11a
13
(K11a
13
)
A knot diagram
1
Linearized knot diagam
5 1 9 2 3 11 10 4 8 7 6
Solving Sequence
4,8
9 10 3 7 11 6 1 2 5
c
8
c
9
c
3
c
7
c
10
c
6
c
11
c
2
c
5
c
1
, c
4
Ideals for irreducible components
2
of X
par
I
u
1
= hu
30
+ u
29
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
30
+ u
29
+ · · · + u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
3
=
u
u
3
+ u
a
7
=
u
4
+ u
2
+ 1
u
4
a
11
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
u
2
a
6
=
u
8
+ u
6
+ 3u
4
+ 2u
2
+ 1
u
8
2u
4
a
1
=
u
10
+ u
8
+ 4u
6
+ 3u
4
+ 3u
2
+ 1
u
10
3u
6
u
2
a
2
=
u
23
+ 2u
21
+ ··· + 18u
5
+ 6u
3
u
23
u
21
+ ··· 3u
5
+ u
a
5
=
u
12
+ u
10
+ 5u
8
+ 4u
6
+ 6u
4
+ 3u
2
+ 1
u
14
2u
12
5u
10
8u
8
6u
6
6u
4
u
2
a
5
=
u
12
+ u
10
+ 5u
8
+ 4u
6
+ 6u
4
+ 3u
2
+ 1
u
14
2u
12
5u
10
8u
8
6u
6
6u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
28
4u
27
12u
26
8u
25
56u
24
44u
23
120u
22
72u
21
288u
20
184u
19
448u
18
240u
17
688u
16
372u
15
772u
14
376u
13
784u
12
392u
11
616u
10
300u
9
392u
8
220u
7
196u
6
112u
5
64u
4
52u
3
16u
2
12u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
30
+ u
29
+ ··· + 3u + 1
c
2
u
30
+ 13u
29
+ ··· + 3u + 1
c
3
, c
8
u
30
+ u
29
+ ··· + u + 1
c
5
u
30
u
29
+ ··· 9u + 1
c
6
, c
7
, c
9
c
10
, c
11
u
30
+ 5u
29
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
30
+ 13y
29
+ ··· + 3y + 1
c
2
y
30
+ 9y
29
+ ··· + 23y + 1
c
3
, c
8
y
30
+ 5y
29
+ ··· + 3y + 1
c
5
y
30
+ 5y
29
+ ··· 29y + 1
c
6
, c
7
, c
9
c
10
, c
11
y
30
+ 41y
29
+ ··· + 15y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.576972 + 0.788172I
0.12621 + 2.18606I 3.44242 4.00116I
u = 0.576972 0.788172I
0.12621 2.18606I 3.44242 + 4.00116I
u = 0.753269 + 0.693656I
3.64770 3.48747I 1.74738 + 2.61442I
u = 0.753269 0.693656I
3.64770 + 3.48747I 1.74738 2.61442I
u = 0.734724 + 0.748106I
5.14265 1.49049I 4.17557 + 2.85810I
u = 0.734724 0.748106I
5.14265 + 1.49049I 4.17557 2.85810I
u = 0.685664 + 0.853521I
4.78950 3.76974I 3.14381 + 3.88461I
u = 0.685664 0.853521I
4.78950 + 3.76974I 3.14381 3.88461I
u = 0.287305 + 0.847959I
2.28263 5.27377I 6.56092 + 8.94909I
u = 0.287305 0.847959I
2.28263 + 5.27377I 6.56092 8.94909I
u = 0.664026 + 0.894813I
2.98040 + 8.73007I 0.24401 8.71246I
u = 0.664026 0.894813I
2.98040 8.73007I 0.24401 + 8.71246I
u = 0.115414 + 0.820064I
3.15838 + 1.07159I 10.31816 0.17759I
u = 0.115414 0.820064I
3.15838 1.07159I 10.31816 + 0.17759I
u = 0.290049 + 0.709988I
0.316552 + 1.365600I 2.18848 5.41625I
u = 0.290049 0.709988I
0.316552 1.365600I 2.18848 + 5.41625I
u = 0.911746 + 0.940114I
9.51868 3.35799I 1.73657 + 2.30059I
u = 0.911746 0.940114I
9.51868 + 3.35799I 1.73657 2.30059I
u = 0.939027 + 0.928155I
13.7360 + 3.9165I 1.75197 2.34228I
u = 0.939027 0.928155I
13.7360 3.9165I 1.75197 + 2.34228I
u = 0.935072 + 0.937925I
15.4906 + 1.5996I 4.05928 2.15774I
u = 0.935072 0.937925I
15.4906 1.5996I 4.05928 + 2.15774I
u = 0.922373 + 0.959915I
15.4175 + 5.2269I 3.92816 2.38623I
u = 0.922373 0.959915I
15.4175 5.2269I 3.92816 + 2.38623I
u = 0.916401 + 0.967754I
13.6047 10.7354I 1.48227 + 6.83107I
u = 0.916401 0.967754I
13.6047 + 10.7354I 1.48227 6.83107I
u = 0.459289 + 0.421277I
0.49693 + 1.38708I 2.54940 4.49142I
u = 0.459289 0.421277I
0.49693 1.38708I 2.54940 + 4.49142I
u = 0.510769 + 0.183576I
0.23650 + 2.48738I 1.65273 3.25175I
u = 0.510769 0.183576I
0.23650 2.48738I 1.65273 + 3.25175I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
u
30
+ u
29
+ ··· + 3u + 1
c
2
u
30
+ 13u
29
+ ··· + 3u + 1
c
3
, c
8
u
30
+ u
29
+ ··· + u + 1
c
5
u
30
u
29
+ ··· 9u + 1
c
6
, c
7
, c
9
c
10
, c
11
u
30
+ 5u
29
+ ··· + 3u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
30
+ 13y
29
+ ··· + 3y + 1
c
2
y
30
+ 9y
29
+ ··· + 23y + 1
c
3
, c
8
y
30
+ 5y
29
+ ··· + 3y + 1
c
5
y
30
+ 5y
29
+ ··· 29y + 1
c
6
, c
7
, c
9
c
10
, c
11
y
30
+ 41y
29
+ ··· + 15y + 1
7