 + 5.66734I
b = 0.624993 + 0.841916I
10.68940 + 6.84316I 13.1700 13.6418I
u = 0.486109 0.250377I
a = 0.54394 5.66734I
b = 0.624993 0.841916I
10.68940 6.84316I 13.1700 + 13.6418I
u = 1.20413 + 0.91553I
a = 0.977470 + 0.362937I
b = 0.86109 + 1.26732I
1.33870 + 6.60010I 0
u = 1.20413 0.91553I
a = 0.977470 0.362937I
b = 0.86109 1.26732I
1.33870 6.60010I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.10477 + 1.07329I
a = 1.038600 + 0.326925I
b = 0.543096 1.209800I
12.3962 9.6578I 0
u = 1.10477 1.07329I
a = 1.038600 0.326925I
b = 0.543096 + 1.209800I
12.3962 + 9.6578I 0
u = 1.15749 + 1.06627I
a = 0.773036 + 0.369354I
b = 0.206787 1.043190I
4.75446 + 3.62192I 0
u = 1.15749 1.06627I
a = 0.773036 0.369354I
b = 0.206787 + 1.043190I
4.75446 3.62192I 0
u = 1.36128 + 0.87098I
a = 0.679421 + 0.350166I
b = 0.601383 + 0.937913I
0.30115 6.48305I 0
u = 1.36128 0.87098I
a = 0.679421 0.350166I
b = 0.601383 0.937913I
0.30115 + 6.48305I 0
u = 1.12817 + 1.27635I
a = 0.150045 + 0.627835I
b = 0.543096 1.209800I
12.3962 9.6578I 0
u = 1.12817 1.27635I
a = 0.150045 0.627835I
b = 0.543096 + 1.209800I
12.3962 + 9.6578I 0
u = 1.26466 + 1.16633I
a = 0.449381 + 0.416092I
b = 0.206787 1.043190I
4.75446 + 3.62192I 0
u = 1.26466 1.16633I
a = 0.449381 0.416092I
b = 0.206787 + 1.043190I
4.75446 3.62192I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.173722 + 0.166663I
a = 2.01494 + 0.17662I
b = 0.608249 + 1.119590I
0.134730 + 1.289890I 2.62841 5.51442I
u = 0.173722 0.166663I
a = 2.01494 0.17662I
b = 0.608249 1.119590I
0.134730 1.289890I 2.62841 + 5.51442I
u = 0.145879 + 0.018683I
a = 12.29330 + 6.13439I
b = 0.223062 0.797775I
6.57994 + 2.99755I 2.94535 + 1.14914I
u = 0.145879 0.018683I
a = 12.29330 6.13439I
b = 0.223062 + 0.797775I
6.57994 2.99755I 2.94535 1.14914I
u = 1.41912 + 1.21972I
a = 0.491669 0.178009I
b = 0.263043 + 1.081580I
7.73519 + 5.04941I 0
u = 1.41912 1.21972I
a = 0.491669 + 0.178009I
b = 0.263043 1.081580I
7.73519 5.04941I 0
u = 0.76383 + 2.23790I
a = 0.0228934 0.0620777I
b = 0.059202 + 0.623325I
4.42322 2.94331I 0
u = 0.76383 2.23790I
a = 0.0228934 + 0.0620777I
b = 0.059202 0.623325I
4.42322 + 2.94331I 0
17
III. I
u
3
= h−2.26 × 10
48
u
35
8.59 × 10
47
u
34
+ · · · + 1.18 × 10
46
b + 5.94 ×
10
48
, 1.61 × 10
48
u
35
6.16 × 10
47
u
34
+ · · · + 1.18 × 10
46
a + 4.20 ×
10
48
, u
36
+ 5u
34
+ · · · 6u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
9
=
136.764u
35
+ 52.2322u
34
+ ··· 952.902u 356.192
191.587u
35
+ 72.8118u
34
+ ··· 1328.03u 503.692
a
10
=
328.351u
35
+ 125.044u
34
+ ··· 2280.93u 859.884
191.587u
35
+ 72.8118u
34
+ ··· 1328.03u 503.692
a
8
=
308.702u
35
+ 117.542u
34
+ ··· 2144.16u 807.652
216.358u
35
+ 82.1742u
34
+ ··· 1499.96u 569.001
a
1
=
94.9256u
35
37.8952u
34
+ ··· + 692.912u + 256.406
197.524u
35
75.3883u
34
+ ··· + 1369.87u + 521.602
a
7
=
33.4401u
35
+ 13.3311u
34
+ ··· 236.732u 93.2582
127.909u
35
+ 48.6370u
34
+ ··· 883.973u 337.364
a
3
=
190.561u
35
71.5139u
34
+ ··· + 1300.58u + 496.970
140.950u
35
53.2913u
34
+ ··· + 973.267u + 369.632
a
2
=
76.8688u
35
28.4927u
34
+ ··· + 517.870u + 198.851
124.568u
35
47.0802u
34
+ ··· + 859.575u + 326.611
a
6
=
38.5133u
35
+ 14.5614u
34
+ ··· 273.354u 91.8404
164.276u
35
+ 62.5988u
34
+ ··· 1139.07u 430.370
a
11
=
97.5697u
35
+ 35.9068u
34
+ ··· 647.165u 251.689
5.06363u
35
+ 1.65514u
34
+ ··· 30.4338u 11.5181
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1809.72u
35
+ 688.118u
34
+ ··· 12501.2u 4762.85
18
(iv) u-Polynomials at the component
19
Crossings u-Polynomials at each crossing
c
1
(u
18
17u
17
+ ··· 56u + 4)
2
c
2
(u
18
+ u
17
+ ··· + 6u + 2)
2
c
3
u
36
+ 5u
34
+ ··· 6u
2
+ 1
c
4
u
36
+ 5u
34
+ ··· 6u
2
+ 1
c
5
(u
18
u
17
+ ··· 6u + 2)
2
c
6
u
36
7u
35
+ ··· + 192u + 32
c
7
u
36
11u
35
+ ··· 12u + 1
c
8
u
36
+ u
35
+ ··· + 4u + 1
c
9
u
36
+ 8u
34
+ ··· + 2720u
2
+ 329
c
10
u
36
u
35
+ ··· 4u + 1
c
11
u
36
+ 11u
35
+ ··· + 12u + 1
c
12
u
36
+ 7u
35
+ ··· 192u + 32
20
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
18
19y
17
+ ··· + 360y + 16)
2
c
2
, c
5
(y
18
+ 17y
17
+ ··· + 56y + 4)
2
c
3
, c
4
y
36
+ 10y
35
+ ··· 12y + 1
c
6
, c
12
y
36
17y
35
+ ··· + 13312y + 1024
c
7
, c
11
y
36
3y
35
+ ··· 12y + 1
c
8
, c
10
y
36
+ 3y
35
+ ··· + 14y + 1
c
9
(y
18
+ 8y
17
+ ··· + 2720y + 329)
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.387110 + 0.887771I
a = 0.817383 + 0.149910I
b = 1.087400 + 0.195941I
1.90337 + 1.03056I 1.286140 0.538382I
u = 0.387110 0.887771I
a = 0.817383 0.149910I
b = 1.087400 0.195941I
1.90337 1.03056I 1.286140 + 0.538382I
u = 0.694269 + 0.635190I
a = 1.61256 0.33667I
b = 0.680806 1.107480I
1.04528 7.85103I 2.06789 + 11.86645I
u = 0.694269 0.635190I
a = 1.61256 + 0.33667I
b = 0.680806 + 1.107480I
1.04528 + 7.85103I 2.06789 11.86645I
u = 0.908151 + 0.000867I
a = 0.328700 0.385035I
b = 0.351407 1.092420I
2.07175 + 4.73666I 4.27691 4.63834I
u = 0.908151 0.000867I
a = 0.328700 + 0.385035I
b = 0.351407 + 1.092420I
2.07175 4.73666I 4.27691 + 4.63834I
u = 0.640781 + 0.916918I
a = 0.911491 0.266288I
b = 1.087400 0.195941I
1.90337 + 1.03056I 61.286140 + 0.10I
u = 0.640781 0.916918I
a = 0.911491 + 0.266288I
b = 1.087400 + 0.195941I
1.90337 1.03056I 61.286140 + 0.10I
u = 0.315914 + 0.788474I
a = 1.25754 + 0.95575I
b = 0.750098 0.946970I
0.18706 + 5.80137I 2.95659 3.22264I
u = 0.315914 0.788474I
a = 1.25754 0.95575I
b = 0.750098 + 0.946970I
0.18706 5.80137I 2.95659 + 3.22264I
23
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.549127 + 1.040930I
a = 0.774918 0.449602I
b = 1.20331 + 1.55588I
1.12744 + 3.79285I 0. 14.6968I
u = 0.549127 1.040930I
a = 0.774918 + 0.449602I
b = 1.20331 1.55588I
1.12744 3.79285I 0. + 14.6968I
u = 0.421922 + 1.103170I
a = 0.087462 0.569260I
b = 0.86966 + 1.32584I
0.394276 + 1.096290I 12.74294 + 0.I
u = 0.421922 1.103170I
a = 0.087462 + 0.569260I
b = 0.86966 1.32584I
0.394276 1.096290I 12.74294 + 0.I
u = 0.577450 + 0.561844I
a = 2.83116 0.64804I
b = 0.038303 + 0.828326I
6.65751 3.75744I 5.03414 + 7.76355I
u = 0.577450 0.561844I
a = 2.83116 + 0.64804I
b = 0.038303 0.828326I
6.65751 + 3.75744I 5.03414 7.76355I
u = 0.098370 + 1.269320I
a = 0.078604 1.138060I
b = 0.039244 + 0.664656I
4.35413 + 3.10586I 0. 23.8029I
u = 0.098370 1.269320I
a = 0.078604 + 1.138060I
b = 0.039244 0.664656I
4.35413 3.10586I 0. + 23.8029I
u = 1.032540 + 0.761277I
a = 0.051147 + 0.482440I
b = 0.038303 + 0.828326I
6.65751 + 3.75744I 0
u = 1.032540 0.761277I
a = 0.051147 0.482440I
b = 0.038303 0.828326I
6.65751 3.75744I 0
24
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.012960 + 0.802948I
a = 1.149180 + 0.015549I
b = 0.351407 + 1.092420I
2.07175 + 4.73666I 0
u = 1.012960 0.802948I
a = 1.149180 0.015549I
b = 0.351407 1.092420I
2.07175 4.73666I 0
u = 1.099210 + 0.703645I
a = 1.215140 + 0.060923I
b = 0.912449 + 0.842826I
10.40110 6.30737I 0
u = 1.099210 0.703645I
a = 1.215140 0.060923I
b = 0.912449 0.842826I
10.40110 + 6.30737I 0
u = 0.573544 + 0.103977I
a = 0.792146 0.118092I
b = 0.86966 + 1.32584I
0.394276 1.096290I 12.74294 + 0.28360I
u = 0.573544 0.103977I
a = 0.792146 + 0.118092I
b = 0.86966 1.32584I
0.394276 + 1.096290I 12.74294 0.28360I
u = 1.24415 + 0.89531I
a = 0.814673 + 0.309886I
b = 0.750098 + 0.946970I
0.18706 + 5.80137I 0
u = 1.24415 0.89531I
a = 0.814673 0.309886I
b = 0.750098 0.946970I
0.18706 5.80137I 0
u = 1.33512 + 0.86016I
a = 0.718294 + 0.467996I
b = 0.680806 + 1.107480I
1.04528 7.85103I 0
u = 1.33512 0.86016I
a = 0.718294 0.467996I
b = 0.680806 1.107480I
1.04528 + 7.85103I 0
25
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.380464 + 0.000200I
a = 0.92076 + 1.11017I
b = 1.20331 + 1.55588I
1.12744 3.79285I 3.8135 + 14.6968I
u = 0.380464 0.000200I
a = 0.92076 1.11017I
b = 1.20331 1.55588I
1.12744 + 3.79285I 3.8135 14.6968I
u = 0.199060 + 0.249576I
a = 5.86236 1.19720I
b = 0.912449 0.842826I
10.40110 6.30737I 5.57429 + 2.02371I
u = 0.199060 0.249576I
a = 5.86236 + 1.19720I
b = 0.912449 + 0.842826I
10.40110 + 6.30737I 5.57429 2.02371I
u = 0.70660 + 2.28427I
a = 0.115104 0.112014I
b = 0.039244 + 0.664656I
4.35413 3.10586I 0
u = 0.70660 2.28427I
a = 0.115104 + 0.112014I
b = 0.039244 0.664656I
4.35413 + 3.10586I 0
26
IV. I
u
4
= hb, 2u
4
+ u
3
+ 3u
2
+ a u 2, u
5
+ u
3
u
2
u + 1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
9
=
2u
4
u
3
3u
2
+ u + 2
0
a
10
=
2u
4
u
3
3u
2
+ u + 2
0
a
8
=
u
4
u
3
2u
2
+ 1
u
a
1
=
u 1
u
4
+ u
2
+ u 1
a
7
=
2u
4
+ u
3
+ 3u
2
1
u
a
3
=
u
4
+ u
3
+ 2u
2
+ u 1
u
2
a
2
=
2u
4
+ 2u
3
+ 4u
2
+ u 2
u
4
1
a
6
=
3u
4
+ u
3
+ 3u
2
2u 4
u
4
u
2
u + 1
a
11
=
3u
4
2u
3
5u
2
+ 2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
4
+ 3u
3
+ 3u 9
27
(iv) u-Polynomials at the component
28
Crossings u-Polynomials at each crossing
c
1
u
5
6u
4
+ 13u
3
12u
2
+ 4u + 1
c
2
u
5
+ 3u
3
+ 2u 1
c
3
u
5
+ u
3
+ u
2
u 1
c
4
u
5
+ u
3
u
2
u + 1
c
5
u
5
+ 3u
3
+ 2u + 1
c
6
u
5
+ 2u
4
+ u
3
+ 2u
2
+ 2u 1
c
7
u
5
3u
4
+ 3u
3
+ u
2
2u 1
c
8
u
5
u
4
u
3
+ u
2
+ 1
c
9
u
5
c
10
u
5
+ u
4
u
3
u
2
1
c
11
u
5
+ 3u
4
+ 3u
3
u
2
2u + 1
c
12
u
5
2u
4
+ u
3
2u
2
+ 2u + 1
29
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
10y
4
+ 33y
3
28y
2
+ 40y 1
c
2
, c
5
y
5
+ 6y
4
+ 13y
3
+ 12y
2
+ 4y 1
c
3
, c
4
y
5
+ 2y
4
y
3
3y
2
+ 3y 1
c
6
, c
12
y
5
2y
4
3y
3
+ 4y
2
+ 8y 1
c
7
, c
11
y
5
3y
4
+ 11y
3
19y
2
+ 6y 1
c
8
, c
10
y
5
3y
4
+ 3y
3
+ y
2
2y 1
c
9
y
5
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.862442
a = 1.55887
b = 0
3.66375 11.8520
u = 0.717360 + 0.267040I
a = 1.07233 1.95491I
b = 0
9.07644 + 2.10101I 6.05167 + 2.99980I
u = 0.717360 0.267040I
a = 1.07233 + 1.95491I
b = 0
9.07644 2.10101I 6.05167 2.99980I
u = 0.286139 + 1.377340I
a = 0.207102 + 0.293496I
b = 0
2.68365 + 1.36579I 2.97770 + 5.89289I
u = 0.286139 1.377340I
a = 0.207102 0.293496I
b = 0
2.68365 1.36579I 2.97770 5.89289I
32
V. I
u
5
= hb 1, a + 1, u
2
u + 1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u 1
a
9
=
1
1
a
10
=
0
1
a
8
=
u 1
0
a
1
=
u + 1
u
a
7
=
u 1
u + 1
a
3
=
u + 1
u
a
2
=
u + 1
u
a
6
=
1
u 1
a
11
=
u
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
2
c
3
, c
4
, c
7
c
8
, c
10
, c
11
u
2
u + 1
c
6
, c
9
, c
12
(u 1)
2
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
2
c
3
, c
4
, c
7
c
8
, c
10
, c
11
y
2
+ y + 1
c
6
, c
9
, c
12
(y 1)
2
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 1.00000
3.28987 6.00000
u = 0.500000 0.866025I
a = 1.00000
b = 1.00000
3.28987 6.00000
36
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
2
(u
5
6u
4
+ ··· + 4u + 1)(u
18
17u
17
+ ··· 56u + 4)
2
· (u
28
+ 27u
27
+ ··· + 13748u + 1296)
· (u
34
+ 44u
33
+ ··· + 211167u + 11664)
2
c
2
u
2
(u
5
+ 3u
3
+ 2u 1)(u
18
+ u
17
+ ··· + 6u + 2)
2
· (u
28
+ 3u
27
+ ··· + 2u + 36)(u
34
2u
33
+ ··· 27u + 108)
2
c
3
(u
2
u + 1)(u
5
+ u
3
+ u
2
u 1)(u
28
+ 2u
26
+ ··· + 2u + 1)
· (u
36
+ 5u
34
+ ··· 6u
2
+ 1)(u
68
+ 2u
67
+ ··· + 21u + 1)
c
4
(u
2
u + 1)(u
5
+ u
3
u
2
u + 1)(u
28
+ 2u
26
+ ··· + 2u + 1)
· (u
36
+ 5u
34
+ ··· 6u
2
+ 1)(u
68
+ 2u
67
+ ··· + 21u + 1)
c
5
u
2
(u
5
+ 3u
3
+ 2u + 1)(u
18
u
17
+ ··· 6u + 2)
2
· (u
28
+ 3u
27
+ ··· + 2u + 36)(u
34
2u
33
+ ··· 27u + 108)
2
c
6
((u 1)
2
)(u
5
+ 2u
4
+ ··· + 2u 1)(u
28
+ 8u
27
+ ··· + 224u + 32)
· (u
36
7u
35
+ ··· + 192u + 32)
· (u
68
6u
67
+ ··· + 218203862u + 59673407)
c
7
(u
2
u + 1)(u
5
3u
4
+ ··· 2u 1)(u
28
+ 3u
27
+ ··· + 13u + 1)
· (u
36
11u
35
+ ··· 12u + 1)(u
68
+ 3u
67
+ ··· + 311u + 59)
c
8
(u
2
u + 1)(u
5
u
4
u
3
+ u
2
+ 1)(u
28
+ u
27
+ ··· 3u + 1)
· (u
36
+ u
35
+ ··· + 4u + 1)(u
68
+ u
67
+ ··· + 927119u + 1344671)
c
9
u
5
(u 1)
2
(u
28
+ 5u
27
+ ··· + 320u + 128)
· ((u
34
u
33
+ ··· 71u + 209)
2
)(u
36
+ 8u
34
+ ··· + 2720u
2
+ 329)
c
10
(u
2
u + 1)(u
5
+ u
4
u
3
u
2
1)(u
28
+ u
27
+ ··· 3u + 1)
· (u
36
u
35
+ ··· 4u + 1)(u
68
+ u
67
+ ··· + 927119u + 1344671)
c
11
(u
2
u + 1)(u
5
+ 3u
4
+ ··· 2u + 1)(u
28
+ 3u
27
+ ··· + 13u + 1)
· (u
36
+ 11u
35
+ ··· + 12u + 1)(u
68
+ 3u
67
+ ··· + 311u + 59)
c
12
((u 1)
2
)(u
5
2u
4
+ ··· + 2u + 1)(u
28
+ 8u
27
+ ··· + 224u + 32)
· (u
36
+ 7u
35
+ ··· 192u + 32)
· (u
68
6u
67
+ ··· + 218203862u + 59673407)
37
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
2
(y
5
10y
4
+ 33y
3
28y
2
+ 40y 1)
· (y
18
19y
17
+ ··· + 360y + 16)
2
· (y
28
49y
27
+ ··· 825712y + 1679616)
· (y
34
92y
33
+ ··· + 1741335327y + 136048896)
2
c
2
, c
5
y
2
(y
5
+ 6y
4
+ ··· + 4y 1)(y
18
+ 17y
17
+ ··· + 56y + 4)
2
· (y
28
+ 27y
27
+ ··· + 13748y + 1296)
· (y
34
+ 44y
33
+ ··· + 211167y + 11664)
2
c
3
, c
4
(y
2
+ y + 1)(y
5
+ 2y
4
+ ··· + 3y 1)(y
28
+ 4y
27
+ ··· + 6y + 1)
· (y
36
+ 10y
35
+ ··· 12y + 1)(y
68
2y
67
+ ··· 119y + 1)
c
6
, c
12
(y 1)
2
(y
5
2y
4
3y
3
+ 4y
2
+ 8y 1)
· (y
28
+ 30y
27
+ ··· + 29696y + 1024)
· (y
36
17y
35
+ ··· + 13312y + 1024)
· (y
68
+ 24y
67
+ ··· + 109187012423296144y + 3560915502987649)
c
7
, c
11
(y
2
+ y + 1)(y
5
3y
4
+ ··· + 6y 1)(y
28
y
27
+ ··· y + 1)
· (y
36
3y
35
+ ··· 12y + 1)(y
68
35y
67
+ ··· + 19745y + 3481)
c
8
, c
10
(y
2
+ y + 1)(y
5
3y
4
+ ··· 2y 1)(y
28
29y
27
+ ··· 45y + 1)
· (y
36
+ 3y
35
+ ··· + 14y + 1)
· (y
68
13y
67
+ ··· 6278009008341y + 1808140098241)
c
9
y
5
(y 1)
2
(y
18
+ 8y
17
+ ··· + 2720y + 329)
2
· (y
28
y
27
+ ··· + 233472y + 16384)
· (y
34
+ 27y
33
+ ··· + 812985y + 43681)
2
38