12n
0550
(K12n
0550
)
A knot diagram
1
Linearized knot diagam
3 7 8 10 9 11 2 1 5 7 10 4
Solving Sequence
2,8
7 3
4,10
5 11 1 6 9 12
c
7
c
2
c
3
c
4
c
10
c
1
c
6
c
9
c
12
c
5
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
16
3u
15
+ ··· + b + 3, 3u
17
+ 7u
16
+ ··· + 2a + 1, u
18
3u
17
+ ··· 5u + 2i
I
u
2
= h−u
10
2u
8
3u
6
u
5
2u
4
u
3
u
2
+ b u 1,
u
11
+ u
10
+ 2u
9
+ 2u
8
+ 3u
7
+ 3u
6
+ 2u
5
+ u
4
+ u
3
+ a + u, u
12
+ 3u
10
+ 5u
8
+ 4u
6
+ 2u
4
+ u
2
+ 1i
I
u
3
= h−u
4
a 2u
2
a + u
3
+ au + b a + u 1, u
3
a + 2u
2
a + 3u
3
+ a
2
+ 2au + 3u
2
+ 2a + u + 1,
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 40 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
16
3u
15
+· · ·+b+3, 3u
17
+7u
16
+· · ·+2a+1, u
18
3u
17
+· · ·5u+2i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
3
2
u
17
7
2
u
16
+ ··· +
7
2
u
1
2
u
16
+ 3u
15
+ ··· + 4u 3
a
5
=
1
2
u
17
+
3
2
u
16
+ ···
3
2
u +
1
2
u
17
2u
16
+ ··· + 3u 1
a
11
=
5
2
u
17
11
2
u
16
+ ··· +
11
2
u
3
2
2u
16
+ 5u
15
+ ··· + 7u 5
a
1
=
u
3
u
5
+ u
3
+ u
a
6
=
1
2
u
17
+
3
2
u
16
+ ···
1
2
u +
1
2
2u
17
3u
16
+ ··· + 2u 1
a
9
=
u
8
+ u
6
+ u
4
+ 1
u
10
+ 2u
8
+ 3u
6
+ 2u
4
+ u
2
a
12
=
u
11
2u
9
2u
7
+ u
3
u
11
+ 3u
9
+ 4u
7
+ 3u
5
+ u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
17
+ 6u
16
12u
15
+ 22u
14
24u
13
+ 40u
12
34u
11
+ 46u
10
32u
9
+ 26u
8
22u
7
+ 6u
6
+ 2u
5
10u
4
+ 16u
3
+ 2u
2
+ 2u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 9u
17
+ ··· + 3u + 4
c
2
, c
7
u
18
+ 3u
17
+ ··· + 5u + 2
c
3
u
18
3u
17
+ ··· 123u + 34
c
4
, c
5
, c
6
c
9
, c
10
u
18
+ 17u
16
+ ··· + 6u
2
+ 1
c
8
u
18
+ 15u
17
+ ··· + 1169u + 266
c
11
u
18
+ 34u
17
+ ··· + 12u + 1
c
12
u
18
+ u
17
+ ··· + 265u + 160
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
+ y
17
+ ··· + 191y + 16
c
2
, c
7
y
18
+ 9y
17
+ ··· + 3y + 4
c
3
y
18
7y
17
+ ··· 3909y + 1156
c
4
, c
5
, c
6
c
9
, c
10
y
18
+ 34y
17
+ ··· + 12y + 1
c
8
y
18
3y
17
+ ··· + 155491y + 70756
c
11
y
18
126y
17
+ ··· + 16y + 1
c
12
y
18
+ 85y
17
+ ··· 550545y + 25600
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.900621 + 0.268664I
a = 0.729720 + 0.016572I
b = 0.20830 2.38570I
17.8823 5.8715I 1.17869 + 1.87367I
u = 0.900621 0.268664I
a = 0.729720 0.016572I
b = 0.20830 + 2.38570I
17.8823 + 5.8715I 1.17869 1.87367I
u = 0.297755 + 1.056830I
a = 0.151471 1.118820I
b = 0.648988 + 0.730249I
3.32385 + 0.53851I 1.31320 + 1.23447I
u = 0.297755 1.056830I
a = 0.151471 + 1.118820I
b = 0.648988 0.730249I
3.32385 0.53851I 1.31320 1.23447I
u = 0.750892 + 0.811110I
a = 1.272950 + 0.346188I
b = 0.598966 0.460694I
14.5019 2.7975I 1.40873 + 2.65752I
u = 0.750892 0.811110I
a = 1.272950 0.346188I
b = 0.598966 + 0.460694I
14.5019 + 2.7975I 1.40873 2.65752I
u = 0.482590 + 1.071550I
a = 0.264991 0.374329I
b = 0.027718 + 0.293336I
0.95248 3.40681I 4.19440 + 2.15670I
u = 0.482590 1.071550I
a = 0.264991 + 0.374329I
b = 0.027718 0.293336I
0.95248 + 3.40681I 4.19440 2.15670I
u = 0.541968 + 1.089520I
a = 0.848196 + 0.994100I
b = 0.205313 1.329710I
1.65747 + 6.51690I 2.73570 9.24962I
u = 0.541968 1.089520I
a = 0.848196 0.994100I
b = 0.205313 + 1.329710I
1.65747 6.51690I 2.73570 + 9.24962I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.643322 + 0.355418I
a = 0.486969 + 0.304277I
b = 0.228450 + 0.806417I
0.44494 1.87013I 6.06834 + 5.46541I
u = 0.643322 0.355418I
a = 0.486969 0.304277I
b = 0.228450 0.806417I
0.44494 + 1.87013I 6.06834 5.46541I
u = 0.266121 + 1.276470I
a = 0.55947 + 2.38028I
b = 1.03140 1.90393I
16.5141 2.0953I 3.38488 0.11711I
u = 0.266121 1.276470I
a = 0.55947 2.38028I
b = 1.03140 + 1.90393I
16.5141 + 2.0953I 3.38488 + 0.11711I
u = 0.504699 + 0.453241I
a = 0.598131 + 0.161265I
b = 0.263286 + 0.046770I
0.920321 0.679889I 8.59008 + 5.05445I
u = 0.504699 0.453241I
a = 0.598131 0.161265I
b = 0.263286 0.046770I
0.920321 + 0.679889I 8.59008 5.05445I
u = 0.588394 + 1.196870I
a = 2.15878 1.76754I
b = 0.28348 + 2.92630I
18.7937 + 11.3151I 1.47787 5.35681I
u = 0.588394 1.196870I
a = 2.15878 + 1.76754I
b = 0.28348 2.92630I
18.7937 11.3151I 1.47787 + 5.35681I
6
II. I
u
2
= h−u
10
2u
8
+ · · · + b 1, u
11
+ u
10
+ · · · + a + u, u
12
+ 3u
10
+
5u
8
+ 4u
6
+ 2u
4
+ u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
u
11
u
10
2u
9
2u
8
3u
7
3u
6
2u
5
u
4
u
3
u
u
10
+ 2u
8
+ 3u
6
+ u
5
+ 2u
4
+ u
3
+ u
2
+ u + 1
a
5
=
u
11
u
10
+ 2u
9
3u
8
+ 3u
7
4u
6
+ 2u
5
2u
4
+ u
3
+ u 1
u
11
2u
9
+ u
8
2u
7
+ 2u
6
+ 2u
4
+ u
3
a
11
=
2u
11
u
10
4u
9
2u
8
5u
7
3u
6
2u
5
u
4
u
u
11
+ u
10
+ 3u
9
+ 2u
8
+ 4u
7
+ 3u
6
+ 4u
5
+ 2u
4
+ 2u
3
+ u
2
+ 2u + 1
a
1
=
u
3
u
5
+ u
3
+ u
a
6
=
u
11
u
10
+ 2u
9
3u
8
+ 3u
7
4u
6
+ 2u
5
2u
4
+ 2u
3
+ u 1
u
11
2u
9
+ u
8
2u
7
+ 2u
6
+ 2u
4
u
a
9
=
u
8
+ u
6
+ u
4
+ 1
u
10
+ 2u
8
+ 3u
6
+ 2u
4
+ u
2
a
12
=
u
11
2u
9
2u
7
+ u
3
u
11
+ 3u
9
+ 4u
7
+ 3u
5
+ u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
10
12u
8
16u
6
8u
4
4
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
c
2
, c
7
, c
8
u
12
+ 3u
10
+ 5u
8
+ 4u
6
+ 2u
4
+ u
2
+ 1
c
3
u
12
u
10
+ 5u
8
+ 6u
4
3u
2
+ 1
c
4
, c
5
, c
6
c
9
, c
10
(u
2
+ 1)
6
c
11
(u + 1)
12
c
12
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
c
2
, c
7
, c
8
(y
6
+ 3y
5
+ 5y
4
+ 4y
3
+ 2y
2
+ y + 1)
2
c
3
(y
6
y
5
+ 5y
4
+ 6y
2
3y + 1)
2
c
4
, c
5
, c
6
c
9
, c
10
(y + 1)
12
c
11
(y 1)
12
c
12
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.295542 + 1.002190I
a = 0.48664 2.49244I
b = 1.92274 + 0.99741I
5.18047 + 0.92430I 5.71672 0.79423I
u = 0.295542 1.002190I
a = 0.48664 + 2.49244I
b = 1.92274 0.99741I
5.18047 0.92430I 5.71672 + 0.79423I
u = 0.295542 + 1.002190I
a = 0.883753 0.365919I
b = 0.593678 0.140919I
5.18047 0.92430I 5.71672 + 0.79423I
u = 0.295542 1.002190I
a = 0.883753 + 0.365919I
b = 0.593678 + 0.140919I
5.18047 + 0.92430I 5.71672 0.79423I
u = 0.664531 + 0.428243I
a = 1.116540 0.158471I
b = 0.37850 + 1.59457I
1.39926 0.92430I 1.71672 + 0.79423I
u = 0.664531 0.428243I
a = 1.116540 + 0.158471I
b = 0.37850 1.59457I
1.39926 + 0.92430I 1.71672 0.79423I
u = 0.664531 + 0.428243I
a = 0.719425 0.699888I
b = 0.212587 + 0.409813I
1.39926 + 0.92430I 1.71672 0.79423I
u = 0.664531 0.428243I
a = 0.719425 + 0.699888I
b = 0.212587 0.409813I
1.39926 0.92430I 1.71672 + 0.79423I
u = 0.558752 + 1.073950I
a = 2.11043 + 0.88125I
b = 0.71759 2.27409I
3.28987 + 5.69302I 2.00000 5.51057I
u = 0.558752 1.073950I
a = 2.11043 0.88125I
b = 0.71759 + 2.27409I
3.28987 5.69302I 2.00000 + 5.51057I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.558752 + 1.073950I
a = 0.644857 + 0.118748I
b = 0.399916 + 0.126193I
3.28987 5.69302I 2.00000 + 5.51057I
u = 0.558752 1.073950I
a = 0.644857 0.118748I
b = 0.399916 0.126193I
3.28987 + 5.69302I 2.00000 5.51057I
11
III. I
u
3
= h−u
4
a 2u
2
a + u
3
+ au + b a + u 1, u
3
a + 3u
3
+ · · · + 2a +
1, u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
a
u
4
a + 2u
2
a u
3
au + a u + 1
a
5
=
u
3
a + u
3
au + 2u
2
+ a + 2u + 3
u
4
a + u
3
a + u
4
+ 2u
2
a + au + 2u
2
+ a u
a
11
=
u
4
a + u
2
a u
3
au + 2a u + 1
u
4
a + u
4
+ 3u
2
a au + 2u
2
+ 2a + 2
a
1
=
u
3
u
4
u
3
u
2
1
a
6
=
u
4
a + 2u
2
a 3u
3
au 2u
2
3u 3
2u
4
a + u
4
+ 2u
2
a + 2u
3
au + 2a + 2u + 2
a
9
=
2u
3
u
2u
4
+ 2u
3
+ 2u
2
+ u + 2
a
12
=
2u
3
+ 1
2u
4
2u
3
2u
2
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u
2
4u 2
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
2
c
2
, c
7
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
3
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
4
, c
5
, c
6
c
9
, c
10
u
10
u
9
+ 8u
8
4u
7
+ 28u
6
6u
5
+ 53u
4
+ 5u
3
+ 50u
2
+ 12u + 17
c
8
(u
5
5u
4
+ 8u
3
3u
2
u 1)
2
c
11
u
10
+ 15u
9
+ ··· + 1556u + 289
c
12
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
c
2
, c
7
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
3
, c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
c
4
, c
5
, c
6
c
9
, c
10
y
10
+ 15y
9
+ ··· + 1556y + 289
c
8
(y
5
9y
4
+ 32y
3
35y
2
5y 1)
2
c
11
y
10
y
9
+ ··· 3940y + 83521
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.55867 1.51591I
b = 0.549371 0.042056I
3.61897 + 1.53058I 1.48489 4.43065I
u = 0.339110 + 0.822375I
a = 1.46526 0.97188I
b = 1.65698 + 0.38291I
3.61897 + 1.53058I 1.48489 4.43065I
u = 0.339110 0.822375I
a = 0.55867 + 1.51591I
b = 0.549371 + 0.042056I
3.61897 1.53058I 1.48489 + 4.43065I
u = 0.339110 0.822375I
a = 1.46526 + 0.97188I
b = 1.65698 0.38291I
3.61897 1.53058I 1.48489 + 4.43065I
u = 0.766826
a = 0.595741 + 0.538146I
b = 0.25856 + 1.76977I
5.69095 0.518860
u = 0.766826
a = 0.595741 0.538146I
b = 0.25856 1.76977I
5.69095 0.518860
u = 0.455697 + 1.200150I
a = 1.45542 1.61863I
b = 0.53813 + 1.89796I
9.16243 4.40083I 2.74431 + 3.49859I
u = 0.455697 + 1.200150I
a = 0.95775 + 2.38693I
b = 0.57321 2.51986I
9.16243 4.40083I 2.74431 + 3.49859I
u = 0.455697 1.200150I
a = 1.45542 + 1.61863I
b = 0.53813 1.89796I
9.16243 + 4.40083I 2.74431 3.49859I
u = 0.455697 1.200150I
a = 0.95775 2.38693I
b = 0.57321 + 2.51986I
9.16243 + 4.40083I 2.74431 3.49859I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
2
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
· (u
18
+ 9u
17
+ ··· + 3u + 4)
c
2
, c
7
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
(u
12
+ 3u
10
+ 5u
8
+ 4u
6
+ 2u
4
+ u
2
+ 1)
· (u
18
+ 3u
17
+ ··· + 5u + 2)
c
3
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
(u
12
u
10
+ 5u
8
+ 6u
4
3u
2
+ 1)
· (u
18
3u
17
+ ··· 123u + 34)
c
4
, c
5
, c
6
c
9
, c
10
(u
2
+ 1)
6
· (u
10
u
9
+ 8u
8
4u
7
+ 28u
6
6u
5
+ 53u
4
+ 5u
3
+ 50u
2
+ 12u + 17)
· (u
18
+ 17u
16
+ ··· + 6u
2
+ 1)
c
8
((u
5
5u
4
+ 8u
3
3u
2
u 1)
2
)(u
12
+ 3u
10
+ ··· + u
2
+ 1)
· (u
18
+ 15u
17
+ ··· + 1169u + 266)
c
11
((u + 1)
12
)(u
10
+ 15u
9
+ ··· + 1556u + 289)
· (u
18
+ 34u
17
+ ··· + 12u + 1)
c
12
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
· (u
18
+ u
17
+ ··· + 265u + 160)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
18
+ y
17
+ ··· + 191y + 16)
c
2
, c
7
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
(y
6
+ 3y
5
+ 5y
4
+ 4y
3
+ 2y
2
+ y + 1)
2
· (y
18
+ 9y
17
+ ··· + 3y + 4)
c
3
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
(y
6
y
5
+ 5y
4
+ 6y
2
3y + 1)
2
· (y
18
7y
17
+ ··· 3909y + 1156)
c
4
, c
5
, c
6
c
9
, c
10
((y + 1)
12
)(y
10
+ 15y
9
+ ··· + 1556y + 289)
· (y
18
+ 34y
17
+ ··· + 12y + 1)
c
8
(y
5
9y
4
+ 32y
3
35y
2
5y 1)
2
· (y
6
+ 3y
5
+ 5y
4
+ 4y
3
+ 2y
2
+ y + 1)
2
· (y
18
3y
17
+ ··· + 155491y + 70756)
c
11
((y 1)
12
)(y
10
y
9
+ ··· 3940y + 83521)
· (y
18
126y
17
+ ··· + 16y + 1)
c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
18
+ 85y
17
+ ··· 550545y + 25600)
17