12n
0552
(K12n
0552
)
A knot diagram
1
Linearized knot diagam
3 7 8 11 1 12 2 5 12 5 7 9
Solving Sequence
2,8
7 3
4,11
5 9 12 1 6 10
c
7
c
2
c
3
c
4
c
8
c
11
c
1
c
6
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h5u
20
+ 56u
19
+ ··· + 4b 116, 9u
20
+ 75u
19
+ ··· + 16a + 72, u
21
+ 11u
20
+ ··· 80u 16i
I
u
2
= h−u
16
+ u
15
+ ··· + b + 5, 3u
16
9u
15
+ ··· + 2a 4, u
17
+ u
16
+ ··· + 2u + 2i
* 2 irreducible components of dim
C
= 0, with total 38 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h5u
20
+ 56u
19
+ · · · + 4b 116, 9u
20
+ 75u
19
+ · · · + 16a + 72, u
21
+
11u
20
+ · · · 80u 16i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
11
=
0.562500u
20
4.68750u
19
+ ··· 16.7500u 4.50000
5
4
u
20
14u
19
+ ··· +
241
2
u + 29
a
5
=
3
16
u
20
+
31
16
u
19
+ ···
85
8
u
2
7
2
u
5
8
u
20
49
8
u
19
+ ··· + 29u + 7
a
9
=
3
8
u
20
+ 3u
19
+ ··· +
159
4
u +
23
2
11
8
u
20
+
121
8
u
19
+ ···
275
2
u 34
a
12
=
0.562500u
20
4.43750u
19
+ ··· 7.25000u + 0.500000
7
4
u
20
39
2
u
19
+ ··· +
281
2
u + 33
a
1
=
u
3
u
5
+ u
3
+ u
a
6
=
3
16
u
20
+
31
16
u
19
+ ···
63
2
u 8
9
8
u
20
+
85
8
u
19
+ ··· 42u 11
a
10
=
11
16
u
20
85
16
u
19
+ ···
213
4
u 14
5
2
u
20
27u
19
+ ··· + 225u + 55
(ii) Obstruction class = 1
(iii) Cusp Shapes =
21
2
u
20
+
225
2
u
19
+
1289
2
u
18
+ 2524u
17
+
14905
2
u
16
+
34975
2
u
15
+
67375
2
u
14
+ 54537u
13
+
151085
2
u
12
+
181727
2
u
11
+
191943
2
u
10
+
179037
2
u
9
+ 73543u
8
+
52381u
7
+ 31237u
6
+
28777
2
u
5
+ 3949u
4
589u
3
1353u
2
726u 166
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
21
+ 9u
20
+ ··· + 896u 256
c
2
, c
7
u
21
+ 11u
20
+ ··· 80u 16
c
3
u
21
11u
20
+ ··· 8656u 2512
c
4
, c
6
, c
10
c
11
u
21
+ 27u
19
+ ··· + u 1
c
5
, c
8
u
21
+ 2u
20
+ ··· + 28u
2
1
c
9
, c
12
u
21
+ 4u
20
+ ··· 5u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
21
+ 5y
20
+ ··· + 2367488y 65536
c
2
, c
7
y
21
+ 9y
20
+ ··· + 896y 256
c
3
y
21
107y
20
+ ··· 395058816y 6310144
c
4
, c
6
, c
10
c
11
y
21
+ 54y
20
+ ··· 9y 1
c
5
, c
8
y
21
46y
20
+ ··· + 56y 1
c
9
, c
12
y
21
+ 2y
20
+ ··· y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.472469 + 0.828155I
a = 0.488123 0.166277I
b = 0.188036 + 0.222130I
0.20225 + 1.98003I 2.28798 3.26174I
u = 0.472469 0.828155I
a = 0.488123 + 0.166277I
b = 0.188036 0.222130I
0.20225 1.98003I 2.28798 + 3.26174I
u = 0.771804 + 0.719603I
a = 1.319550 0.250548I
b = 0.47482 + 1.81639I
3.69054 + 0.94413I 3.84004 + 4.58061I
u = 0.771804 0.719603I
a = 1.319550 + 0.250548I
b = 0.47482 1.81639I
3.69054 0.94413I 3.84004 4.58061I
u = 0.036593 + 0.936717I
a = 0.078038 0.908614I
b = 0.472625 + 0.388644I
1.84690 + 1.45685I 2.25321 5.17450I
u = 0.036593 0.936717I
a = 0.078038 + 0.908614I
b = 0.472625 0.388644I
1.84690 1.45685I 2.25321 + 5.17450I
u = 0.710005 + 0.988627I
a = 1.54173 + 0.94297I
b = 0.24228 2.12126I
2.87016 6.56510I 1.92301 + 3.76598I
u = 0.710005 0.988627I
a = 1.54173 0.94297I
b = 0.24228 + 2.12126I
2.87016 + 6.56510I 1.92301 3.76598I
u = 0.769484 + 0.051011I
a = 0.141173 + 0.103619I
b = 0.347832 + 0.454102I
2.61653 + 1.28499I 0.15587 3.07961I
u = 0.769484 0.051011I
a = 0.141173 0.103619I
b = 0.347832 0.454102I
2.61653 1.28499I 0.15587 + 3.07961I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.435565 + 1.195780I
a = 0.004901 0.689508I
b = 0.468235 + 0.470276I
6.21856 2.94897I 0.504582 + 0.049416I
u = 0.435565 1.195780I
a = 0.004901 + 0.689508I
b = 0.468235 0.470276I
6.21856 + 2.94897I 0.504582 0.049416I
u = 0.472104 + 1.199130I
a = 0.644752 + 0.145048I
b = 0.345148 0.550837I
5.96069 5.81849I 5.01229 + 8.57270I
u = 0.472104 1.199130I
a = 0.644752 0.145048I
b = 0.345148 + 0.550837I
5.96069 + 5.81849I 5.01229 8.57270I
u = 1.49061 + 0.03728I
a = 0.034735 + 0.714146I
b = 0.00483 2.16677I
15.8145 3.8268I 1.96641 + 1.96096I
u = 1.49061 0.03728I
a = 0.034735 0.714146I
b = 0.00483 + 2.16677I
15.8145 + 3.8268I 1.96641 1.96096I
u = 0.423148
a = 1.20478
b = 0.358221
0.913214 11.0410
u = 0.76209 + 1.50016I
a = 1.21983 + 1.44613I
b = 0.15370 2.09019I
19.0348 11.6307I 0. + 4.72402I
u = 0.76209 1.50016I
a = 1.21983 1.44613I
b = 0.15370 + 2.09019I
19.0348 + 11.6307I 0. 4.72402I
u = 0.80898 + 1.48155I
a = 1.21294 1.39486I
b = 0.18302 + 2.08076I
19.3623 4.1247I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.80898 1.48155I
a = 1.21294 + 1.39486I
b = 0.18302 2.08076I
19.3623 + 4.1247I 0
7
II.
I
u
2
= h−u
16
+u
15
+· · ·+b+5, 3u
16
9u
15
+· · ·+2a4, u
17
+u
16
+· · ·+2u+2i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
11
=
3
2
u
16
+
9
2
u
15
+ ··· +
19
2
u + 2
u
16
u
15
+ ··· 8u 5
a
5
=
1
2
u
16
3
2
u
15
+ ··· +
3
2
u 1
u
15
+ u
14
+ ··· + 2u + 1
a
9
=
5
2
u
16
+
11
2
u
15
+ ··· +
21
2
u + 8
u
16
u
15
+ ··· 4u 5
a
12
=
5
2
u
16
+
13
2
u
15
+ ··· +
21
2
u + 3
3u
15
5u
14
+ ··· 12u 7
a
1
=
u
3
u
5
+ u
3
+ u
a
6
=
3
2
u
16
5
2
u
15
+ ···
1
2
u 1
u
16
+ 2u
15
+ ··· + 3u + 1
a
10
=
5u
16
+ 9u
15
+ ··· + 20u + 6
u
16
3u
15
+ ··· 13u 10
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
16
2u
15
3u
14
13u
13
16u
12
34u
11
48u
10
74u
9
85u
8
100u
7
105u
6
105u
5
96u
4
75u
3
56u
2
30u 16
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
9u
16
+ ··· 32u + 4
c
2
u
17
u
16
+ ··· + 2u 2
c
3
u
17
+ u
16
+ ··· + 6u 2
c
4
, c
11
u
17
+ u
16
+ ··· u 1
c
5
, c
8
u
17
u
16
+ ··· + 2u + 1
c
6
, c
10
u
17
u
16
+ ··· u + 1
c
7
u
17
+ u
16
+ ··· + 2u + 2
c
9
u
17
+ 7u
16
+ ··· + 5u + 1
c
12
u
17
7u
16
+ ··· + 5u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 5y
16
+ ··· 8y 16
c
2
, c
7
y
17
+ 9y
16
+ ··· 32y 4
c
3
y
17
+ y
16
+ ··· 24y 4
c
4
, c
6
, c
10
c
11
y
17
+ 5y
16
+ ··· + 9y 1
c
5
, c
8
y
17
3y
16
+ ··· 6y 1
c
9
, c
12
y
17
+ y
16
+ ··· + y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.281134 + 0.946456I
a = 1.24113 1.45623I
b = 0.36623 + 1.54673I
0.52851 1.83462I 0.29796 + 3.58847I
u = 0.281134 0.946456I
a = 1.24113 + 1.45623I
b = 0.36623 1.54673I
0.52851 + 1.83462I 0.29796 3.58847I
u = 0.969290
a = 0.776451
b = 0.382171
1.53916 3.39910
u = 0.728050 + 0.766886I
a = 1.70484 0.42800I
b = 0.50880 + 2.22693I
3.93432 1.40561I 11.9334 + 8.1612I
u = 0.728050 0.766886I
a = 1.70484 + 0.42800I
b = 0.50880 2.22693I
3.93432 + 1.40561I 11.9334 8.1612I
u = 0.224277 + 0.858763I
a = 1.56206 + 0.82631I
b = 0.127397 1.349340I
0.93314 + 4.06440I 0.37552 3.75729I
u = 0.224277 0.858763I
a = 1.56206 0.82631I
b = 0.127397 + 1.349340I
0.93314 4.06440I 0.37552 + 3.75729I
u = 0.737443 + 0.842981I
a = 1.105660 0.250731I
b = 0.533874 + 0.383844I
3.11346 2.81675I 2.33737 + 2.85701I
u = 0.737443 0.842981I
a = 1.105660 + 0.250731I
b = 0.533874 0.383844I
3.11346 + 2.81675I 2.33737 2.85701I
u = 0.382757 + 1.099770I
a = 0.682974 0.515143I
b = 0.561927 + 0.046321I
7.10806 3.64002I 7.66149 + 4.40489I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.382757 1.099770I
a = 0.682974 + 0.515143I
b = 0.561927 0.046321I
7.10806 + 3.64002I 7.66149 4.40489I
u = 0.676951 + 0.964759I
a = 1.78717 + 1.20472I
b = 0.10658 2.49443I
3.30875 + 6.79114I 13.3760 11.7173I
u = 0.676951 0.964759I
a = 1.78717 1.20472I
b = 0.10658 + 2.49443I
3.30875 6.79114I 13.3760 + 11.7173I
u = 0.306582 + 0.677700I
a = 1.79619 + 0.12408I
b = 0.674089 0.611126I
5.45769 + 0.67304I 4.27931 3.12764I
u = 0.306582 0.677700I
a = 1.79619 0.12408I
b = 0.674089 + 0.611126I
5.45769 0.67304I 4.27931 + 3.12764I
u = 0.498985 + 1.260640I
a = 0.388541 0.408565I
b = 0.102456 + 0.376600I
5.41541 5.16567I 1.42099 + 1.44225I
u = 0.498985 1.260640I
a = 0.388541 + 0.408565I
b = 0.102456 0.376600I
5.41541 + 5.16567I 1.42099 1.44225I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
9u
16
+ ··· 32u + 4)(u
21
+ 9u
20
+ ··· + 896u 256)
c
2
(u
17
u
16
+ ··· + 2u 2)(u
21
+ 11u
20
+ ··· 80u 16)
c
3
(u
17
+ u
16
+ ··· + 6u 2)(u
21
11u
20
+ ··· 8656u 2512)
c
4
, c
11
(u
17
+ u
16
+ ··· u 1)(u
21
+ 27u
19
+ ··· + u 1)
c
5
, c
8
(u
17
u
16
+ ··· + 2u + 1)(u
21
+ 2u
20
+ ··· + 28u
2
1)
c
6
, c
10
(u
17
u
16
+ ··· u + 1)(u
21
+ 27u
19
+ ··· + u 1)
c
7
(u
17
+ u
16
+ ··· + 2u + 2)(u
21
+ 11u
20
+ ··· 80u 16)
c
9
(u
17
+ 7u
16
+ ··· + 5u + 1)(u
21
+ 4u
20
+ ··· 5u 1)
c
12
(u
17
7u
16
+ ··· + 5u 1)(u
21
+ 4u
20
+ ··· 5u 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
17
+ 5y
16
+ ··· 8y 16)(y
21
+ 5y
20
+ ··· + 2367488y 65536)
c
2
, c
7
(y
17
+ 9y
16
+ ··· 32y 4)(y
21
+ 9y
20
+ ··· + 896y 256)
c
3
(y
17
+ y
16
+ ··· 24y 4)
· (y
21
107y
20
+ ··· 395058816y 6310144)
c
4
, c
6
, c
10
c
11
(y
17
+ 5y
16
+ ··· + 9y 1)(y
21
+ 54y
20
+ ··· 9y 1)
c
5
, c
8
(y
17
3y
16
+ ··· 6y 1)(y
21
46y
20
+ ··· + 56y 1)
c
9
, c
12
(y
17
+ y
16
+ ··· + y 1)(y
21
+ 2y
20
+ ··· y 1)
14