12n
0539
(K12n
0539
)
A knot diagram
1
Linearized knot diagam
3 6 11 12 2 9 5 4 6 1 8 9
Solving Sequence
2,6 3,9
7 10 1 11 5 8 12 4
c
2
c
6
c
9
c
1
c
10
c
5
c
7
c
12
c
4
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.71224 × 10
120
u
84
+ 1.40203 × 10
120
u
83
+ ··· + 3.73013 × 10
118
b 2.07454 × 10
120
,
8.58971 × 10
120
u
84
+ 5.94299 × 10
120
u
83
+ ··· + 4.10314 × 10
119
a 4.74408 × 10
120
,
u
85
24u
83
+ ··· + 10u + 1i
I
u
2
= h−10u
21
+ 53u
19
+ ··· + b 15, 10u
21
+ 54u
19
+ ··· + a 13, u
22
+ u
21
+ ··· 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 107 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.71 × 10
120
u
84
+ 1.40 × 10
120
u
83
+ · · · + 3.73 × 10
118
b 2.07 ×
10
120
, 8.59 × 10
120
u
84
+ 5.94 × 10
120
u
83
+ · · · + 4.10 × 10
119
a 4.74 ×
10
120
, u
85
24u
83
+ · · · + 10u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
20.9345u
84
14.4840u
83
+ ··· + 267.776u + 11.5621
45.9029u
84
37.5866u
83
+ ··· + 629.922u + 55.6158
a
7
=
11.1468u
84
+ 8.19621u
83
+ ··· 72.3417u + 9.67525
18.6966u
84
+ 17.0401u
83
+ ··· 217.270u 19.2457
a
10
=
20.9345u
84
14.4840u
83
+ ··· + 267.776u + 11.5621
57.1007u
84
46.1321u
83
+ ··· + 795.697u + 70.0998
a
1
=
u
2
+ 1
u
4
a
11
=
30.8822u
84
22.1361u
83
+ ··· + 408.995u + 23.4304
46.8081u
84
37.9200u
83
+ ··· + 649.457u + 57.1070
a
5
=
u
u
a
8
=
3.64203u
84
+ 1.55727u
83
+ ··· + 23.6473u + 18.5192
11.1918u
84
+ 10.4012u
83
+ ··· 121.281u 10.4017
a
12
=
8.59326u
84
8.98215u
83
+ ··· + 100.400u + 15.7211
34.9414u
84
30.6980u
83
+ ··· + 434.117u + 39.2473
a
4
=
13.6180u
84
+ 13.8934u
83
+ ··· 145.844u 18.0597
48.0968u
84
+ 41.5976u
83
+ ··· 603.928u 54.4575
(ii) Obstruction class = 1
(iii) Cusp Shapes = 171.919u
84
+ 151.328u
83
+ ··· 2175.77u 192.981
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
85
+ 48u
84
+ ··· + 76u + 1
c
2
, c
5
u
85
24u
83
+ ··· + 10u 1
c
3
u
85
22u
83
+ ··· 68443u 15487
c
4
u
85
+ 3u
84
+ ··· 115u + 29
c
6
, c
9
u
85
+ 8u
84
+ ··· + 33526u + 4031
c
7
u
85
8u
84
+ ··· 747u 17
c
8
u
85
3u
84
+ ··· 24u + 11
c
10
u
85
+ u
84
+ ··· 653233343u 56357257
c
11
u
85
+ 6u
84
+ ··· 17u + 1
c
12
u
85
+ u
84
+ ··· 7039u 223
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
85
16y
84
+ ··· + 5764y 1
c
2
, c
5
y
85
48y
84
+ ··· + 76y 1
c
3
y
85
44y
84
+ ··· + 7600305635y 239847169
c
4
y
85
13y
84
+ ··· + 50693y 841
c
6
, c
9
y
85
84y
84
+ ··· + 4537701460y 16248961
c
7
y
85
40y
84
+ ··· + 290429y 289
c
8
y
85
13y
84
+ ··· + 6208y 121
c
10
y
85
+ 53y
84
+ ··· + 392522021882255677y 3176140416564049
c
11
y
85
+ 8y
84
+ ··· + 23y 1
c
12
y
85
+ 25y
84
+ ··· + 6405495y 49729
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.005353 + 1.000360I
a = 0.18285 1.48764I
b = 0.349188 0.373795I
1.93409 + 0.60336I 0
u = 0.005353 1.000360I
a = 0.18285 + 1.48764I
b = 0.349188 + 0.373795I
1.93409 0.60336I 0
u = 0.188620 + 0.969304I
a = 0.19737 + 1.77663I
b = 0.062291 + 0.128491I
1.46515 + 11.85320I 0
u = 0.188620 0.969304I
a = 0.19737 1.77663I
b = 0.062291 0.128491I
1.46515 11.85320I 0
u = 0.840878 + 0.483325I
a = 0.501916 1.283270I
b = 1.34341 1.06918I
3.51388 1.61241I 0
u = 0.840878 0.483325I
a = 0.501916 + 1.283270I
b = 1.34341 + 1.06918I
3.51388 + 1.61241I 0
u = 0.951828 + 0.159966I
a = 0.065586 0.374247I
b = 0.43709 + 2.16437I
0.032156 0.597700I 0
u = 0.951828 0.159966I
a = 0.065586 + 0.374247I
b = 0.43709 2.16437I
0.032156 + 0.597700I 0
u = 0.310483 + 0.990724I
a = 0.13435 1.57025I
b = 0.132367 0.293568I
2.09244 + 2.43593I 0
u = 0.310483 0.990724I
a = 0.13435 + 1.57025I
b = 0.132367 + 0.293568I
2.09244 2.43593I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.975011 + 0.393466I
a = 0.475549 + 0.820083I
b = 1.169380 0.022368I
1.41715 + 3.73569I 0
u = 0.975011 0.393466I
a = 0.475549 0.820083I
b = 1.169380 + 0.022368I
1.41715 3.73569I 0
u = 1.021460 + 0.278835I
a = 0.77446 + 2.18381I
b = 0.99233 + 2.23297I
1.68533 6.44110I 0
u = 1.021460 0.278835I
a = 0.77446 2.18381I
b = 0.99233 2.23297I
1.68533 + 6.44110I 0
u = 0.715395 + 0.783310I
a = 0.522346 + 0.160195I
b = 0.317448 0.195411I
3.70495 + 1.10586I 0
u = 0.715395 0.783310I
a = 0.522346 0.160195I
b = 0.317448 + 0.195411I
3.70495 1.10586I 0
u = 0.953739 + 0.471015I
a = 0.294966 + 1.084510I
b = 0.285466 + 0.666041I
1.52968 + 4.35650I 0
u = 0.953739 0.471015I
a = 0.294966 1.084510I
b = 0.285466 0.666041I
1.52968 4.35650I 0
u = 0.189972 + 0.915047I
a = 0.042038 + 1.307850I
b = 0.182832 0.146291I
0.27710 3.98155I 0
u = 0.189972 0.915047I
a = 0.042038 1.307850I
b = 0.182832 + 0.146291I
0.27710 + 3.98155I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.013401 + 0.933105I
a = 0.41356 + 1.56864I
b = 0.238256 0.042713I
4.94846 4.99388I 0
u = 0.013401 0.933105I
a = 0.41356 1.56864I
b = 0.238256 + 0.042713I
4.94846 + 4.99388I 0
u = 0.858709 + 0.306453I
a = 0.437696 + 0.079272I
b = 0.536251 0.628310I
1.75635 1.24105I 0
u = 0.858709 0.306453I
a = 0.437696 0.079272I
b = 0.536251 + 0.628310I
1.75635 + 1.24105I 0
u = 1.070350 + 0.241684I
a = 0.048326 0.800341I
b = 0.784925 + 0.086925I
0.584139 1.214130I 0
u = 1.070350 0.241684I
a = 0.048326 + 0.800341I
b = 0.784925 0.086925I
0.584139 + 1.214130I 0
u = 1.043000 + 0.381616I
a = 0.941223 + 0.060786I
b = 1.19962 1.11408I
0.85138 + 1.98117I 0
u = 1.043000 0.381616I
a = 0.941223 0.060786I
b = 1.19962 + 1.11408I
0.85138 1.98117I 0
u = 1.129960 + 0.104281I
a = 0.394497 + 0.932408I
b = 0.444109 + 0.587225I
3.81181 + 3.18162I 0
u = 1.129960 0.104281I
a = 0.394497 0.932408I
b = 0.444109 0.587225I
3.81181 3.18162I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.864367
a = 0.0715299
b = 0.541281
1.42725 6.10760
u = 1.080700 + 0.401420I
a = 0.165123 + 0.081421I
b = 0.78337 + 1.47583I
0.90179 + 8.56928I 0
u = 1.080700 0.401420I
a = 0.165123 0.081421I
b = 0.78337 1.47583I
0.90179 8.56928I 0
u = 0.832181
a = 0.926177
b = 2.91409
0.997166 18.4890
u = 0.049225 + 0.830285I
a = 0.56528 1.89117I
b = 0.204200 0.163162I
2.43502 3.30316I 5.23294 + 7.40607I
u = 0.049225 0.830285I
a = 0.56528 + 1.89117I
b = 0.204200 + 0.163162I
2.43502 + 3.30316I 5.23294 7.40607I
u = 0.830826 + 0.826040I
a = 0.169302 + 0.010069I
b = 0.577550 + 0.509050I
3.76622 + 2.32030I 0
u = 0.830826 0.826040I
a = 0.169302 0.010069I
b = 0.577550 0.509050I
3.76622 2.32030I 0
u = 0.891925 + 0.810015I
a = 0.286571 + 0.262922I
b = 0.329641 0.110602I
3.57498 8.36975I 0
u = 0.891925 0.810015I
a = 0.286571 0.262922I
b = 0.329641 + 0.110602I
3.57498 + 8.36975I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.989802 + 0.710827I
a = 0.168409 + 0.465761I
b = 0.416900 + 0.454793I
2.86904 + 4.53419I 0
u = 0.989802 0.710827I
a = 0.168409 0.465761I
b = 0.416900 0.454793I
2.86904 4.53419I 0
u = 0.666265 + 0.344818I
a = 1.09970 + 1.54051I
b = 1.397150 + 0.053578I
4.07887 + 5.28332I 1.24117 5.02642I
u = 0.666265 0.344818I
a = 1.09970 1.54051I
b = 1.397150 0.053578I
4.07887 5.28332I 1.24117 + 5.02642I
u = 1.183110 + 0.402824I
a = 1.54579 + 0.12909I
b = 3.14640 0.15589I
6.48173 3.55864I 0
u = 1.183110 0.402824I
a = 1.54579 0.12909I
b = 3.14640 + 0.15589I
6.48173 + 3.55864I 0
u = 1.160000 + 0.524269I
a = 1.37812 0.72891I
b = 2.73159 1.13043I
5.60017 + 4.82152I 0
u = 1.160000 0.524269I
a = 1.37812 + 0.72891I
b = 2.73159 + 1.13043I
5.60017 4.82152I 0
u = 0.719223 + 0.060664I
a = 1.44270 2.37773I
b = 1.85713 1.14364I
3.11952 + 4.42569I 0.76135 6.20286I
u = 0.719223 0.060664I
a = 1.44270 + 2.37773I
b = 1.85713 + 1.14364I
3.11952 4.42569I 0.76135 + 6.20286I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.229530 + 0.438003I
a = 1.217770 0.384196I
b = 2.27464 1.11533I
6.24720 1.14845I 0
u = 1.229530 0.438003I
a = 1.217770 + 0.384196I
b = 2.27464 + 1.11533I
6.24720 + 1.14845I 0
u = 1.275120 + 0.282603I
a = 1.49840 0.21043I
b = 2.60608 0.26666I
7.45533 + 1.39297I 0
u = 1.275120 0.282603I
a = 1.49840 + 0.21043I
b = 2.60608 + 0.26666I
7.45533 1.39297I 0
u = 1.224310 + 0.482177I
a = 1.67152 + 0.03389I
b = 3.05540 + 0.28991I
5.92815 + 8.04533I 0
u = 1.224310 0.482177I
a = 1.67152 0.03389I
b = 3.05540 0.28991I
5.92815 8.04533I 0
u = 1.270180 + 0.354996I
a = 0.936675 + 0.026252I
b = 2.18853 + 0.30229I
4.36713 0.22372I 0
u = 1.270180 0.354996I
a = 0.936675 0.026252I
b = 2.18853 0.30229I
4.36713 + 0.22372I 0
u = 0.171412 + 0.657764I
a = 0.95991 2.23193I
b = 0.295373 + 0.036008I
2.85946 0.19476I 5.29145 0.97537I
u = 0.171412 0.657764I
a = 0.95991 + 2.23193I
b = 0.295373 0.036008I
2.85946 + 0.19476I 5.29145 + 0.97537I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.456041 + 0.464462I
a = 1.193950 0.065927I
b = 1.034860 0.579589I
2.88974 0.39617I 2.71681 + 0.34590I
u = 0.456041 0.464462I
a = 1.193950 + 0.065927I
b = 1.034860 + 0.579589I
2.88974 + 0.39617I 2.71681 0.34590I
u = 1.235500 + 0.557498I
a = 1.126590 + 0.216852I
b = 2.36000 + 0.16189I
2.90587 + 9.34845I 0
u = 1.235500 0.557498I
a = 1.126590 0.216852I
b = 2.36000 0.16189I
2.90587 9.34845I 0
u = 1.276860 + 0.483646I
a = 1.272450 0.106001I
b = 2.66529 + 0.09834I
8.82888 + 10.02930I 0
u = 1.276860 0.483646I
a = 1.272450 + 0.106001I
b = 2.66529 0.09834I
8.82888 10.02930I 0
u = 1.288810 + 0.464947I
a = 1.144530 + 0.491479I
b = 2.26959 + 0.66922I
8.97476 + 0.02482I 0
u = 1.288810 0.464947I
a = 1.144530 0.491479I
b = 2.26959 0.66922I
8.97476 0.02482I 0
u = 1.330440 + 0.337617I
a = 1.283760 + 0.299388I
b = 2.40343 + 0.74368I
6.44061 7.37054I 0
u = 1.330440 0.337617I
a = 1.283760 0.299388I
b = 2.40343 0.74368I
6.44061 + 7.37054I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.250740 + 0.573265I
a = 1.53166 + 0.06635I
b = 2.88843 + 0.09759I
4.7225 17.4174I 0
u = 1.250740 0.573265I
a = 1.53166 0.06635I
b = 2.88843 0.09759I
4.7225 + 17.4174I 0
u = 1.302360 + 0.463258I
a = 1.243900 + 0.247243I
b = 2.16132 0.06403I
6.10453 + 4.53838I 0
u = 1.302360 0.463258I
a = 1.243900 0.247243I
b = 2.16132 + 0.06403I
6.10453 4.53838I 0
u = 1.241210 + 0.613061I
a = 1.362000 0.100699I
b = 2.43612 0.38495I
5.01768 8.27806I 0
u = 1.241210 0.613061I
a = 1.362000 + 0.100699I
b = 2.43612 + 0.38495I
5.01768 + 8.27806I 0
u = 1.307630 + 0.466435I
a = 1.46921 0.37040I
b = 2.33556 0.34225I
6.08890 5.78678I 0
u = 1.307630 0.466435I
a = 1.46921 + 0.37040I
b = 2.33556 + 0.34225I
6.08890 + 5.78678I 0
u = 0.440911 + 0.405001I
a = 0.792263 + 0.730144I
b = 1.142640 0.386053I
2.88774 0.20923I 1.242555 + 0.378473I
u = 0.440911 0.405001I
a = 0.792263 0.730144I
b = 1.142640 + 0.386053I
2.88774 + 0.20923I 1.242555 0.378473I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.099952 + 0.429731I
a = 2.03358 + 0.01611I
b = 0.841544 + 0.483607I
3.44287 5.06710I 0.91675 + 5.72229I
u = 0.099952 0.429731I
a = 2.03358 0.01611I
b = 0.841544 0.483607I
3.44287 + 5.06710I 0.91675 5.72229I
u = 0.123525 + 0.400738I
a = 1.178250 0.064085I
b = 0.171595 0.506385I
0.185084 1.355340I 1.97953 + 4.83531I
u = 0.123525 0.400738I
a = 1.178250 + 0.064085I
b = 0.171595 + 0.506385I
0.185084 + 1.355340I 1.97953 4.83531I
u = 0.115053
a = 11.8433
b = 0.451096
2.58472 2.24510
13
II. I
u
2
= h−10u
21
+ 53u
19
+ · · · + b 15, 10u
21
+ 54u
19
+ · · · + a
13, u
22
+ u
21
+ · · · 2u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
9
=
10u
21
54u
19
+ ··· 37u + 13
10u
21
53u
19
+ ··· 32u + 15
a
7
=
15u
21
5u
20
+ ··· + 37u 10
12u
21
5u
20
+ ··· + 50u 14
a
10
=
10u
21
54u
19
+ ··· 37u + 13
16u
21
+ 2u
20
+ ··· 62u + 25
a
1
=
u
2
+ 1
u
4
a
11
=
13u
21
3u
20
+ ··· 40u + 18
16u
21
84u
19
+ ··· 48u + 21
a
5
=
u
u
a
8
=
22u
21
5u
20
+ ··· + 46u 13
19u
21
5u
20
+ ··· + 59u 17
a
12
=
13u
21
+ 69u
19
+ ··· + 44u 18
15u
21
6u
20
+ ··· + 50u 11
a
4
=
2u
19
9u
17
+ ··· + 11u 3
6u
21
+ 2u
20
+ ··· u
2
13u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 20u
21
u
20
104u
19
+ 2u
18
+ 303u
17
+ 3u
16
565u
15
59u
14
+ 755u
13
+ 203u
12
679u
11
410u
10
+362u
9
+572u
8
+11u
7
551u
6
238u
5
+388u
4
+209u
3
192u
2
89u+43
14
(iv) u-Polynomials at the component
15
Crossings u-Polynomials at each crossing
c
1
u
22
11u
21
+ ··· 16u + 1
c
2
u
22
+ u
21
+ ··· 2u + 1
c
3
u
22
+ u
21
+ ··· 15u + 5
c
4
u
22
5u
19
+ ··· + u 1
c
5
u
22
u
21
+ ··· + 2u + 1
c
6
u
22
11u
21
+ ··· 10u + 1
c
7
u
22
+ 3u
21
+ ··· + 189u + 23
c
8
u
22
4u
20
+ ··· + 8u
2
1
c
9
u
22
+ 11u
21
+ ··· + 10u + 1
c
10
u
22
+ 2u
21
+ ··· 489u 179
c
11
u
22
u
21
+ ··· 7u 1
c
12
u
22
+ 4u
21
+ ··· 5u 5
16
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
22
+ 5y
21
+ ··· 52y + 1
c
2
, c
5
y
22
11y
21
+ ··· 16y + 1
c
3
y
22
15y
21
+ ··· 755y + 25
c
4
y
22
+ 24y
20
+ ··· 9y + 1
c
6
, c
9
y
22
3y
21
+ ··· + 12y + 1
c
7
y
22
15y
21
+ ··· 11893y + 529
c
8
y
22
8y
21
+ ··· 16y + 1
c
10
y
22
+ 6y
21
+ ··· + 57303y + 32041
c
11
y
22
+ 5y
21
+ ··· 3y + 1
c
12
y
22
+ 6y
21
+ ··· 455y + 25
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.979550 + 0.192965I
a = 0.049739 0.317281I
b = 0.07427 + 1.88292I
0.110842 0.638882I 39.2337 0.4195I
u = 0.979550 0.192965I
a = 0.049739 + 0.317281I
b = 0.07427 1.88292I
0.110842 + 0.638882I 39.2337 + 0.4195I
u = 0.723270 + 0.716834I
a = 0.397388 0.005884I
b = 0.436175 0.704061I
4.11163 + 0.63723I 6.54002 + 1.19849I
u = 0.723270 0.716834I
a = 0.397388 + 0.005884I
b = 0.436175 + 0.704061I
4.11163 0.63723I 6.54002 1.19849I
u = 0.908952 + 0.290032I
a = 0.38486 2.07167I
b = 0.058682 1.072120I
2.62294 + 5.98882I 0.92980 8.33780I
u = 0.908952 0.290032I
a = 0.38486 + 2.07167I
b = 0.058682 + 1.072120I
2.62294 5.98882I 0.92980 + 8.33780I
u = 0.193236 + 0.923126I
a = 0.06481 + 1.71985I
b = 0.034564 + 0.268808I
2.05997 1.85851I 3.94257 0.91516I
u = 0.193236 0.923126I
a = 0.06481 1.71985I
b = 0.034564 0.268808I
2.05997 + 1.85851I 3.94257 + 0.91516I
u = 0.827042 + 0.682329I
a = 0.652080 + 0.805407I
b = 0.478838 + 0.307764I
5.15735 + 2.30312I 3.06418 2.18439I
u = 0.827042 0.682329I
a = 0.652080 0.805407I
b = 0.478838 0.307764I
5.15735 2.30312I 3.06418 + 2.18439I
19
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.867318 + 0.312804I
a = 1.25055 + 1.37179I
b = 1.71767 + 2.08935I
2.75033 3.38289I 3.52028 + 1.29488I
u = 0.867318 0.312804I
a = 1.25055 1.37179I
b = 1.71767 2.08935I
2.75033 + 3.38289I 3.52028 1.29488I
u = 0.905224 + 0.651152I
a = 0.388636 0.909012I
b = 0.69139 1.25158I
4.90447 7.46002I 1.09193 + 6.89812I
u = 0.905224 0.651152I
a = 0.388636 + 0.909012I
b = 0.69139 + 1.25158I
4.90447 + 7.46002I 1.09193 6.89812I
u = 0.979142 + 0.678373I
a = 0.039106 + 0.356080I
b = 0.531614 + 0.013462I
3.32463 + 4.72683I 7.75293 7.21359I
u = 0.979142 0.678373I
a = 0.039106 0.356080I
b = 0.531614 0.013462I
3.32463 4.72683I 7.75293 + 7.21359I
u = 1.218980 + 0.391873I
a = 1.42856 + 0.23693I
b = 2.66587 + 0.61693I
6.40706 2.19213I 7.62094 + 1.94263I
u = 1.218980 0.391873I
a = 1.42856 0.23693I
b = 2.66587 0.61693I
6.40706 + 2.19213I 7.62094 1.94263I
u = 1.249940 + 0.521685I
a = 1.51302 + 0.09874I
b = 2.66597 + 0.12109I
5.41252 + 7.14535I 5.55491 4.26248I
u = 1.249940 0.521685I
a = 1.51302 0.09874I
b = 2.66597 0.12109I
5.41252 7.14535I 5.55491 + 4.26248I
20
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.594637
a = 2.04766
b = 0.0406902
2.98320 18.2720
u = 0.387486
a = 1.01885
b = 1.63034
1.67065 3.02160
21
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
22
11u
21
+ ··· 16u + 1)(u
85
+ 48u
84
+ ··· + 76u + 1)
c
2
(u
22
+ u
21
+ ··· 2u + 1)(u
85
24u
83
+ ··· + 10u 1)
c
3
(u
22
+ u
21
+ ··· 15u + 5)(u
85
22u
83
+ ··· 68443u 15487)
c
4
(u
22
5u
19
+ ··· + u 1)(u
85
+ 3u
84
+ ··· 115u + 29)
c
5
(u
22
u
21
+ ··· + 2u + 1)(u
85
24u
83
+ ··· + 10u 1)
c
6
(u
22
11u
21
+ ··· 10u + 1)(u
85
+ 8u
84
+ ··· + 33526u + 4031)
c
7
(u
22
+ 3u
21
+ ··· + 189u + 23)(u
85
8u
84
+ ··· 747u 17)
c
8
(u
22
4u
20
+ ··· + 8u
2
1)(u
85
3u
84
+ ··· 24u + 11)
c
9
(u
22
+ 11u
21
+ ··· + 10u + 1)(u
85
+ 8u
84
+ ··· + 33526u + 4031)
c
10
(u
22
+ 2u
21
+ ··· 489u 179)
· (u
85
+ u
84
+ ··· 653233343u 56357257)
c
11
(u
22
u
21
+ ··· 7u 1)(u
85
+ 6u
84
+ ··· 17u + 1)
c
12
(u
22
+ 4u
21
+ ··· 5u 5)(u
85
+ u
84
+ ··· 7039u 223)
22
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
22
+ 5y
21
+ ··· 52y + 1)(y
85
16y
84
+ ··· + 5764y 1)
c
2
, c
5
(y
22
11y
21
+ ··· 16y + 1)(y
85
48y
84
+ ··· + 76y 1)
c
3
(y
22
15y
21
+ ··· 755y + 25)
· (y
85
44y
84
+ ··· + 7600305635y 239847169)
c
4
(y
22
+ 24y
20
+ ··· 9y + 1)(y
85
13y
84
+ ··· + 50693y 841)
c
6
, c
9
(y
22
3y
21
+ ··· + 12y + 1)
· (y
85
84y
84
+ ··· + 4537701460y 16248961)
c
7
(y
22
15y
21
+ ··· 11893y + 529)
· (y
85
40y
84
+ ··· + 290429y 289)
c
8
(y
22
8y
21
+ ··· 16y + 1)(y
85
13y
84
+ ··· + 6208y 121)
c
10
(y
22
+ 6y
21
+ ··· + 57303y + 32041)
· (y
85
+ 53y
84
+ ··· + 392522021882255677y 3176140416564049)
c
11
(y
22
+ 5y
21
+ ··· 3y + 1)(y
85
+ 8y
84
+ ··· + 23y 1)
c
12
(y
22
+ 6y
21
+ ··· 455y + 25)
· (y
85
+ 25y
84
+ ··· + 6405495y 49729)
23