12n
0564
(K12n
0564
)
A knot diagram
1
Linearized knot diagam
3 6 8 12 11 2 4 3 6 5 10 9
Solving Sequence
5,11 3,6
2 1 10 12 4 9 8 7
c
5
c
2
c
1
c
10
c
11
c
4
c
9
c
8
c
7
c
3
, c
6
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
16
3u
15
+ ··· + b + 3, 3u
16
+ 7u
15
+ ··· + 2a 7, u
17
+ 3u
16
+ ··· 5u 2i
I
u
2
= hu
5
a + u
5
2u
3
a + u
2
a u
3
+ 2au + b + u + 1, 2u
4
a + 2u
5
u
3
a u
4
2u
2
a 2u
3
+ a
2
+ 2au + u
2
u,
u
6
u
5
u
4
+ 2u
3
u + 1i
I
u
3
= hu
6
2u
4
+ u
3
+ u
2
+ b u + 1, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ u
3
+ u
2
+ a + u 2, u
10
3u
8
+ 4u
6
u
4
u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
16
3u
15
+· · ·+b+3, 3u
16
+7u
15
+· · ·+2a7, u
17
+3u
16
+· · ·5u2i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
3
2
u
16
7
2
u
15
+ ··· +
11
2
u +
7
2
u
16
+ 3u
15
+ ··· 5u 3
a
6
=
1
u
2
a
2
=
5
2
u
16
11
2
u
15
+ ··· +
17
2
u +
9
2
2u
16
+ 5u
15
+ ··· 8u 5
a
1
=
u
11
2u
9
+ 2u
7
+ u
3
u
13
+ 3u
11
5u
9
+ 4u
7
2u
5
u
3
+ u
a
10
=
u
u
a
12
=
u
3
u
3
+ u
a
4
=
u
6
u
4
+ 1
u
6
+ 2u
4
u
2
a
9
=
u
3
u
5
u
3
+ u
a
8
=
1
2
u
16
+
3
2
u
15
+ ···
5
2
u
3
2
u
16
+ 2u
15
+ ··· 2u 1
a
7
=
1
2
u
16
1
2
u
15
+ ··· +
1
2
u
1
2
u
16
+ 2u
15
+ ··· 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
16
4u
15
+ 6u
14
+ 22u
13
+ 2u
12
44u
11
38u
10
+ 30u
9
+
64u
8
+ 26u
7
36u
6
48u
5
16u
4
+ 18u
3
+ 12u
2
+ 8u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 30u
16
+ ··· 8u 1
c
2
, c
3
, c
6
c
7
, c
8
u
17
+ 15u
15
+ ··· + 2u 1
c
4
, c
9
u
17
+ 9u
16
+ ··· 77u 26
c
5
, c
10
u
17
+ 3u
16
+ ··· 5u 2
c
11
u
17
9u
16
+ ··· + 5u 4
c
12
u
17
+ u
16
+ ··· + 953u 416
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
98y
16
+ ··· + 64y 1
c
2
, c
3
, c
6
c
7
, c
8
y
17
+ 30y
16
+ ··· 8y 1
c
4
, c
9
y
17
+ 11y
16
+ ··· + 3589y 676
c
5
, c
10
y
17
9y
16
+ ··· + 5y 4
c
11
y
17
y
16
+ ··· + 193y 16
c
12
y
17
+ 83y
16
+ ··· + 3035633y 173056
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.270803 + 0.900641I
a = 0.709209 0.184245I
b = 0.73238 2.39254I
15.8747 + 5.8792I 1.30073 1.97139I
u = 0.270803 0.900641I
a = 0.709209 + 0.184245I
b = 0.73238 + 2.39254I
15.8747 5.8792I 1.30073 + 1.97139I
u = 0.810610 + 0.750728I
a = 1.317050 + 0.001505I
b = 0.058875 + 0.461436I
19.2384 2.7966I 0.86008 + 2.64584I
u = 0.810610 0.750728I
a = 1.317050 0.001505I
b = 0.058875 0.461436I
19.2384 + 2.7966I 0.86008 2.64584I
u = 0.776721 + 0.418654I
a = 0.541225 + 0.547668I
b = 0.518708 0.343588I
0.92435 1.82362I 3.05958 + 5.69158I
u = 0.776721 0.418654I
a = 0.541225 0.547668I
b = 0.518708 + 0.343588I
0.92435 + 1.82362I 3.05958 5.69158I
u = 1.158560 + 0.445647I
a = 0.511951 + 0.740081I
b = 0.883342 + 0.177811I
4.23482 + 2.69674I 10.58660 + 0.80633I
u = 1.158560 0.445647I
a = 0.511951 0.740081I
b = 0.883342 0.177811I
4.23482 2.69674I 10.58660 0.80633I
u = 1.172560 + 0.461545I
a = 1.225960 + 0.029576I
b = 1.068970 0.795251I
4.11934 5.61810I 10.07697 + 8.39649I
u = 1.172560 0.461545I
a = 1.225960 0.029576I
b = 1.068970 + 0.795251I
4.11934 + 5.61810I 10.07697 8.39649I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.277260 + 0.264559I
a = 0.07926 2.43683I
b = 1.56412 + 1.91811I
10.78020 2.11031I 5.71043 + 0.08866I
u = 1.277260 0.264559I
a = 0.07926 + 2.43683I
b = 1.56412 1.91811I
10.78020 + 2.11031I 5.71043 0.08866I
u = 0.050223 + 0.684600I
a = 0.511482 0.219170I
b = 0.581679 + 0.400436I
0.95257 + 1.33285I 6.82195 5.20077I
u = 0.050223 0.684600I
a = 0.511482 + 0.219170I
b = 0.581679 0.400436I
0.95257 1.33285I 6.82195 + 5.20077I
u = 0.682195
a = 0.679402
b = 0.0468590
0.845049 13.0200
u = 1.196000 + 0.589565I
a = 2.54251 1.12472I
b = 0.80109 + 2.93271I
13.0820 11.3274I 4.07376 + 5.51607I
u = 1.196000 0.589565I
a = 2.54251 + 1.12472I
b = 0.80109 2.93271I
13.0820 + 11.3274I 4.07376 5.51607I
6
II. I
u
2
= hu
5
a + u
5
2u
3
a + u
2
a u
3
+ 2au + b + u + 1, 2u
4
a + 2u
5
+ · · · +
a
2
u, u
6
u
5
u
4
+ 2u
3
u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
a
u
5
a u
5
+ 2u
3
a u
2
a + u
3
2au u 1
a
6
=
1
u
2
a
2
=
u
5
a + u
5
2u
3
a u
3
+ 2au + a + u + 1
u
5
a + u
4
a 2u
5
+ 2u
3
a + u
4
2u
2
a + 2u
3
2au 2u
2
+ a u
a
1
=
2u
3
+ 1
2u
3
+ 2u
a
10
=
u
u
a
12
=
u
3
u
3
+ u
a
4
=
u
5
2u
3
+ u
u
5
+ u
4
+ 2u
3
u
2
u + 1
a
9
=
u
3
u
5
u
3
+ u
a
8
=
u
5
a u
3
a + 2u
4
u
3
+ au 2u
2
+ a + 2u + 1
u
5
a + u
4
a u
5
+ u
3
a 2u
2
a + 2u
3
u
2
+ a 2u + 1
a
7
=
u
5
a u
5
+ 2u
3
a + 2u
4
u
2
a + u
3
2au 2u
2
+ a + u + 1
u
5
a 2u
3
a u
4
+ u
2
a + 2au a u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
2
4u + 2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 15u
11
+ ··· + 1324u + 289
c
2
, c
3
, c
6
c
7
, c
8
u
12
u
11
+ ··· 28u + 17
c
4
, c
9
, c
11
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
c
5
, c
10
, c
12
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
13y
11
+ ··· + 423772y + 83521
c
2
, c
3
, c
6
c
7
, c
8
y
12
+ 15y
11
+ ··· + 1324y + 289
c
4
, c
9
, c
11
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
c
5
, c
10
, c
12
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.912198 0.739675I
b = 0.414477 0.040596I
1.39926 0.92430I 7.71672 + 0.79423I
u = 1.002190 + 0.295542I
a = 1.20218 + 2.00149I
b = 1.84373 0.52857I
1.39926 0.92430I 7.71672 + 0.79423I
u = 1.002190 0.295542I
a = 0.912198 + 0.739675I
b = 0.414477 + 0.040596I
1.39926 + 0.92430I 7.71672 0.79423I
u = 1.002190 0.295542I
a = 1.20218 2.00149I
b = 1.84373 + 0.52857I
1.39926 + 0.92430I 7.71672 0.79423I
u = 0.428243 + 0.664531I
a = 0.486207 + 0.830594I
b = 0.015656 0.966738I
5.18047 0.92430I 0.283283 + 0.794226I
u = 0.428243 + 0.664531I
a = 0.860954 0.361329I
b = 1.09861 + 1.55912I
5.18047 0.92430I 0.283283 + 0.794226I
u = 0.428243 0.664531I
a = 0.486207 0.830594I
b = 0.015656 + 0.966738I
5.18047 + 0.92430I 0.283283 0.794226I
u = 0.428243 0.664531I
a = 0.860954 + 0.361329I
b = 1.09861 1.55912I
5.18047 + 0.92430I 0.283283 0.794226I
u = 1.073950 + 0.558752I
a = 1.37466 0.68992I
b = 0.524769 + 0.629076I
3.28987 + 5.69302I 4.00000 5.51057I
u = 1.073950 + 0.558752I
a = 2.60745 0.30647I
b = 1.68361 1.82922I
3.28987 + 5.69302I 4.00000 5.51057I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.073950 0.558752I
a = 1.37466 + 0.68992I
b = 0.524769 0.629076I
3.28987 5.69302I 4.00000 + 5.51057I
u = 1.073950 0.558752I
a = 2.60745 + 0.30647I
b = 1.68361 + 1.82922I
3.28987 5.69302I 4.00000 + 5.51057I
11
III. I
u
3
=
hu
6
2u
4
+u
3
+u
2
+bu+1, u
8
+u
7
+· · ·+a2, u
10
3u
8
+4u
6
u
4
u
2
+1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
u
8
u
7
+ 3u
6
+ 2u
5
3u
4
u
3
u
2
u + 2
u
6
+ 2u
4
u
3
u
2
+ u 1
a
6
=
1
u
2
a
2
=
u
9
u
8
3u
7
+ 3u
6
+ 3u
5
3u
4
+ u
3
u
2
2u + 2
u
9
+ 3u
7
u
6
3u
5
+ 2u
4
u
3
u
2
+ 2u 1
a
1
=
u
9
2u
7
+ u
5
+ 2u
3
u
u
9
+ 3u
7
3u
5
+ u
a
10
=
u
u
a
12
=
u
3
u
3
+ u
a
4
=
u
6
u
4
+ 1
u
6
+ 2u
4
u
2
a
9
=
u
3
u
5
u
3
+ u
a
8
=
u
8
+ u
7
+ 2u
6
2u
5
2u
4
+ u
3
u
2
+ u + 1
u
9
+ u
8
+ 2u
7
2u
6
u
5
+ 2u
4
2u
3
+ u
a
7
=
u
8
+ u
7
+ 2u
6
2u
5
2u
4
+ 2u
3
u
2
+ u + 1
u
9
+ u
8
+ 2u
7
2u
6
2u
5
+ 2u
4
u
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
8
+ 8u
6
8u
4
4u
2
+ 4
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
10
c
2
, c
3
, c
6
c
7
, c
8
(u
2
+ 1)
5
c
4
, c
9
u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1
c
5
, c
10
u
10
3u
8
+ 4u
6
u
4
u
2
+ 1
c
11
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
c
12
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
10
c
2
, c
3
, c
6
c
7
, c
8
(y + 1)
10
c
4
, c
9
(y
5
+ 5y
4
+ 8y
3
+ 3y
2
y + 1)
2
c
5
, c
10
(y
5
3y
4
+ 4y
3
y
2
y + 1)
2
c
11
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.822375 + 0.339110I
a = 1.88547 + 1.25135I
b = 1.75626 0.65077I
2.96077 1.53058I 0.51511 + 4.43065I
u = 0.822375 0.339110I
a = 1.88547 1.25135I
b = 1.75626 + 0.65077I
2.96077 + 1.53058I 0.51511 4.43065I
u = 0.822375 + 0.339110I
a = 0.32986 1.50891I
b = 0.656443 + 0.030936I
2.96077 + 1.53058I 0.51511 4.43065I
u = 0.822375 0.339110I
a = 0.32986 + 1.50891I
b = 0.656443 0.030936I
2.96077 1.53058I 0.51511 + 4.43065I
u = 0.766826I
a = 0.821196 + 0.370286I
b = 0.482881 + 1.217740I
0.888787 1.48110
u = 0.766826I
a = 0.821196 0.370286I
b = 0.482881 1.217740I
0.888787 1.48110
u = 1.200150 + 0.455697I
a = 1.56305 + 1.07974I
b = 0.74575 2.04068I
2.58269 4.40083I 4.74431 + 3.49859I
u = 1.200150 0.455697I
a = 1.56305 1.07974I
b = 0.74575 + 2.04068I
2.58269 + 4.40083I 4.74431 3.49859I
u = 1.200150 + 0.455697I
a = 0.186244 + 1.292420I
b = 1.18408 0.79689I
2.58269 + 4.40083I 4.74431 3.49859I
u = 1.200150 0.455697I
a = 0.186244 1.292420I
b = 1.18408 + 0.79689I
2.58269 4.40083I 4.74431 + 3.49859I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
12
+ 15u
11
+ ··· + 1324u + 289)
· (u
17
+ 30u
16
+ ··· 8u 1)
c
2
, c
3
, c
6
c
7
, c
8
((u
2
+ 1)
5
)(u
12
u
11
+ ··· 28u + 17)(u
17
+ 15u
15
+ ··· + 2u 1)
c
4
, c
9
((u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
)(u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1)
· (u
17
+ 9u
16
+ ··· 77u 26)
c
5
, c
10
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
(u
10
3u
8
+ 4u
6
u
4
u
2
+ 1)
· (u
17
+ 3u
16
+ ··· 5u 2)
c
11
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
· (u
17
9u
16
+ ··· + 5u 4)
c
12
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
· (u
17
+ u
16
+ ··· + 953u 416)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
12
13y
11
+ ··· + 423772y + 83521)
· (y
17
98y
16
+ ··· + 64y 1)
c
2
, c
3
, c
6
c
7
, c
8
((y + 1)
10
)(y
12
+ 15y
11
+ ··· + 1324y + 289)
· (y
17
+ 30y
16
+ ··· 8y 1)
c
4
, c
9
(y
5
+ 5y
4
+ 8y
3
+ 3y
2
y + 1)
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
17
+ 11y
16
+ ··· + 3589y 676)
c
5
, c
10
(y
5
3y
4
+ 4y
3
y
2
y + 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
17
9y
16
+ ··· + 5y 4)
c
11
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
17
y
16
+ ··· + 193y 16)
c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
17
+ 83y
16
+ ··· + 3035633y 173056)
17