12n
0545
(K12n
0545
)
A knot diagram
1
Linearized knot diagam
3 6 12 8 2 11 5 11 1 6 4 9
Solving Sequence
4,8 5,11
9 12 1 3 7 6 2 10
c
4
c
8
c
11
c
12
c
3
c
7
c
6
c
2
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h4.07415 × 10
97
u
57
1.87667 × 10
98
u
56
+ ··· + 6.83675 × 10
98
b 3.94295 × 10
98
,
8.87267 × 10
97
u
57
+ 3.53450 × 10
98
u
56
+ ··· + 6.83675 × 10
98
a + 9.76518 × 10
98
, u
58
4u
57
+ ··· + 6u + 4i
I
u
2
= h−2u
15
+ 6u
14
+ ··· + b + 1,
u
13
+ 3u
12
10u
11
+ 17u
10
29u
9
+ 31u
8
36u
7
+ 27u
6
29u
5
+ 18u
4
17u
3
+ 6u
2
+ a 3u,
u
16
3u
15
+ ··· u + 1i
* 2 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h4.07×10
97
u
57
1.88×10
98
u
56
+· · ·+6.84×10
98
b3.94×10
98
, 8.87×
10
97
u
57
+3.53×10
98
u
56
+· · ·+6.84×10
98
a+9.77×10
98
, u
58
4u
57
+· · ·+6u+4i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
11
=
0.129779u
57
0.516986u
56
+ ··· + 5.18894u 1.42834
0.0595919u
57
+ 0.274498u
56
+ ··· + 1.46859u + 0.576728
a
9
=
0.00288585u
57
+ 0.0503023u
56
+ ··· 2.22480u 1.52939
0.0906534u
57
+ 0.405030u
56
+ ··· + 1.10469u + 0.502037
a
12
=
0.189371u
57
0.791484u
56
+ ··· + 3.72034u 2.00506
0.0595919u
57
+ 0.274498u
56
+ ··· + 1.46859u + 0.576728
a
1
=
0.0387990u
57
0.162896u
56
+ ··· 3.18685u 1.73013
0.192685u
57
+ 0.853552u
56
+ ··· + 0.855020u + 1.27477
a
3
=
0.296992u
57
+ 0.998359u
56
+ ··· 10.6074u 1.68008
0.171483u
57
0.586975u
56
+ ··· + 8.98917u + 2.03171
a
7
=
u
u
3
+ u
a
6
=
0.0524169u
57
0.224873u
56
+ ··· 1.55050u 2.18646
0.174759u
57
+ 0.745226u
56
+ ··· + 0.209991u + 1.01830
a
2
=
0.342530u
57
+ 1.40424u
56
+ ··· 3.12486u + 1.77424
0.141129u
57
0.526127u
56
+ ··· + 5.69791u + 0.00196869
a
10
=
0.103749u
57
+ 0.491535u
56
+ ··· + 8.67337u + 0.492109
0.137791u
57
0.597731u
56
+ ··· + 2.06345u 1.32119
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.123076u
57
0.812943u
56
+ ··· 17.7171u 16.8383
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
58
+ 41u
57
+ ··· 191u + 169
c
2
, c
5
u
58
+ u
57
+ ··· 37u 13
c
3
, c
11
u
58
3u
57
+ ··· u 17
c
4
, c
7
u
58
4u
57
+ ··· + 6u + 4
c
6
, c
10
u
58
+ 3u
57
+ ··· 16568u + 2143
c
8
u
58
+ u
57
+ ··· + 202u + 3
c
9
, c
12
u
58
+ 3u
57
+ ··· + 7097u + 431
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
58
37y
57
+ ··· 1807601y + 28561
c
2
, c
5
y
58
41y
57
+ ··· + 191y + 169
c
3
, c
11
y
58
+ 47y
57
+ ··· 171y + 289
c
4
, c
7
y
58
+ 18y
57
+ ··· + 356y + 16
c
6
, c
10
y
58
+ 65y
57
+ ··· 280143286y + 4592449
c
8
y
58
15y
57
+ ··· 60898y + 9
c
9
, c
12
y
58
49y
57
+ ··· 11167097y + 185761
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.633756 + 0.791145I
a = 0.887765 + 0.616824I
b = 0.553388 + 0.628935I
3.87656 0.61696I 11.92005 0.88689I
u = 0.633756 0.791145I
a = 0.887765 0.616824I
b = 0.553388 0.628935I
3.87656 + 0.61696I 11.92005 + 0.88689I
u = 0.747067 + 0.601176I
a = 1.51970 0.38331I
b = 0.401468 0.201550I
4.20974 3.93817I 13.2121 + 6.9659I
u = 0.747067 0.601176I
a = 1.51970 + 0.38331I
b = 0.401468 + 0.201550I
4.20974 + 3.93817I 13.2121 6.9659I
u = 0.480297 + 0.959333I
a = 1.99240 + 0.86576I
b = 0.172651 0.899004I
3.54839 3.84914I 10.22465 + 4.74982I
u = 0.480297 0.959333I
a = 1.99240 0.86576I
b = 0.172651 + 0.899004I
3.54839 + 3.84914I 10.22465 4.74982I
u = 0.521709 + 0.983940I
a = 1.54639 0.06752I
b = 0.506281 1.185660I
0.09858 + 7.47040I 8.00000 8.36343I
u = 0.521709 0.983940I
a = 1.54639 + 0.06752I
b = 0.506281 + 1.185660I
0.09858 7.47040I 8.00000 + 8.36343I
u = 0.503661 + 0.728248I
a = 1.66274 0.02895I
b = 0.391966 1.295650I
2.85966 4.49859I 1.23708 + 2.46876I
u = 0.503661 0.728248I
a = 1.66274 + 0.02895I
b = 0.391966 + 1.295650I
2.85966 + 4.49859I 1.23708 2.46876I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.594982 + 0.640753I
a = 0.969927 0.024407I
b = 0.339779 + 0.189097I
0.55040 + 1.69114I 3.72847 5.08829I
u = 0.594982 0.640753I
a = 0.969927 + 0.024407I
b = 0.339779 0.189097I
0.55040 1.69114I 3.72847 + 5.08829I
u = 0.730255 + 0.859792I
a = 0.481459 + 0.177345I
b = 0.202364 + 1.025230I
1.91016 + 2.82560I 8.00000 + 0.I
u = 0.730255 0.859792I
a = 0.481459 0.177345I
b = 0.202364 1.025230I
1.91016 2.82560I 8.00000 + 0.I
u = 0.219621 + 0.839350I
a = 1.130710 + 0.505098I
b = 0.843328 + 0.336352I
2.59431 + 2.44159I 7.94322 3.82016I
u = 0.219621 0.839350I
a = 1.130710 0.505098I
b = 0.843328 0.336352I
2.59431 2.44159I 7.94322 + 3.82016I
u = 0.898691 + 0.720344I
a = 0.437549 0.200217I
b = 0.662131 1.245830I
7.44986 3.49551I 0
u = 0.898691 0.720344I
a = 0.437549 + 0.200217I
b = 0.662131 + 1.245830I
7.44986 + 3.49551I 0
u = 0.367889 + 0.761915I
a = 1.191700 + 0.232164I
b = 0.002717 + 1.140600I
3.25433 + 1.08651I 2.33651 2.83520I
u = 0.367889 0.761915I
a = 1.191700 0.232164I
b = 0.002717 1.140600I
3.25433 1.08651I 2.33651 + 2.83520I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.808356
a = 1.77037
b = 0.734307
5.93820 16.7950
u = 0.119623 + 1.194280I
a = 0.126368 1.332700I
b = 0.08348 + 1.49201I
8.29523 + 3.26345I 0
u = 0.119623 1.194280I
a = 0.126368 + 1.332700I
b = 0.08348 1.49201I
8.29523 3.26345I 0
u = 0.317704 + 1.163150I
a = 0.017678 0.187020I
b = 0.082658 + 0.494670I
1.81717 + 2.37754I 0
u = 0.317704 1.163150I
a = 0.017678 + 0.187020I
b = 0.082658 0.494670I
1.81717 2.37754I 0
u = 1.087360 + 0.583319I
a = 0.335602 0.201290I
b = 0.581501 1.162890I
3.42807 1.99613I 0
u = 1.087360 0.583319I
a = 0.335602 + 0.201290I
b = 0.581501 + 1.162890I
3.42807 + 1.99613I 0
u = 0.187149 + 1.276260I
a = 0.277466 0.128726I
b = 0.064672 + 1.355790I
3.33606 0.14941I 0
u = 0.187149 1.276260I
a = 0.277466 + 0.128726I
b = 0.064672 1.355790I
3.33606 + 0.14941I 0
u = 0.697744 + 0.126410I
a = 1.99664 1.33804I
b = 0.277967 1.258560I
2.06001 + 3.68426I 11.27363 1.69816I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.697744 0.126410I
a = 1.99664 + 1.33804I
b = 0.277967 + 1.258560I
2.06001 3.68426I 11.27363 + 1.69816I
u = 0.759635 + 1.129180I
a = 1.29689 0.78536I
b = 0.43433 + 1.40722I
6.14642 2.75220I 0
u = 0.759635 1.129180I
a = 1.29689 + 0.78536I
b = 0.43433 1.40722I
6.14642 + 2.75220I 0
u = 1.001480 + 0.973107I
a = 0.832664 0.380632I
b = 1.023700 + 0.164160I
6.48849 + 3.63570I 0
u = 1.001480 0.973107I
a = 0.832664 + 0.380632I
b = 1.023700 0.164160I
6.48849 3.63570I 0
u = 0.859580 + 1.106170I
a = 1.096860 + 0.046929I
b = 0.198273 1.156390I
2.21851 + 3.93693I 0
u = 0.859580 1.106170I
a = 1.096860 0.046929I
b = 0.198273 + 1.156390I
2.21851 3.93693I 0
u = 0.974228 + 1.008910I
a = 0.926636 0.331530I
b = 1.073470 + 0.135176I
10.8043 9.5417I 0
u = 0.974228 1.008910I
a = 0.926636 + 0.331530I
b = 1.073470 0.135176I
10.8043 + 9.5417I 0
u = 1.03423 + 0.96722I
a = 0.813755 0.507387I
b = 0.952238 + 0.123695I
10.98340 + 2.23509I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.03423 0.96722I
a = 0.813755 + 0.507387I
b = 0.952238 0.123695I
10.98340 2.23509I 0
u = 1.16247 + 0.82462I
a = 1.067170 0.448360I
b = 0.221458 1.288520I
0.24583 6.42034I 0
u = 1.16247 0.82462I
a = 1.067170 + 0.448360I
b = 0.221458 + 1.288520I
0.24583 + 6.42034I 0
u = 1.27692 + 0.71765I
a = 0.292225 0.279237I
b = 0.494403 1.216990I
7.61679 + 7.37751I 0
u = 1.27692 0.71765I
a = 0.292225 + 0.279237I
b = 0.494403 + 1.216990I
7.61679 7.37751I 0
u = 0.84042 + 1.21729I
a = 1.183540 0.496027I
b = 0.47727 + 1.42425I
1.49972 + 9.01325I 0
u = 0.84042 1.21729I
a = 1.183540 + 0.496027I
b = 0.47727 1.42425I
1.49972 9.01325I 0
u = 0.266410 + 0.401142I
a = 2.92496 + 3.15692I
b = 0.112223 + 1.152450I
1.72433 3.71273I 7.24791 + 1.15995I
u = 0.266410 0.401142I
a = 2.92496 3.15692I
b = 0.112223 1.152450I
1.72433 + 3.71273I 7.24791 1.15995I
u = 0.91423 + 1.22132I
a = 1.259520 0.318765I
b = 0.49545 + 1.41482I
5.9451 15.1173I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.91423 1.22132I
a = 1.259520 + 0.318765I
b = 0.49545 1.41482I
5.9451 + 15.1173I 0
u = 0.058858 + 0.410475I
a = 0.92100 + 1.87652I
b = 0.14583 1.62296I
5.20134 2.93181I 11.08507 + 6.44707I
u = 0.058858 0.410475I
a = 0.92100 1.87652I
b = 0.14583 + 1.62296I
5.20134 + 2.93181I 11.08507 6.44707I
u = 0.145156 + 0.296103I
a = 1.54845 + 1.00675I
b = 0.777584 + 0.065221I
1.097500 0.167840I 6.15459 2.52205I
u = 0.145156 0.296103I
a = 1.54845 1.00675I
b = 0.777584 0.065221I
1.097500 + 0.167840I 6.15459 + 2.52205I
u = 0.329275
a = 0.0370472
b = 0.490183
0.882045 11.0120
u = 0.31854 + 1.65683I
a = 0.326154 + 0.658457I
b = 0.035991 1.065230I
3.20371 + 2.59445I 0
u = 0.31854 1.65683I
a = 0.326154 0.658457I
b = 0.035991 + 1.065230I
3.20371 2.59445I 0
10
II.
I
u
2
= h−2u
15
+6u
14
+· · ·+b+1, u
13
+3u
12
+· · ·+a3u, u
16
3u
15
+· · ·−u+1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
11
=
u
13
3u
12
+ ··· 6u
2
+ 3u
2u
15
6u
14
+ ··· + 6u 1
a
9
=
2u
15
5u
14
+ ··· + 2u + 2
u
14
+ 3u
13
+ ··· + 3u 1
a
12
=
2u
15
+ 6u
14
+ ··· 3u + 1
2u
15
6u
14
+ ··· + 6u 1
a
1
=
5u
15
+ 16u
14
+ ··· u 2
2u
15
6u
14
+ ··· + 5u 1
a
3
=
u
15
5u
14
+ ··· 12u
2
3
2u
14
5u
13
+ ··· 2u + 5
a
7
=
u
u
3
+ u
a
6
=
2u
15
5u
14
+ ··· + 6u
2
+ 2
2u
15
+ 5u
14
+ ··· u
2
3u
a
2
=
2u
14
+ 5u
13
+ ··· + 6u 5
2u
15
+ 8u
14
+ ··· 6u + 4
a
10
=
4u
15
13u
14
+ ··· + 12u 1
2u
15
+ 6u
14
+ ··· 3u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
15
+ 21u
14
66u
13
+ 162u
12
280u
11
+ 433u
10
498u
9
+
559u
8
469u
7
+ 452u
6
292u
5
+ 262u
4
114u
3
+ 85u
2
16u + 9
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
16
10u
15
+ ··· 14u + 1
c
2
u
16
5u
14
+ ··· 7u
2
+ 1
c
3
u
16
+ 2u
15
+ ··· + 4u + 1
c
4
u
16
3u
15
+ ··· u + 1
c
5
u
16
5u
14
+ ··· 7u
2
+ 1
c
6
u
16
+ 4u
15
+ ··· + 9u + 1
c
7
u
16
+ 3u
15
+ ··· + u + 1
c
8
u
16
12u
15
+ ··· + 3u + 1
c
9
u
16
+ 4u
15
+ ··· + 2u + 1
c
10
u
16
4u
15
+ ··· 9u + 1
c
11
u
16
2u
15
+ ··· 4u + 1
c
12
u
16
4u
15
+ ··· 2u + 1
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
+ 2y
15
+ ··· 14y + 1
c
2
, c
5
y
16
10y
15
+ ··· 14y + 1
c
3
, c
11
y
16
+ 18y
15
+ ··· + 12y + 1
c
4
, c
7
y
16
+ 13y
15
+ ··· + 11y + 1
c
6
, c
10
y
16
+ 4y
15
+ ··· 15y + 1
c
8
y
16
4y
15
+ ··· 31y + 1
c
9
, c
12
y
16
10y
15
+ ··· 14y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.522632 + 0.681729I
a = 3.01304 + 0.08828I
b = 0.193850 1.240090I
1.67890 + 4.79509I 7.33702 7.63468I
u = 0.522632 0.681729I
a = 3.01304 0.08828I
b = 0.193850 + 1.240090I
1.67890 4.79509I 7.33702 + 7.63468I
u = 0.505824 + 0.614300I
a = 1.018070 + 0.161240I
b = 0.775312 + 0.317843I
1.40771 0.97837I 9.52942 + 3.04465I
u = 0.505824 0.614300I
a = 1.018070 0.161240I
b = 0.775312 0.317843I
1.40771 + 0.97837I 9.52942 3.04465I
u = 0.133841 + 1.204570I
a = 0.35849 + 1.55300I
b = 0.07812 1.52109I
7.65003 3.66078I 7.24903 + 5.37880I
u = 0.133841 1.204570I
a = 0.35849 1.55300I
b = 0.07812 + 1.52109I
7.65003 + 3.66078I 7.24903 5.37880I
u = 0.895544 + 0.875535I
a = 1.117880 0.176389I
b = 0.333939 1.201080I
1.48311 4.99831I 7.51711 + 5.80874I
u = 0.895544 0.875535I
a = 1.117880 + 0.176389I
b = 0.333939 + 1.201080I
1.48311 + 4.99831I 7.51711 5.80874I
u = 0.122314 + 0.707690I
a = 0.010586 0.499972I
b = 0.15573 + 1.61681I
5.66385 + 2.53909I 0.82857 + 1.24715I
u = 0.122314 0.707690I
a = 0.010586 + 0.499972I
b = 0.15573 1.61681I
5.66385 2.53909I 0.82857 1.24715I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.269294 + 1.323520I
a = 0.201461 + 0.527298I
b = 0.185206 0.303507I
1.27597 2.61649I 13.2971 + 5.8003I
u = 0.269294 1.323520I
a = 0.201461 0.527298I
b = 0.185206 + 0.303507I
1.27597 + 2.61649I 13.2971 5.8003I
u = 0.283411 + 0.533145I
a = 2.59418 + 0.46203I
b = 0.388010 + 0.584237I
4.14032 + 2.65100I 12.96730 1.15952I
u = 0.283411 0.533145I
a = 2.59418 0.46203I
b = 0.388010 0.584237I
4.14032 2.65100I 12.96730 + 1.15952I
u = 0.37923 + 1.60128I
a = 0.078082 0.226823I
b = 0.053550 + 1.235140I
4.31342 1.80529I 1.27447 + 2.27954I
u = 0.37923 1.60128I
a = 0.078082 + 0.226823I
b = 0.053550 1.235140I
4.31342 + 1.80529I 1.27447 2.27954I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
16
10u
15
+ ··· 14u + 1)(u
58
+ 41u
57
+ ··· 191u + 169)
c
2
(u
16
5u
14
+ ··· 7u
2
+ 1)(u
58
+ u
57
+ ··· 37u 13)
c
3
(u
16
+ 2u
15
+ ··· + 4u + 1)(u
58
3u
57
+ ··· u 17)
c
4
(u
16
3u
15
+ ··· u + 1)(u
58
4u
57
+ ··· + 6u + 4)
c
5
(u
16
5u
14
+ ··· 7u
2
+ 1)(u
58
+ u
57
+ ··· 37u 13)
c
6
(u
16
+ 4u
15
+ ··· + 9u + 1)(u
58
+ 3u
57
+ ··· 16568u + 2143)
c
7
(u
16
+ 3u
15
+ ··· + u + 1)(u
58
4u
57
+ ··· + 6u + 4)
c
8
(u
16
12u
15
+ ··· + 3u + 1)(u
58
+ u
57
+ ··· + 202u + 3)
c
9
(u
16
+ 4u
15
+ ··· + 2u + 1)(u
58
+ 3u
57
+ ··· + 7097u + 431)
c
10
(u
16
4u
15
+ ··· 9u + 1)(u
58
+ 3u
57
+ ··· 16568u + 2143)
c
11
(u
16
2u
15
+ ··· 4u + 1)(u
58
3u
57
+ ··· u 17)
c
12
(u
16
4u
15
+ ··· 2u + 1)(u
58
+ 3u
57
+ ··· + 7097u + 431)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
16
+ 2y
15
+ ··· 14y + 1)(y
58
37y
57
+ ··· 1807601y + 28561)
c
2
, c
5
(y
16
10y
15
+ ··· 14y + 1)(y
58
41y
57
+ ··· + 191y + 169)
c
3
, c
11
(y
16
+ 18y
15
+ ··· + 12y + 1)(y
58
+ 47y
57
+ ··· 171y + 289)
c
4
, c
7
(y
16
+ 13y
15
+ ··· + 11y + 1)(y
58
+ 18y
57
+ ··· + 356y + 16)
c
6
, c
10
(y
16
+ 4y
15
+ ··· 15y + 1)
· (y
58
+ 65y
57
+ ··· 280143286y + 4592449)
c
8
(y
16
4y
15
+ ··· 31y + 1)(y
58
15y
57
+ ··· 60898y + 9)
c
9
, c
12
(y
16
10y
15
+ ··· 14y + 1)
· (y
58
49y
57
+ ··· 11167097y + 185761)
19