11a
15
(K11a
15
)
A knot diagram
1
Linearized knot diagam
4 1 7 2 10 3 5 11 6 8 9
Solving Sequence
1,4
2 3
5,9
11 8 7 6 10
c
1
c
2
c
4
c
11
c
8
c
7
c
6
c
10
c
3
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.04308 × 10
20
u
63
7.59004 × 10
20
u
62
+ ··· + 3.96371 × 10
19
b + 2.83284 × 10
20
,
7.35239 × 10
20
u
63
3.87644 × 10
21
u
62
+ ··· + 7.92742 × 10
19
a + 5.92603 × 10
20
,
u
64
+ 7u
63
+ ··· 13u 1i
I
u
2
= hb 1, u
4
+ u
3
+ a u, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
u
3
= ha
3
+ b + 1, a
5
+ a
4
+ a
3
+ 2a
2
+ a + 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.04 × 10
20
u
63
7.59 × 10
20
u
62
+ · · · + 3.96 × 10
19
b + 2.83 ×
10
20
, 7.35 × 10
20
u
63
3.88 × 10
21
u
62
+ · · · + 7.93 × 10
19
a + 5.93 ×
10
20
, u
64
+ 7u
63
+ · · · 13u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
9
=
9.27463u
63
+ 48.8992u
62
+ ··· 37.0886u 7.47536
2.63156u
63
+ 19.1488u
62
+ ··· 70.8971u 7.14695
a
11
=
5.65805u
63
29.1771u
62
+ ··· + 32.6675u + 8.99552
2.08876u
63
+ 9.72032u
62
+ ··· + 23.9118u + 3.59970
a
8
=
4.89840u
63
+ 26.5797u
62
+ ··· + 14.3202u + 4.18773
4.18435u
63
+ 30.2617u
62
+ ··· 83.2794u 6.53051
a
7
=
2.16346u
63
+ 8.50706u
62
+ ··· + 60.6164u + 7.93271
7.04006u
63
+ 48.8776u
62
+ ··· 118.375u 9.20353
a
6
=
1.17863u
63
5.74060u
62
+ ··· + 14.7171u + 3.28124
3.74498u
63
+ 23.4799u
62
+ ··· 36.4181u 2.38859
a
10
=
18.2987u
63
107.518u
62
+ ··· + 156.183u + 15.9335
6.10504u
63
50.2563u
62
+ ··· + 221.478u + 19.9762
a
10
=
18.2987u
63
107.518u
62
+ ··· + 156.183u + 15.9335
6.10504u
63
50.2563u
62
+ ··· + 221.478u + 19.9762
(ii) Obstruction class = 1
(iii) Cusp Shapes =
154506605926350535629
9909273683398550218
u
63
+
2873546855263844556609
39637094733594200872
u
62
+ ··· +
3763600436801685598541
39637094733594200872
u +
551008705357518405765
39637094733594200872
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
64
7u
63
+ ··· + 13u 1
c
2
u
64
+ 29u
63
+ ··· + 37u + 1
c
3
, c
6
u
64
2u
63
+ ··· 128u + 32
c
5
, c
9
u
64
+ 2u
63
+ ··· + 128u 64
c
7
u
64
+ 3u
63
+ ··· 2001u 1609
c
8
, c
10
, c
11
u
64
+ 8u
63
+ ··· + 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
64
29y
63
+ ··· 37y + 1
c
2
y
64
+ 19y
63
+ ··· 3653y + 1
c
3
, c
6
y
64
36y
63
+ ··· 20992y + 1024
c
5
, c
9
y
64
+ 42y
63
+ ··· + 24576y + 4096
c
7
y
64
37y
63
+ ··· + 70611765y + 2588881
c
8
, c
10
, c
11
y
64
64y
63
+ ··· + 20y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.851015 + 0.553122I
a = 3.09153 + 1.65651I
b = 1.403090 + 0.050018I
3.26372 2.22000I 0
u = 0.851015 0.553122I
a = 3.09153 1.65651I
b = 1.403090 0.050018I
3.26372 + 2.22000I 0
u = 0.468773 + 0.906872I
a = 0.474383 0.050538I
b = 0.493081 + 0.851380I
5.97499 4.90532I 0
u = 0.468773 0.906872I
a = 0.474383 + 0.050538I
b = 0.493081 0.851380I
5.97499 + 4.90532I 0
u = 0.957619 + 0.369938I
a = 1.152950 0.390386I
b = 0.170773 0.218203I
1.81999 1.29187I 0
u = 0.957619 0.369938I
a = 1.152950 + 0.390386I
b = 0.170773 + 0.218203I
1.81999 + 1.29187I 0
u = 0.554715 + 0.872769I
a = 0.811122 0.142635I
b = 0.681254 0.756164I
6.56660 + 0.51971I 0
u = 0.554715 0.872769I
a = 0.811122 + 0.142635I
b = 0.681254 + 0.756164I
6.56660 0.51971I 0
u = 0.513391 + 0.900925I
a = 2.49041 + 0.02335I
b = 1.46519 + 0.07102I
8.42241 2.26761I 0
u = 0.513391 0.900925I
a = 2.49041 0.02335I
b = 1.46519 0.07102I
8.42241 + 2.26761I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.798906 + 0.537570I
a = 0.556103 + 0.446579I
b = 1.208400 + 0.288039I
2.82835 + 0.98333I 5.99923 3.36293I
u = 0.798906 0.537570I
a = 0.556103 0.446579I
b = 1.208400 0.288039I
2.82835 0.98333I 5.99923 + 3.36293I
u = 0.684326 + 0.663082I
a = 2.47318 0.47845I
b = 1.52333 + 0.22252I
8.25062 + 3.46517I 6.83292 + 0.I
u = 0.684326 0.663082I
a = 2.47318 + 0.47845I
b = 1.52333 0.22252I
8.25062 3.46517I 6.83292 + 0.I
u = 0.892560 + 0.567255I
a = 0.55087 1.60438I
b = 1.080850 0.394220I
2.50515 + 3.47504I 0
u = 0.892560 0.567255I
a = 0.55087 + 1.60438I
b = 1.080850 + 0.394220I
2.50515 3.47504I 0
u = 0.426816 + 0.971335I
a = 1.81629 0.41191I
b = 1.53562 0.30377I
12.5775 9.1285I 0
u = 0.426816 0.971335I
a = 1.81629 + 0.41191I
b = 1.53562 + 0.30377I
12.5775 + 9.1285I 0
u = 0.773933 + 0.525049I
a = 0.224362 + 0.775639I
b = 0.586485 0.667589I
1.392230 + 0.239734I 4.64422 + 0.I
u = 0.773933 0.525049I
a = 0.224362 0.775639I
b = 0.586485 + 0.667589I
1.392230 0.239734I 4.64422 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.926326 + 0.128275I
a = 0.70787 + 3.19878I
b = 0.967057 + 0.104240I
0.047902 0.498911I 2.1353 14.8724I
u = 0.926326 0.128275I
a = 0.70787 3.19878I
b = 0.967057 0.104240I
0.047902 + 0.498911I 2.1353 + 14.8724I
u = 0.912042 + 0.554130I
a = 1.43049 + 0.51144I
b = 0.469774 + 0.774809I
0.93426 4.62344I 0
u = 0.912042 0.554130I
a = 1.43049 0.51144I
b = 0.469774 0.774809I
0.93426 + 4.62344I 0
u = 0.965340 + 0.501059I
a = 0.068579 0.710395I
b = 0.040956 0.606385I
1.01229 + 4.28688I 0
u = 0.965340 0.501059I
a = 0.068579 + 0.710395I
b = 0.040956 + 0.606385I
1.01229 4.28688I 0
u = 0.796135 + 0.411444I
a = 0.560743 + 0.887793I
b = 0.166184 + 0.699479I
0.262566 0.498963I 2.74689 0.51399I
u = 0.796135 0.411444I
a = 0.560743 0.887793I
b = 0.166184 0.699479I
0.262566 + 0.498963I 2.74689 + 0.51399I
u = 1.090500 + 0.201214I
a = 0.486035 + 0.573321I
b = 0.004735 + 0.287127I
2.28356 0.63564I 0
u = 1.090500 0.201214I
a = 0.486035 0.573321I
b = 0.004735 0.287127I
2.28356 + 0.63564I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.457914 + 0.741659I
a = 0.755401 + 0.029158I
b = 0.358616 0.179646I
2.38826 1.27360I 1.00000 + 1.24138I
u = 0.457914 0.741659I
a = 0.755401 0.029158I
b = 0.358616 + 0.179646I
2.38826 + 1.27360I 1.00000 1.24138I
u = 0.656679 + 0.923424I
a = 2.02373 + 0.73995I
b = 1.58190 + 0.20504I
14.1398 + 3.9767I 0
u = 0.656679 0.923424I
a = 2.02373 0.73995I
b = 1.58190 0.20504I
14.1398 3.9767I 0
u = 0.968165 + 0.622296I
a = 2.05377 2.02763I
b = 1.51383 0.27793I
7.38800 8.47452I 0
u = 0.968165 0.622296I
a = 2.05377 + 2.02763I
b = 1.51383 + 0.27793I
7.38800 + 8.47452I 0
u = 0.814156 + 0.225854I
a = 0.488791 0.388735I
b = 1.388550 0.248297I
4.72329 3.85111I 9.95444 1.38614I
u = 0.814156 0.225854I
a = 0.488791 + 0.388735I
b = 1.388550 + 0.248297I
4.72329 + 3.85111I 9.95444 + 1.38614I
u = 1.102490 + 0.469558I
a = 0.183729 + 1.038150I
b = 1.304930 + 0.108429I
2.70253 + 6.62281I 0
u = 1.102490 0.469558I
a = 0.183729 1.038150I
b = 1.304930 0.108429I
2.70253 6.62281I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.078950 + 0.604214I
a = 0.829008 + 0.571399I
b = 0.382661 + 0.323178I
0.55603 + 6.40064I 0
u = 1.078950 0.604214I
a = 0.829008 0.571399I
b = 0.382661 0.323178I
0.55603 6.40064I 0
u = 1.190520 + 0.380856I
a = 0.168620 1.294890I
b = 1.380510 0.021197I
2.11698 1.35062I 0
u = 1.190520 0.380856I
a = 0.168620 + 1.294890I
b = 1.380510 + 0.021197I
2.11698 + 1.35062I 0
u = 1.27051
a = 0.853993
b = 1.36931
1.81885 0
u = 1.269650 + 0.066401I
a = 0.275750 1.025770I
b = 0.479663 0.698680I
0.29295 + 2.27028I 0
u = 1.269650 0.066401I
a = 0.275750 + 1.025770I
b = 0.479663 + 0.698680I
0.29295 2.27028I 0
u = 1.078140 + 0.686845I
a = 0.219031 0.278038I
b = 0.763986 + 0.723012I
4.97472 + 5.25194I 0
u = 1.078140 0.686845I
a = 0.219031 + 0.278038I
b = 0.763986 0.723012I
4.97472 5.25194I 0
u = 1.037310 + 0.770242I
a = 1.42167 + 0.83458I
b = 1.59003 0.15683I
12.97910 + 2.20987I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.037310 0.770242I
a = 1.42167 0.83458I
b = 1.59003 + 0.15683I
12.97910 2.20987I 0
u = 0.016268 + 0.696606I
a = 1.34669 + 0.52337I
b = 1.41254 0.07728I
5.65313 2.65309I 8.42225 + 3.34216I
u = 0.016268 0.696606I
a = 1.34669 0.52337I
b = 1.41254 + 0.07728I
5.65313 + 2.65309I 8.42225 3.34216I
u = 1.109430 + 0.686273I
a = 1.83349 1.64073I
b = 1.46331 0.12160I
6.60913 + 8.11292I 0
u = 1.109430 0.686273I
a = 1.83349 + 1.64073I
b = 1.46331 + 0.12160I
6.60913 8.11292I 0
u = 1.131050 + 0.671760I
a = 1.043840 0.815468I
b = 0.438312 0.882770I
3.96365 + 10.71220I 0
u = 1.131050 0.671760I
a = 1.043840 + 0.815468I
b = 0.438312 + 0.882770I
3.96365 10.71220I 0
u = 1.172420 + 0.678120I
a = 1.26144 + 1.95035I
b = 1.51825 + 0.32917I
10.2926 + 15.1288I 0
u = 1.172420 0.678120I
a = 1.26144 1.95035I
b = 1.51825 0.32917I
10.2926 15.1288I 0
u = 1.350730 + 0.109045I
a = 0.034825 + 0.580788I
b = 1.50631 + 0.25249I
6.16621 + 5.77451I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.350730 0.109045I
a = 0.034825 0.580788I
b = 1.50631 0.25249I
6.16621 5.77451I 0
u = 0.004404 + 0.249946I
a = 1.65033 0.59592I
b = 0.278953 + 0.383140I
0.309124 1.130770I 3.85993 + 6.08046I
u = 0.004404 0.249946I
a = 1.65033 + 0.59592I
b = 0.278953 0.383140I
0.309124 + 1.130770I 3.85993 6.08046I
u = 0.133522
a = 5.10635
b = 1.14767
2.19568 3.71440
11
II. I
u
2
= hb 1, u
4
+ u
3
+ a u, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
9
=
u
4
u
3
+ u
1
a
11
=
u
4
u
3
+ u + 1
1
a
8
=
1
0
a
7
=
u
4
+ u
2
1
u
5
+ u
4
2u
3
u
2
+ u + 1
a
6
=
u
u
3
+ u
a
10
=
u
4
u
3
+ u
1
a
10
=
u
4
u
3
+ u
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
4
+ 2u
3
5u
2
6u + 5
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
6
+ u
5
u
4
2u
3
+ u + 1
c
2
u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1
c
3
, c
4
u
6
u
5
u
4
+ 2u
3
u + 1
c
5
, c
9
u
6
c
7
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
8
(u + 1)
6
c
10
, c
11
(u 1)
6
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
2
, c
7
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
c
5
, c
9
y
6
c
8
, c
10
, c
11
(y 1)
6
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.23185 1.65564I
b = 1.00000
0.245672 0.924305I 1.66012 + 2.42665I
u = 1.002190 0.295542I
a = 0.23185 + 1.65564I
b = 1.00000
0.245672 + 0.924305I 1.66012 2.42665I
u = 0.428243 + 0.664531I
a = 0.659772 + 0.298454I
b = 1.00000
3.53554 0.92430I 8.55174 + 0.47256I
u = 0.428243 0.664531I
a = 0.659772 0.298454I
b = 1.00000
3.53554 + 0.92430I 8.55174 0.47256I
u = 1.073950 + 0.558752I
a = 0.108378 + 0.818891I
b = 1.00000
1.64493 + 5.69302I 3.10838 3.92918I
u = 1.073950 0.558752I
a = 0.108378 0.818891I
b = 1.00000
1.64493 5.69302I 3.10838 + 3.92918I
15
III. I
u
3
= ha
3
+ b + 1, a
5
+ a
4
+ a
3
+ 2a
2
+ a + 1, u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
1
a
2
=
1
1
a
3
=
0
1
a
5
=
1
0
a
9
=
a
a
3
1
a
11
=
a
4
a + 1
a
3
+ a
2
+ 2
a
8
=
a
4
a + 1
a
4
a + 1
a
7
=
0
a
4
a + 1
a
6
=
0
a
4
a + 1
a
10
=
a
a
4
+ a
3
+ a
2
+ 2a + 1
a
10
=
a
a
4
+ a
3
+ a
2
+ 2a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5a
4
+ 5a
3
+ 7a + 2
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
c
2
, c
4
(u + 1)
5
c
3
, c
6
u
5
c
5
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
7
u
5
3u
4
+ 4u
3
u
2
u + 1
c
8
u
5
u
4
2u
3
+ u
2
+ u + 1
c
9
u
5
u
4
+ 2u
3
u
2
+ u 1
c
10
, c
11
u
5
+ u
4
2u
3
u
2
+ u 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
6
y
5
c
5
, c
9
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
7
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
8
, c
10
, c
11
y
5
5y
4
+ 8y
3
3y
2
y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.428550 + 1.039280I
b = 0.309916 + 0.549911I
1.31583 + 1.53058I 1.49901 3.45976I
u = 1.00000
a = 0.428550 1.039280I
b = 0.309916 0.549911I
1.31583 1.53058I 1.49901 + 3.45976I
u = 1.00000
a = 0.276511 + 0.728237I
b = 1.41878 + 0.21917I
4.22763 4.40083I 2.37737 + 5.82971I
u = 1.00000
a = 0.276511 0.728237I
b = 1.41878 0.21917I
4.22763 + 4.40083I 2.37737 5.82971I
u = 1.00000
a = 1.30408
b = 1.21774
0.756147 3.75670
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
6
+ u
5
+ ··· + u + 1)(u
64
7u
63
+ ··· + 13u 1)
c
2
(u + 1)
5
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
· (u
64
+ 29u
63
+ ··· + 37u + 1)
c
3
u
5
(u
6
u
5
+ ··· u + 1)(u
64
2u
63
+ ··· 128u + 32)
c
4
((u + 1)
5
)(u
6
u
5
+ ··· u + 1)(u
64
7u
63
+ ··· + 13u 1)
c
5
u
6
(u
5
+ u
4
+ ··· + u + 1)(u
64
+ 2u
63
+ ··· + 128u 64)
c
6
u
5
(u
6
+ u
5
+ ··· + u + 1)(u
64
2u
63
+ ··· 128u + 32)
c
7
(u
5
3u
4
+ 4u
3
u
2
u + 1)(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
64
+ 3u
63
+ ··· 2001u 1609)
c
8
((u + 1)
6
)(u
5
u
4
+ ··· + u + 1)(u
64
+ 8u
63
+ ··· + 4u + 1)
c
9
u
6
(u
5
u
4
+ ··· + u 1)(u
64
+ 2u
63
+ ··· + 128u 64)
c
10
, c
11
((u 1)
6
)(u
5
+ u
4
+ ··· + u 1)(u
64
+ 8u
63
+ ··· + 4u + 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y 1)
5
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
64
29y
63
+ ··· 37y + 1)
c
2
((y 1)
5
)(y
6
+ y
5
+ ··· + 3y + 1)(y
64
+ 19y
63
+ ··· 3653y + 1)
c
3
, c
6
y
5
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
64
36y
63
+ ··· 20992y + 1024)
c
5
, c
9
y
6
(y
5
+ 3y
4
+ ··· y 1)(y
64
+ 42y
63
+ ··· + 24576y + 4096)
c
7
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
64
37y
63
+ ··· + 70611765y + 2588881)
c
8
, c
10
, c
11
((y 1)
6
)(y
5
5y
4
+ ··· y 1)(y
64
64y
63
+ ··· + 20y + 1)
21