I
u
11
= h−u
3
+ d − u + 1, −u
3
+ u
2
+ c − 2u + 2, b + 1, u
3
+ a + 2u − 1, u
4
− u
3
+ 2u
2
− 2u + 1i
I
u
12
= hu
3
+ d + 2u − 1, −u
3
+ u
2
+ c − 2u + 2, b + 1, −u
3
+ a − 2u, u
4
− u
3
+ 2u
2
− 2u + 1i
I
u
13
= hau + d, c − u − 1, b + 1, a
2
− a + u + 1, u
2
+ u + 1i
I
u
14
= hd
2
+ du − u, c − u − 1, b + 2u, a − 2u − 1, u
2
+ u + 1i
I
u
15
= hd, c − u, b + u + 1, a − u, u
2
+ 1i
I
u
16
= hd + u, c − u + 1, b + 1, a − 1, u
2
+ 1i
I
u
17
= hd + u, c − u + 1, b + u + 1, a − u, u
2
+ 1i
I
u
18
= hd + u, ca − au + u + 1, b + a + 1, u
2
+ 1i
I
v
1
= ha, d + v, −av + c + v + 1, b + 1, v
2
+ 1i
* 18 irreducible components of dim
C
= 0, with total 87 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2