12n
0548
(K12n
0548
)
A knot diagram
1
Linearized knot diagam
3 6 8 7 2 10 11 12 6 4 3 9
Solving Sequence
3,8 4,11
12 9 1 7 5 10 6 2
c
3
c
11
c
8
c
12
c
7
c
4
c
10
c
6
c
2
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h839541u
18
+ 414704u
17
+ ··· + 614275b + 334586,
1568119u
18
334586u
17
+ ··· + 614275a 893399, u
19
+ 4u
17
+ ··· 3u + 1i
I
u
2
= h−5.87295 × 10
66
u
41
1.75111 × 10
67
u
40
+ ··· + 2.94164 × 10
68
b 3.67088 × 10
68
,
3.09411 × 10
67
u
41
7.74232 × 10
67
u
40
+ ··· + 2.94164 × 10
68
a 4.17179 × 10
68
, u
42
+ 2u
41
+ ··· u + 29i
I
u
3
= h−u
5
2u
4
3u
3
u
2
+ b u 1, 2u
5
+ 3u
4
+ 4u
3
+ a + u + 1, u
6
+ u
5
+ 2u
4
+ 2u
2
+ 1i
I
u
4
= hb, u
2
+ a 4u 4, u
3
+ 3u
2
+ 2u + 1i
I
u
5
= h−u
2
+ b + 2u 3, a u + 1, u
3
u
2
+ 2u 1i
I
u
6
= hb, u
2
+ a + u 2, u
3
u
2
+ 2u 1i
I
u
7
= h−u
3
+ 2u
2
+ 2b 2u + 3, a, u
4
u
3
3u 1i
* 7 irreducible components of dim
C
= 0, with total 80 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h8.40 × 10
5
u
18
+ 4.15 × 10
5
u
17
+ · · · + 6.14 × 10
5
b + 3.35 × 10
5
, 1.57 ×
10
6
u
18
3.35×10
5
u
17
+· · ·+6.14×10
5
a8.93×10
5
, u
19
+4u
17
+· · · 3u +1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
2.55280u
18
+ 0.544684u
17
+ ··· + 6.35355u + 1.45440
1.36672u
18
0.675111u
17
+ ··· + 0.0812568u 0.544684
a
12
=
1.18608u
18
0.130427u
17
+ ··· + 6.43480u + 0.909711
1.36672u
18
0.675111u
17
+ ··· + 0.0812568u 0.544684
a
9
=
1.87702u
18
1.06727u
17
+ ··· + 2.08800u 0.313684
0.605885u
18
+ 0.644166u
17
+ ··· 4.44053u + 1.84186
a
1
=
2.29520u
18
2.10756u
17
+ ··· + 20.0462u 4.88661
2.87084u
18
0.364195u
17
+ ··· 6.80711u + 0.344619
a
7
=
0.0815091u
18
1.84037u
17
+ ··· + 14.0499u 3.45123
1.35265u
18
+ 0.128936u
17
+ ··· 5.52137u + 1.29569
a
5
=
4.14127u
18
5.59500u
17
+ ··· + 40.2826u 11.9351
2.76534u
18
+ 1.25245u
17
+ ··· 13.5192u + 2.87564
a
10
=
2.55280u
18
+ 0.544684u
17
+ ··· + 7.35355u + 1.45440
1.36672u
18
0.675111u
17
+ ··· + 0.0812568u 0.544684
a
6
=
2.26892u
18
+ 0.0721110u
17
+ ··· + 8.09872u 1.42611
1.16048u
18
0.642082u
17
+ ··· 0.393968u 0.747222
a
2
=
5.16604u
18
1.74336u
17
+ ··· + 26.8533u 5.23123
2.87084u
18
0.364195u
17
+ ··· 6.80711u + 0.344619
(ii) Obstruction class = 1
(iii) Cusp Shapes =
534153
614275
u
18
+
1331432
614275
u
17
+ ··· +
884838
614275
u +
5127063
614275
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
+ 16u
18
+ ··· + 7856u + 256
c
2
, c
5
u
19
+ 10u
18
+ ··· + 12u 16
c
3
, c
10
u
19
+ 4u
17
+ ··· 3u + 1
c
4
, c
11
u
19
+ 2u
18
+ ··· + 12u + 8
c
6
, c
8
, c
9
c
12
u
19
+ u
18
+ ··· + 3u + 1
c
7
u
19
+ 13u
18
+ ··· 48u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
48y
18
+ ··· + 38868736y 65536
c
2
, c
5
y
19
16y
18
+ ··· + 7856y 256
c
3
, c
10
y
19
+ 8y
18
+ ··· + 5y 1
c
4
, c
11
y
19
2y
18
+ ··· + 592y 64
c
6
, c
8
, c
9
c
12
y
19
+ y
18
+ ··· + 21y 1
c
7
y
19
+ 5y
18
+ ··· + 328y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.554327 + 0.816296I
a = 0.449718 0.399149I
b = 1.077030 + 0.552624I
2.67732 0.51592I 1.091807 0.810974I
u = 0.554327 0.816296I
a = 0.449718 + 0.399149I
b = 1.077030 0.552624I
2.67732 + 0.51592I 1.091807 + 0.810974I
u = 1.07189
a = 0.191560
b = 0.851800
0.580619 13.0550
u = 0.762242 + 0.899191I
a = 1.206180 + 0.397943I
b = 0.491185 0.844790I
2.15014 + 2.80593I 2.26586 2.17358I
u = 0.762242 0.899191I
a = 1.206180 0.397943I
b = 0.491185 + 0.844790I
2.15014 2.80593I 2.26586 + 2.17358I
u = 0.235296 + 0.747067I
a = 2.32482 0.34119I
b = 1.52404 + 0.10128I
3.56934 0.90767I 0.55417 + 9.36864I
u = 0.235296 0.747067I
a = 2.32482 + 0.34119I
b = 1.52404 0.10128I
3.56934 + 0.90767I 0.55417 9.36864I
u = 0.037268 + 1.233190I
a = 0.275398 + 0.188667I
b = 0.398506 + 0.971850I
8.03976 + 1.79924I 7.69871 3.75838I
u = 0.037268 1.233190I
a = 0.275398 0.188667I
b = 0.398506 0.971850I
8.03976 1.79924I 7.69871 + 3.75838I
u = 0.752726
a = 0.641735
b = 0.389121
1.23606 8.48800
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.876387 + 0.962111I
a = 0.967056 + 0.743601I
b = 0.225183 0.785891I
9.02909 + 1.94624I 2.17011 0.32172I
u = 0.876387 0.962111I
a = 0.967056 0.743601I
b = 0.225183 + 0.785891I
9.02909 1.94624I 2.17011 + 0.32172I
u = 0.078541 + 0.678324I
a = 3.11733 + 0.71264I
b = 1.41252 + 0.68698I
3.99480 5.52551I 3.44622 + 2.46689I
u = 0.078541 0.678324I
a = 3.11733 0.71264I
b = 1.41252 0.68698I
3.99480 + 5.52551I 3.44622 2.46689I
u = 0.722855 + 1.170890I
a = 1.224490 + 0.542047I
b = 0.84423 1.36180I
0.20840 9.16203I 0.05762 + 7.52328I
u = 0.722855 1.170890I
a = 1.224490 0.542047I
b = 0.84423 + 1.36180I
0.20840 + 9.16203I 0.05762 7.52328I
u = 0.86076 + 1.25309I
a = 1.147680 + 0.364414I
b = 1.02645 1.52491I
7.0282 + 15.9756I 0.06436 7.92433I
u = 0.86076 1.25309I
a = 1.147680 0.364414I
b = 1.02645 + 1.52491I
7.0282 15.9756I 0.06436 + 7.92433I
u = 0.283860
a = 2.29154
b = 0.468504
1.29410 7.95340
6
II.
I
u
2
= h−5.87×10
66
u
41
1.75×10
67
u
40
+· · ·+2.94×10
68
b3.67×10
68
, 3.09×
10
67
u
41
7.74×10
67
u
40
+· · ·+2.94×10
68
a4.17×10
68
, u
42
+2u
41
+· · ·u+29i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
0.105183u
41
+ 0.263197u
40
+ ··· + 13.0930u + 1.41818
0.0199649u
41
+ 0.0595283u
40
+ ··· + 1.86016u + 1.24790
a
12
=
0.125148u
41
+ 0.322725u
40
+ ··· + 14.9532u + 2.66608
0.0199649u
41
+ 0.0595283u
40
+ ··· + 1.86016u + 1.24790
a
9
=
0.227872u
41
0.440210u
40
+ ··· 20.1740u + 8.13423
0.0339899u
41
+ 0.0632354u
40
+ ··· + 0.553957u 1.62888
a
1
=
0.243217u
41
0.412652u
40
+ ··· 7.86097u + 18.2275
0.0293195u
41
0.0612038u
40
+ ··· 3.53683u 0.800021
a
7
=
0.284778u
41
0.544075u
40
+ ··· 18.4556u + 10.5971
0.0229160u
41
+ 0.0406297u
40
+ ··· 0.272377u 0.834006
a
5
=
0.429098u
41
+ 1.08741u
40
+ ··· + 62.8716u + 11.7818
0.0368126u
41
0.0787071u
40
+ ··· 2.03432u + 1.99774
a
10
=
0.123438u
41
+ 0.337722u
40
+ ··· + 17.9506u + 4.19819
0.0205559u
41
+ 0.0509951u
40
+ ··· + 1.36876u + 0.145489
a
6
=
0.380839u
41
0.803076u
40
+ ··· 34.7432u + 7.26273
0.0150353u
41
+ 0.0151766u
40
+ ··· 1.15105u 2.01514
a
2
=
0.213898u
41
0.351449u
40
+ ··· 4.32414u + 19.0276
0.0293195u
41
0.0612038u
40
+ ··· 3.53683u 0.800021
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.244611u
41
0.621694u
40
+ ··· 40.9379u + 5.54966
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
21
+ 25u
20
+ ··· + 84u + 1)
2
c
2
, c
5
(u
21
5u
20
+ ··· 14u + 1)
2
c
3
, c
10
u
42
+ 2u
41
+ ··· u + 29
c
4
, c
11
u
42
+ 6u
41
+ ··· 124u + 8
c
6
, c
8
, c
9
c
12
u
42
2u
41
+ ··· 24u + 29
c
7
(u
21
6u
20
+ ··· + 12u + 4)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
21
53y
20
+ ··· 180y 1)
2
c
2
, c
5
(y
21
25y
20
+ ··· + 84y 1)
2
c
3
, c
10
y
42
+ 4y
41
+ ··· + 10439y + 841
c
4
, c
11
y
42
+ 16y
41
+ ··· 1424y + 64
c
6
, c
8
, c
9
c
12
y
42
8y
41
+ ··· 2722y + 841
c
7
(y
21
12y
20
+ ··· + 504y 16)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.910809 + 0.492994I
a = 0.604245 0.480077I
b = 0.012249 + 1.136170I
2.24713 + 3.07529I 2.94639 4.21084I
u = 0.910809 0.492994I
a = 0.604245 + 0.480077I
b = 0.012249 1.136170I
2.24713 3.07529I 2.94639 + 4.21084I
u = 0.395865 + 0.853042I
a = 1.134820 0.230653I
b = 0.404156 + 0.264334I
2.28813 + 0.50504I 2.35502 2.42758I
u = 0.395865 0.853042I
a = 1.134820 + 0.230653I
b = 0.404156 0.264334I
2.28813 0.50504I 2.35502 + 2.42758I
u = 0.160574 + 0.922004I
a = 1.78763 + 0.41444I
b = 2.14163 0.02583I
3.01993 + 5.87862I 3.16317 5.53402I
u = 0.160574 0.922004I
a = 1.78763 0.41444I
b = 2.14163 + 0.02583I
3.01993 5.87862I 3.16317 + 5.53402I
u = 0.306219 + 0.860956I
a = 0.75794 1.62449I
b = 0.101490 + 0.115855I
2.86504 3.02547I 1.74153 + 5.07163I
u = 0.306219 0.860956I
a = 0.75794 + 1.62449I
b = 0.101490 0.115855I
2.86504 + 3.02547I 1.74153 5.07163I
u = 0.790784 + 0.845104I
a = 1.39288 0.51155I
b = 0.968075 0.894251I
3.01993 + 5.87862I 3.16317 5.53402I
u = 0.790784 0.845104I
a = 1.39288 + 0.51155I
b = 0.968075 + 0.894251I
3.01993 5.87862I 3.16317 + 5.53402I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.038600 + 0.523837I
a = 0.942154 + 0.475195I
b = 0.236220 1.166820I
10.7460 4.50742 + 0.I
u = 1.038600 0.523837I
a = 0.942154 0.475195I
b = 0.236220 + 1.166820I
10.7460 4.50742 + 0.I
u = 0.797787 + 0.875105I
a = 0.534733 0.411863I
b = 0.404891 + 1.292910I
2.24713 + 3.07529I 2.94639 4.21084I
u = 0.797787 0.875105I
a = 0.534733 + 0.411863I
b = 0.404891 1.292910I
2.24713 3.07529I 2.94639 + 4.21084I
u = 0.879615 + 0.797579I
a = 1.51117 0.36130I
b = 0.021383 + 0.843147I
8.46800 + 6.35526I 2.09227 5.05576I
u = 0.879615 0.797579I
a = 1.51117 + 0.36130I
b = 0.021383 0.843147I
8.46800 6.35526I 2.09227 + 5.05576I
u = 0.871026 + 0.898919I
a = 0.667226 0.327012I
b = 0.81971 + 1.63423I
9.19963 8.42224I 2.59003 + 5.45173I
u = 0.871026 0.898919I
a = 0.667226 + 0.327012I
b = 0.81971 1.63423I
9.19963 + 8.42224I 2.59003 5.45173I
u = 0.723315
a = 0.282353
b = 1.55958
0.602093 30.8920
u = 0.252564 + 1.269630I
a = 1.05577 + 1.07496I
b = 1.09518 1.86934I
4.79941 2.44365I 9.18422 5.36256I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.252564 1.269630I
a = 1.05577 1.07496I
b = 1.09518 + 1.86934I
4.79941 + 2.44365I 9.18422 + 5.36256I
u = 0.826857 + 1.036500I
a = 0.291224 + 0.365062I
b = 0.31488 1.67829I
7.74435 1.51944 + 0.I
u = 0.826857 1.036500I
a = 0.291224 0.365062I
b = 0.31488 + 1.67829I
7.74435 1.51944 + 0.I
u = 0.874570 + 1.009200I
a = 1.065470 0.129907I
b = 0.858651 + 0.720112I
1.31849 7.43334I 1.09731 + 4.98321I
u = 0.874570 1.009200I
a = 1.065470 + 0.129907I
b = 0.858651 0.720112I
1.31849 + 7.43334I 1.09731 4.98321I
u = 0.088014 + 0.633793I
a = 1.21829 1.18843I
b = 1.008390 0.520783I
2.28813 0.50504I 2.35502 + 2.42758I
u = 0.088014 0.633793I
a = 1.21829 + 1.18843I
b = 1.008390 + 0.520783I
2.28813 + 0.50504I 2.35502 2.42758I
u = 0.264329 + 1.335610I
a = 0.344279 1.152810I
b = 0.082329 + 1.358030I
2.86504 + 3.02547I 1.74153 5.07163I
u = 0.264329 1.335610I
a = 0.344279 + 1.152810I
b = 0.082329 1.358030I
2.86504 3.02547I 1.74153 + 5.07163I
u = 0.693494 + 1.227500I
a = 1.112370 0.689204I
b = 0.84731 + 1.80325I
8.46800 6.35526I 2.09227 + 5.05576I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.693494 1.227500I
a = 1.112370 + 0.689204I
b = 0.84731 1.80325I
8.46800 + 6.35526I 2.09227 5.05576I
u = 1.29885 + 0.57323I
a = 0.474359 0.451833I
b = 0.446176 + 0.991503I
9.19963 8.42224I 2.59003 + 5.45173I
u = 1.29885 0.57323I
a = 0.474359 + 0.451833I
b = 0.446176 0.991503I
9.19963 + 8.42224I 2.59003 5.45173I
u = 0.81774 + 1.19364I
a = 0.963505 0.230411I
b = 1.15324 + 1.04594I
1.31849 + 7.43334I 0. 4.98321I
u = 0.81774 1.19364I
a = 0.963505 + 0.230411I
b = 1.15324 1.04594I
1.31849 7.43334I 0. + 4.98321I
u = 0.412206 + 0.290564I
a = 0.837857 0.179649I
b = 1.51919 0.91903I
0.776391 + 0.135824I 2.3494 19.5336I
u = 0.412206 0.290564I
a = 0.837857 + 0.179649I
b = 1.51919 + 0.91903I
0.776391 0.135824I 2.3494 + 19.5336I
u = 0.150066 + 0.471958I
a = 3.05515 + 2.48532I
b = 0.512237 + 0.339241I
4.79941 2.44365I 9.18422 5.36256I
u = 0.150066 0.471958I
a = 3.05515 2.48532I
b = 0.512237 0.339241I
4.79941 + 2.44365I 9.18422 + 5.36256I
u = 1.54778 + 0.70297I
a = 0.079788 + 0.241372I
b = 0.264751 0.005228I
0.776391 0.135824I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.54778 0.70297I
a = 0.079788 0.241372I
b = 0.264751 + 0.005228I
0.776391 + 0.135824I 0
u = 1.70730
a = 0.119622
b = 0.374632
0.602093 0
14
III. I
u
3
=
h−u
5
2u
4
3u
3
u
2
+bu1, 2u
5
+3u
4
+4u
3
+a+u+1, u
6
+u
5
+2u
4
+2u
2
+1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
2u
5
3u
4
4u
3
u 1
u
5
+ 2u
4
+ 3u
3
+ u
2
+ u + 1
a
12
=
u
5
u
4
u
3
+ u
2
u
5
+ 2u
4
+ 3u
3
+ u
2
+ u + 1
a
9
=
u
5
+ u
4
+ 2u
3
+ u 1
u
3
u
2
u
a
1
=
u
5
+ u
3
+ 4u
2
+ u + 1
2u
5
+ 3u
4
+ 4u
3
+ u
a
7
=
u
5
+ 2u
3
+ u
2
+ 6u 1
u
4
+ u
3
2u
a
5
=
4u
5
+ u
3
10u
2
+ 3u 7
3u
5
2u
4
4u
3
+ 3u
2
3u + 3
a
10
=
2u
5
3u
4
4u
3
2u 1
u
5
+ 2u
4
+ 2u
3
+ u
2
+ u + 1
a
6
=
u
5
+ u
3
+ 4u
u
4
+ u
3
+ u
2
u
a
2
=
3u
5
3u
4
3u
3
+ 4u
2
+ 1
2u
5
+ 3u
4
+ 4u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
5
+ 10u
4
+ 16u
3
+ 8u
2
+ 9u + 9
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
4u
5
4u
4
+ 17u
3
+ 20u
2
+ 1
c
2
u
6
+ 4u
5
+ 6u
4
+ 7u
3
+ 8u
2
+ 4u + 1
c
3
, c
10
u
6
+ u
5
+ 2u
4
+ 2u
2
+ 1
c
4
, c
11
u
6
+ 2u
5
2u
4
6u
3
+ 3u
2
+ 16u + 11
c
5
u
6
4u
5
+ 6u
4
7u
3
+ 8u
2
4u + 1
c
6
, c
8
u
6
2u
5
+ 3u
4
2u
3
+ u
2
u + 1
c
7
u
6
+ 5u
5
+ 18u
4
+ 38u
3
+ 59u
2
+ 55u + 31
c
9
, c
12
u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ u
2
+ u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
24y
5
+ 192y
4
447y
3
+ 392y
2
+ 40y + 1
c
2
, c
5
y
6
4y
5
4y
4
+ 17y
3
+ 20y
2
+ 1
c
3
, c
10
y
6
+ 3y
5
+ 8y
4
+ 10y
3
+ 8y
2
+ 4y + 1
c
4
, c
11
y
6
8y
5
+ 34y
4
90y
3
+ 157y
2
190y + 121
c
6
, c
8
, c
9
c
12
y
6
+ 2y
5
+ 3y
4
+ 3y
2
+ y + 1
c
7
y
6
+ 11y
5
+ 62y
4
+ 192y
3
+ 417y
2
+ 633y + 961
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.503078 + 0.706849I
a = 2.29094 + 0.59312I
b = 1.48973 + 0.77624I
4.68092 6.37541I 2.75473 + 8.04371I
u = 0.503078 0.706849I
a = 2.29094 0.59312I
b = 1.48973 0.77624I
4.68092 + 6.37541I 2.75473 8.04371I
u = 0.169825 + 0.786403I
a = 2.31049 0.38566I
b = 1.42906 + 0.05811I
3.85563 + 0.42199I 8.41818 + 2.54413I
u = 0.169825 0.786403I
a = 2.31049 + 0.38566I
b = 1.42906 0.05811I
3.85563 0.42199I 8.41818 2.54413I
u = 0.83325 + 1.16541I
a = 0.980450 0.218037I
b = 1.060680 + 0.883526I
2.47022 + 7.96446I 6.33654 7.96443I
u = 0.83325 1.16541I
a = 0.980450 + 0.218037I
b = 1.060680 0.883526I
2.47022 7.96446I 6.33654 + 7.96443I
18
IV. I
u
4
= hb, u
2
+ a 4u 4, u
3
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
u
2
+ 4u + 4
0
a
12
=
u
2
+ 4u + 4
0
a
9
=
3u 7
u
a
1
=
5u
2
+ 9u 6
u
2
+ 3u + 1
a
7
=
3u 7
u
a
5
=
11u
2
32u 14
u 2
a
10
=
2u
2
+ 7u + 5
u
2
u
a
6
=
2u
2
10u 12
u
2
+ 2u
a
2
=
4u
2
+ 6u 7
u
2
+ 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 32u
2
43u 18
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
3
u
3
+ 3u
2
+ 2u + 1
c
4
u
3
+ 4u
2
+ 9u + 11
c
5
u
3
u
2
+ 1
c
6
(u + 1)
3
c
7
, c
8
u
3
4u
2
+ 5u 1
c
9
(u 1)
3
c
11
u
3
c
12
u
3
+ 4u
2
+ 5u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
y
3
y
2
+ 2y 1
c
3
y
3
5y
2
2y 1
c
4
y
3
+ 2y
2
7y 121
c
6
, c
9
(y 1)
3
c
7
, c
8
, c
12
y
3
6y
2
+ 17y 1
c
11
y
3
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.337641 + 0.562280I
a = 2.44728 + 1.86942I
b = 0
4.66906 + 2.82812I 2.98758 12.02771I
u = 0.337641 0.562280I
a = 2.44728 1.86942I
b = 0
4.66906 2.82812I 2.98758 + 12.02771I
u = 2.32472
a = 0.105442
b = 0
0.531480 90.9750
22
V. I
u
5
= h−u
2
+ b + 2u 3, a u + 1, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
u 1
u
2
2u + 3
a
12
=
u
2
u + 2
u
2
2u + 3
a
9
=
u
2
u + 2
u
2
u + 3
a
1
=
0
u
a
7
=
u
2
u + 1
u
2
+ 3u 2
a
5
=
1
u
2
a
10
=
u
2
+ u + 1
2u
2
3u + 4
a
6
=
u
u
2
u + 1
a
2
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 53u
2
+ 32u 92
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
u
3
c
5
u
3
u
2
+ 1
c
6
, c
7
u
3
4u
2
+ 5u 1
c
8
(u + 1)
3
c
9
u
3
+ 4u
2
+ 5u + 1
c
10
u
3
+ 3u
2
+ 2u + 1
c
11
u
3
+ 4u
2
+ 9u + 11
c
12
(u 1)
3
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
y
3
y
2
+ 2y 1
c
4
y
3
c
6
, c
7
, c
9
y
3
6y
2
+ 17y 1
c
8
, c
12
(y 1)
3
c
10
y
3
5y
2
2y 1
c
11
y
3
+ 2y
2
7y 121
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.78492 + 1.30714I
b = 0.90748 2.05200I
4.66906 2.82812I 2.98758 + 12.02771I
u = 0.215080 1.307140I
a = 0.78492 1.30714I
b = 0.90748 + 2.05200I
4.66906 + 2.82812I 2.98758 12.02771I
u = 0.569840
a = 0.430160
b = 2.18504
0.531480 90.9750
26
VI. I
u
6
= hb, u
2
+ a + u 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
u
2
u + 2
0
a
12
=
u
2
u + 2
0
a
9
=
u
2
u + 2
u
a
1
=
0
u
a
7
=
u
2
u + 2
u
a
5
=
1
u
2
a
10
=
u
2
2u + 2
u
2
+ 2u 1
a
6
=
u
u
2
u + 1
a
2
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
2
+ 5u 5
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
10
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
, c
11
u
3
c
5
u
3
u
2
+ 1
c
6
, c
7
, c
8
(u + 1)
3
c
9
, c
12
(u 1)
3
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
10
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
y
3
y
2
+ 2y 1
c
4
, c
11
y
3
c
6
, c
7
, c
8
c
9
, c
12
(y 1)
3
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.122561 0.744862I
b = 0
4.66906 2.82812I 7.71191 + 2.59975I
u = 0.215080 1.307140I
a = 0.122561 + 0.744862I
b = 0
4.66906 + 2.82812I 7.71191 2.59975I
u = 0.569840
a = 1.75488
b = 0
0.531480 4.42380
30
VII. I
u
7
= h−u
3
+ 2u
2
+ 2b 2u + 3, a, u
4
u
3
3u 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
0
1
2
u
3
u
2
+ u
3
2
a
12
=
1
2
u
3
u
2
+ u
3
2
1
2
u
3
u
2
+ u
3
2
a
9
=
1
2
u
3
u
3
2
1
2
u
3
3
2
a
1
=
1
2
u
3
u
3
2
1
a
7
=
0
u
a
5
=
1
0
a
10
=
1
2
u
3
u
2
+ u
3
2
u
3
u
2
2
a
6
=
1
2
u
3
+ u +
3
2
1
a
2
=
1
2
u
3
u
1
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
3
+ 16u
2
+ 37
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
4
, c
10
c
11
u
4
u
3
3u 1
c
5
(u + 1)
4
c
6
, c
8
(u
2
u 1)
2
c
7
u
4
c
9
, c
12
(u
2
+ u 1)
2
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
10
c
11
y
4
y
3
8y
2
9y + 1
c
6
, c
8
, c
9
c
12
(y
2
3y + 1)
2
c
7
y
4
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.309017 + 1.233910I
a = 0
b = 0.309017 + 1.233910I
7.23771 3.11146 + 0.I
u = 0.309017 1.233910I
a = 0
b = 0.309017 1.233910I
7.23771 3.11146 + 0.I
u = 0.319053
a = 0
b = 1.93709
0.657974 38.8890
u = 1.93709
a = 0
b = 0.319053
0.657974 38.8890
34
VIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
(u
3
u
2
+ 2u 1)
3
(u
6
4u
5
4u
4
+ 17u
3
+ 20u
2
+ 1)
· (u
19
+ 16u
18
+ ··· + 7856u + 256)(u
21
+ 25u
20
+ ··· + 84u + 1)
2
c
2
(u 1)
4
(u
3
+ u
2
1)
3
(u
6
+ 4u
5
+ 6u
4
+ 7u
3
+ 8u
2
+ 4u + 1)
· (u
19
+ 10u
18
+ ··· + 12u 16)(u
21
5u
20
+ ··· 14u + 1)
2
c
3
, c
10
(u
3
u
2
+ 2u 1)
2
(u
3
+ 3u
2
+ 2u + 1)(u
4
u
3
3u 1)
· (u
6
+ u
5
+ 2u
4
+ 2u
2
+ 1)(u
19
+ 4u
17
+ ··· 3u + 1)
· (u
42
+ 2u
41
+ ··· u + 29)
c
4
, c
11
u
6
(u
3
+ 4u
2
+ 9u + 11)(u
4
u
3
3u 1)
· (u
6
+ 2u
5
+ ··· + 16u + 11)(u
19
+ 2u
18
+ ··· + 12u + 8)
· (u
42
+ 6u
41
+ ··· 124u + 8)
c
5
(u + 1)
4
(u
3
u
2
+ 1)
3
(u
6
4u
5
+ 6u
4
7u
3
+ 8u
2
4u + 1)
· (u
19
+ 10u
18
+ ··· + 12u 16)(u
21
5u
20
+ ··· 14u + 1)
2
c
6
, c
8
(u + 1)
6
(u
2
u 1)
2
(u
3
4u
2
+ 5u 1)
· (u
6
2u
5
+ 3u
4
2u
3
+ u
2
u + 1)(u
19
+ u
18
+ ··· + 3u + 1)
· (u
42
2u
41
+ ··· 24u + 29)
c
7
u
4
(u + 1)
3
(u
3
4u
2
+ 5u 1)
2
· (u
6
+ 5u
5
+ 18u
4
+ 38u
3
+ 59u
2
+ 55u + 31)
· (u
19
+ 13u
18
+ ··· 48u 4)(u
21
6u
20
+ ··· + 12u + 4)
2
c
9
, c
12
(u 1)
6
(u
2
+ u 1)
2
(u
3
+ 4u
2
+ 5u + 1)
· (u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ u
2
+ u + 1)(u
19
+ u
18
+ ··· + 3u + 1)
· (u
42
2u
41
+ ··· 24u + 29)
35
IX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
4
(y
3
+ 3y
2
+ 2y 1)
3
· (y
6
24y
5
+ 192y
4
447y
3
+ 392y
2
+ 40y + 1)
· (y
19
48y
18
+ ··· + 38868736y 65536)
· (y
21
53y
20
+ ··· 180y 1)
2
c
2
, c
5
(y 1)
4
(y
3
y
2
+ 2y 1)
3
(y
6
4y
5
4y
4
+ 17y
3
+ 20y
2
+ 1)
· (y
19
16y
18
+ ··· + 7856y 256)(y
21
25y
20
+ ··· + 84y 1)
2
c
3
, c
10
(y
3
5y
2
2y 1)(y
3
+ 3y
2
+ 2y 1)
2
(y
4
y
3
8y
2
9y + 1)
· (y
6
+ 3y
5
+ ··· + 4y + 1)(y
19
+ 8y
18
+ ··· + 5y 1)
· (y
42
+ 4y
41
+ ··· + 10439y + 841)
c
4
, c
11
y
6
(y
3
+ 2y
2
7y 121)(y
4
y
3
8y
2
9y + 1)
· (y
6
8y
5
+ 34y
4
90y
3
+ 157y
2
190y + 121)
· (y
19
2y
18
+ ··· + 592y 64)(y
42
+ 16y
41
+ ··· 1424y + 64)
c
6
, c
8
, c
9
c
12
(y 1)
6
(y
2
3y + 1)
2
(y
3
6y
2
+ 17y 1)
· (y
6
+ 2y
5
+ 3y
4
+ 3y
2
+ y + 1)(y
19
+ y
18
+ ··· + 21y 1)
· (y
42
8y
41
+ ··· 2722y + 841)
c
7
y
4
(y 1)
3
(y
3
6y
2
+ 17y 1)
2
· (y
6
+ 11y
5
+ 62y
4
+ 192y
3
+ 417y
2
+ 633y + 961)
· (y
19
+ 5y
18
+ ··· + 328y 16)(y
21
12y
20
+ ··· + 504y 16)
2
36