12n
0567
(K12n
0567
)
A knot diagram
1
Linearized knot diagam
3 7 12 10 8 2 11 12 3 5 6 10
Solving Sequence
7,11 3,8
2 6 12 5 10 1 4 9
c
7
c
2
c
6
c
11
c
5
c
10
c
12
c
4
c
9
c
1
, c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h5.56281 × 10
317
u
78
5.02067 × 10
318
u
77
+ ··· + 8.67837 × 10
319
b + 1.47773 × 10
320
,
3.19161 × 10
320
u
78
+ 2.80481 × 10
321
u
77
+ ··· + 1.37986 × 10
322
a + 2.79478 × 10
322
,
u
79
9u
78
+ ··· + 734u + 106i
I
u
2
= h2.46309 × 10
21
u
21
5.34185 × 10
18
u
20
+ ··· + 1.37105 × 10
22
b + 2.69501 × 10
22
,
1.37506 × 10
22
u
21
+ 5.42032 × 10
21
u
20
+ ··· + 5.48420 × 10
22
a 2.58037 × 10
22
,
u
22
+ 8u
20
+ ··· + 28u + 4i
I
u
3
= hb 1, a, u + 1i
I
u
4
= hb + 1, a + 1, u + 1i
I
v
1
= ha, b + 1, v + 1i
* 5 irreducible components of dim
C
= 0, with total 104 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h5.56 × 10
317
u
78
5.02 × 10
318
u
77
+ · · · + 8.68 × 10
319
b + 1.48 ×
10
320
, 3.19 × 10
320
u
78
+ 2.80 × 10
321
u
77
+ · · · + 1.38 × 10
322
a + 2.79 ×
10
322
, u
79
9u
78
+ · · · + 734u + 106i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
3
=
0.0231300u
78
0.203268u
77
+ ··· 11.9417u 2.02541
0.00640998u
78
+ 0.0578527u
77
+ ··· 3.35031u 1.70277
a
8
=
1
u
2
a
2
=
0.0167200u
78
0.145415u
77
+ ··· 15.2920u 3.72818
0.00640998u
78
+ 0.0578527u
77
+ ··· 3.35031u 1.70277
a
6
=
0.0133063u
78
0.111816u
77
+ ··· + 15.5097u + 0.982850
0.00879467u
78
+ 0.0756675u
77
+ ··· 25.5253u 6.64326
a
12
=
0.0132004u
78
0.125171u
77
+ ··· 25.7839u 2.94270
0.00276583u
78
+ 0.0225513u
77
+ ··· 3.76731u 0.106117
a
5
=
0.0200166u
78
0.171688u
77
+ ··· + 33.7964u + 6.78443
0.00872034u
78
+ 0.0751173u
77
+ ··· 26.6187u 6.69843
a
10
=
0.00488649u
78
0.0504017u
77
+ ··· + 3.29564u + 3.47447
0.00255916u
78
+ 0.0228690u
77
+ ··· 15.8414u 4.95528
a
1
=
0.0145289u
78
+ 0.122760u
77
+ ··· + 14.0823u + 7.64467
0.0100602u
78
+ 0.0908254u
77
+ ··· 19.0287u 7.67271
a
4
=
0.0241505u
78
0.223793u
77
+ ··· 42.8651u 5.86006
0.00239155u
78
+ 0.0244554u
77
+ ··· + 2.88597u 0.413481
a
9
=
0.00650299u
78
0.0609618u
77
+ ··· + 2.56028u + 1.33246
0.00536036u
78
+ 0.0455739u
77
+ ··· 8.77824u 1.19157
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.353846u
78
+ 3.26964u
77
+ ··· 551.965u 156.813
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
79
+ 43u
78
+ ··· + 457u + 36
c
2
, c
6
u
79
+ u
78
+ ··· 19u + 6
c
3
u
79
6u
78
+ ··· + 3288u 3153
c
4
, c
10
u
79
+ 3u
78
+ ··· + 39517u + 6618
c
5
u
79
+ 12u
78
+ ··· + 14u + 11
c
7
u
79
+ 9u
78
+ ··· + 734u 106
c
8
u
79
+ 3u
78
+ ··· + 61u 6
c
9
u
79
+ u
78
+ ··· + 18402u + 6638
c
11
u
79
u
78
+ ··· 21u 3
c
12
u
79
2u
78
+ ··· + 124853u + 21439
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
79
15y
78
+ ··· + 33889y 1296
c
2
, c
6
y
79
43y
78
+ ··· + 457y 36
c
3
y
79
92y
78
+ ··· + 324175002y 9941409
c
4
, c
10
y
79
43y
78
+ ··· + 1161720493y 43797924
c
5
y
79
36y
78
+ ··· + 2748y 121
c
7
y
79
+ 27y
78
+ ··· 45092y 11236
c
8
y
79
+ 27y
78
+ ··· + 27889y 36
c
9
y
79
+ 91y
78
+ ··· 1887671940y 44063044
c
11
y
79
y
78
+ ··· + 1149y 9
c
12
y
79
+ 72y
78
+ ··· + 5381678245y 459630721
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.778248 + 0.684575I
a = 0.496147 + 0.408691I
b = 0.390677 0.867183I
5.37716 + 3.78065I 0
u = 0.778248 0.684575I
a = 0.496147 0.408691I
b = 0.390677 + 0.867183I
5.37716 3.78065I 0
u = 0.892660
a = 0.278912
b = 1.20837
1.65892 7.72510
u = 0.135677 + 0.874172I
a = 2.18391 + 1.40758I
b = 1.024420 0.534790I
2.76898 7.84768I 2.12757 + 8.05813I
u = 0.135677 0.874172I
a = 2.18391 1.40758I
b = 1.024420 + 0.534790I
2.76898 + 7.84768I 2.12757 8.05813I
u = 0.781273 + 0.304744I
a = 0.842113 0.298441I
b = 1.265120 + 0.143006I
10.97290 + 0.77841I 6.82766 0.78518I
u = 0.781273 0.304744I
a = 0.842113 + 0.298441I
b = 1.265120 0.143006I
10.97290 0.77841I 6.82766 + 0.78518I
u = 0.581646 + 1.006650I
a = 0.240060 0.661324I
b = 0.185387 + 0.764265I
4.41709 + 4.52800I 0
u = 0.581646 1.006650I
a = 0.240060 + 0.661324I
b = 0.185387 0.764265I
4.41709 4.52800I 0
u = 0.804957 + 0.173139I
a = 0.302876 0.960865I
b = 0.935122 + 0.560283I
1.36961 + 2.12804I 6.08728 3.56903I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.804957 0.173139I
a = 0.302876 + 0.960865I
b = 0.935122 0.560283I
1.36961 2.12804I 6.08728 + 3.56903I
u = 0.932036 + 0.736879I
a = 0.64902 1.47930I
b = 1.146240 + 0.628898I
7.64208 + 9.32063I 0
u = 0.932036 0.736879I
a = 0.64902 + 1.47930I
b = 1.146240 0.628898I
7.64208 9.32063I 0
u = 0.305349 + 0.731424I
a = 1.72358 0.55517I
b = 0.826923 + 0.741635I
3.38241 1.44721I 0.92948 + 7.72706I
u = 0.305349 0.731424I
a = 1.72358 + 0.55517I
b = 0.826923 0.741635I
3.38241 + 1.44721I 0.92948 7.72706I
u = 0.109380 + 0.784726I
a = 2.41586 0.71124I
b = 0.784744 + 0.443258I
1.92515 + 0.39107I 4.91566 + 0.78548I
u = 0.109380 0.784726I
a = 2.41586 + 0.71124I
b = 0.784744 0.443258I
1.92515 0.39107I 4.91566 0.78548I
u = 0.371146 + 0.688689I
a = 0.49761 + 2.75814I
b = 0.914340 0.739129I
3.12020 + 4.18419I 3.46102 2.48442I
u = 0.371146 0.688689I
a = 0.49761 2.75814I
b = 0.914340 + 0.739129I
3.12020 4.18419I 3.46102 + 2.48442I
u = 0.478501 + 1.123620I
a = 0.298949 + 0.824219I
b = 0.275465 0.433827I
5.17058 + 4.04352I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.478501 1.123620I
a = 0.298949 0.824219I
b = 0.275465 + 0.433827I
5.17058 4.04352I 0
u = 0.395642 + 0.656886I
a = 0.196734 + 0.736150I
b = 0.047600 0.467709I
0.165593 1.209730I 2.02916 + 5.23119I
u = 0.395642 0.656886I
a = 0.196734 0.736150I
b = 0.047600 + 0.467709I
0.165593 + 1.209730I 2.02916 5.23119I
u = 0.684615 + 1.041570I
a = 0.0285168 + 0.0826745I
b = 0.814198 + 0.338128I
1.57656 2.62855I 0
u = 0.684615 1.041570I
a = 0.0285168 0.0826745I
b = 0.814198 0.338128I
1.57656 + 2.62855I 0
u = 0.975838 + 0.782424I
a = 0.657092 0.713723I
b = 1.022580 + 0.268605I
2.94747 3.80961I 0
u = 0.975838 0.782424I
a = 0.657092 + 0.713723I
b = 1.022580 0.268605I
2.94747 + 3.80961I 0
u = 0.536219 + 1.134980I
a = 0.534763 1.106970I
b = 0.506060 + 0.508248I
4.04856 + 1.41714I 0
u = 0.536219 1.134980I
a = 0.534763 + 1.106970I
b = 0.506060 0.508248I
4.04856 1.41714I 0
u = 0.741180
a = 0.239372
b = 0.419805
1.79441 4.83380
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.738304 + 1.048750I
a = 0.845945 0.269555I
b = 0.998142 0.376554I
3.87655 1.76981I 0
u = 0.738304 1.048750I
a = 0.845945 + 0.269555I
b = 0.998142 + 0.376554I
3.87655 + 1.76981I 0
u = 1.105070 + 0.664957I
a = 0.244803 + 0.115320I
b = 1.47554 0.01059I
8.72804 7.04097I 0
u = 1.105070 0.664957I
a = 0.244803 0.115320I
b = 1.47554 + 0.01059I
8.72804 + 7.04097I 0
u = 1.132430 + 0.621605I
a = 0.49514 1.51289I
b = 0.004512 + 0.661734I
2.89071 + 3.39186I 0
u = 1.132430 0.621605I
a = 0.49514 + 1.51289I
b = 0.004512 0.661734I
2.89071 3.39186I 0
u = 0.272017 + 0.645577I
a = 0.02750 1.78732I
b = 1.24922 + 0.75688I
3.78506 + 8.40300I 1.55735 8.35283I
u = 0.272017 0.645577I
a = 0.02750 + 1.78732I
b = 1.24922 0.75688I
3.78506 8.40300I 1.55735 + 8.35283I
u = 1.173230 + 0.678550I
a = 1.264070 + 0.058940I
b = 0.672858 + 0.087940I
2.57246 4.30103I 0
u = 1.173230 0.678550I
a = 1.264070 0.058940I
b = 0.672858 0.087940I
2.57246 + 4.30103I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.365510 + 0.529512I
a = 0.33616 + 1.47447I
b = 0.131837 1.340730I
0.80564 + 1.18538I 10.43073 + 5.93489I
u = 0.365510 0.529512I
a = 0.33616 1.47447I
b = 0.131837 + 1.340730I
0.80564 1.18538I 10.43073 5.93489I
u = 0.372397 + 0.523453I
a = 0.03555 + 2.76231I
b = 0.873019 0.750214I
2.81371 + 4.24079I 1.66752 8.05004I
u = 0.372397 0.523453I
a = 0.03555 2.76231I
b = 0.873019 + 0.750214I
2.81371 4.24079I 1.66752 + 8.05004I
u = 1.103790 + 0.828086I
a = 0.171841 0.938107I
b = 1.31594 + 0.55012I
5.20033 4.93329I 0
u = 1.103790 0.828086I
a = 0.171841 + 0.938107I
b = 1.31594 0.55012I
5.20033 + 4.93329I 0
u = 0.609086
a = 1.31379
b = 0.978193
1.80797 4.57870
u = 0.917810 + 1.056720I
a = 0.327013 + 1.321270I
b = 1.149280 0.560651I
1.73896 + 9.47414I 0
u = 0.917810 1.056720I
a = 0.327013 1.321270I
b = 1.149280 + 0.560651I
1.73896 9.47414I 0
u = 0.313708 + 0.509032I
a = 2.16795 + 3.20848I
b = 0.923339 0.452097I
1.45639 3.33450I 2.49781 + 7.16900I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.313708 0.509032I
a = 2.16795 3.20848I
b = 0.923339 + 0.452097I
1.45639 + 3.33450I 2.49781 7.16900I
u = 0.51363 + 1.33375I
a = 0.297777 + 0.674355I
b = 0.405830 0.317748I
5.04693 + 3.84525I 0
u = 0.51363 1.33375I
a = 0.297777 0.674355I
b = 0.405830 + 0.317748I
5.04693 3.84525I 0
u = 0.92366 + 1.16421I
a = 0.519837 + 1.155040I
b = 0.442033 1.069980I
1.34186 10.86070I 0
u = 0.92366 1.16421I
a = 0.519837 1.155040I
b = 0.442033 + 1.069980I
1.34186 + 10.86070I 0
u = 0.216721 + 0.462692I
a = 1.19356 4.87978I
b = 0.574841 + 0.526921I
1.37094 3.47466I 5.22123 + 1.68240I
u = 0.216721 0.462692I
a = 1.19356 + 4.87978I
b = 0.574841 0.526921I
1.37094 + 3.47466I 5.22123 1.68240I
u = 0.76744 + 1.37751I
a = 0.741867 1.057010I
b = 0.712373 + 0.831700I
3.89746 2.86937I 0
u = 0.76744 1.37751I
a = 0.741867 + 1.057010I
b = 0.712373 0.831700I
3.89746 + 2.86937I 0
u = 0.031530 + 0.417860I
a = 1.64477 2.92363I
b = 0.968462 + 0.643997I
2.48038 1.25973I 0.414499 1.210980I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.031530 0.417860I
a = 1.64477 + 2.92363I
b = 0.968462 0.643997I
2.48038 + 1.25973I 0.414499 + 1.210980I
u = 0.10747 + 1.58916I
a = 0.00023 1.80456I
b = 0.692388 + 0.412184I
4.62516 0.13995I 0
u = 0.10747 1.58916I
a = 0.00023 + 1.80456I
b = 0.692388 0.412184I
4.62516 + 0.13995I 0
u = 1.04711 + 1.33119I
a = 0.04905 1.52114I
b = 1.204620 + 0.705102I
3.7393 17.2276I 0
u = 1.04711 1.33119I
a = 0.04905 + 1.52114I
b = 1.204620 0.705102I
3.7393 + 17.2276I 0
u = 0.90626 + 1.44153I
a = 0.03875 + 1.73006I
b = 1.004110 0.729834I
2.99455 8.70932I 0
u = 0.90626 1.44153I
a = 0.03875 1.73006I
b = 1.004110 + 0.729834I
2.99455 + 8.70932I 0
u = 0.84193 + 1.52097I
a = 0.286857 + 0.492815I
b = 1.040030 0.466600I
5.72787 2.55886I 0
u = 0.84193 1.52097I
a = 0.286857 0.492815I
b = 1.040030 + 0.466600I
5.72787 + 2.55886I 0
u = 1.00763 + 1.43025I
a = 0.079092 1.239070I
b = 1.089190 + 0.500708I
2.88288 + 7.82891I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.00763 1.43025I
a = 0.079092 + 1.239070I
b = 1.089190 0.500708I
2.88288 7.82891I 0
u = 0.231825 + 0.082340I
a = 1.050750 + 0.434329I
b = 1.97997 0.26154I
0.489628 + 0.006055I 71.0734 96.8093I
u = 0.231825 0.082340I
a = 1.050750 0.434329I
b = 1.97997 + 0.26154I
0.489628 0.006055I 71.0734 + 96.8093I
u = 0.21428 + 1.94197I
a = 0.541939 + 1.278230I
b = 1.006310 0.473935I
5.75770 + 3.61725I 0
u = 0.21428 1.94197I
a = 0.541939 1.278230I
b = 1.006310 + 0.473935I
5.75770 3.61725I 0
u = 0.99904 + 1.69268I
a = 0.488431 + 1.102260I
b = 1.172360 0.431362I
6.19272 0.68993I 0
u = 0.99904 1.69268I
a = 0.488431 1.102260I
b = 1.172360 + 0.431362I
6.19272 + 0.68993I 0
u = 2.15231 + 0.64578I
a = 0.203624 + 0.626602I
b = 1.145960 0.468340I
5.94362 + 7.51805I 0
u = 2.15231 0.64578I
a = 0.203624 0.626602I
b = 1.145960 + 0.468340I
5.94362 7.51805I 0
12
II. I
u
2
= h2.46 × 10
21
u
21
5.34 × 10
18
u
20
+ · · · + 1.37 × 10
22
b + 2.70 ×
10
22
, 1.38 × 10
22
u
21
+ 5.42 × 10
21
u
20
+ · · · + 5.48 × 10
22
a 2.58 ×
10
22
, u
22
+ 8u
20
+ · · · + 28u + 4i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
3
=
0.250731u
21
0.0988352u
20
+ ··· 10.6914u + 0.470510
0.179650u
21
+ 0.000389617u
20
+ ··· + 0.895903u 1.96565
a
8
=
1
u
2
a
2
=
0.0710809u
21
0.0984456u
20
+ ··· 9.79546u 1.49514
0.179650u
21
+ 0.000389617u
20
+ ··· + 0.895903u 1.96565
a
6
=
0.0514362u
21
+ 0.155001u
20
+ ··· + 9.60842u + 1.81921
0.0530987u
21
+ 0.0390748u
20
+ ··· 0.598343u 5.10910
a
12
=
0.124929u
21
+ 0.0291947u
20
+ ··· 0.0790308u 0.197796
0.00280485u
21
0.00661764u
20
+ ··· 1.41274u 0.702528
a
5
=
0.101122u
21
+ 0.0831122u
20
+ ··· + 6.07247u + 6.30830
0.0551212u
21
+ 0.0603063u
20
+ ··· + 0.804315u 4.82155
a
10
=
0.225471u
21
+ 0.0177999u
20
+ ··· + 0.799370u + 4.38328
0.115972u
21
+ 0.0000800783u
20
+ ··· 0.183112u 4.06652
a
1
=
0.279252u
21
+ 0.0537237u
20
+ ··· 0.797291u 10.8142
0.303972u
21
0.0535289u
20
+ ··· 3.29404u + 8.75698
a
4
=
0.345499u
21
0.199154u
20
+ ··· 2.78153u + 1.97169
0.0273764u
21
+ 0.148942u
20
+ ··· + 6.18843u 0.931880
a
9
=
0.125808u
21
+ 0.0250511u
20
+ ··· 0.0493171u + 0.818347
0.00109520u
21
0.0353749u
20
+ ··· 1.45948u 0.476329
(ii) Obstruction class = 1
(iii) Cusp Shapes =
127267665923885090334680
13710494354785690079293
u
21
20268422342251723240628
13710494354785690079293
u
20
+ ···
850893225143436557560740
13710494354785690079293
u +
3955364890476921757575848
13710494354785690079293
13
(iv) u-Polynomials at the component
14
Crossings u-Polynomials at each crossing
c
1
u
22
17u
21
+ ··· 13u + 1
c
2
u
22
u
21
+ ··· + u 1
c
3
u
22
+ 5u
21
+ ··· 6u + 1
c
4
u
22
u
21
+ ··· 18u + 13
c
5
u
22
5u
21
+ ··· + 2u + 1
c
6
u
22
+ u
21
+ ··· u 1
c
7
u
22
+ 8u
20
+ ··· + 28u + 4
c
8
u
22
5u
21
+ ··· + 43u 13
c
9
u
22
+ 2u
21
+ ··· 12u 4
c
10
u
22
+ u
21
+ ··· + 18u + 13
c
11
u
22
+ u
20
+ ··· + 11u 1
c
12
u
22
5u
21
+ ··· 5u 1
15
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
22
25y
21
+ ··· + 11y + 1
c
2
, c
6
y
22
17y
21
+ ··· 13y + 1
c
3
y
22
17y
21
+ ··· 104y + 1
c
4
, c
10
y
22
17y
21
+ ··· 1546y + 169
c
5
y
22
33y
21
+ ··· 14y + 1
c
7
y
22
+ 16y
21
+ ··· 736y + 16
c
8
y
22
+ 17y
21
+ ··· 7543y + 169
c
9
y
22
+ 8y
21
+ ··· 224y + 16
c
11
y
22
+ 2y
21
+ ··· 163y + 1
c
12
y
22
+ 3y
21
+ ··· 15y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.868438 + 0.594278I
a = 1.37249 + 0.76619I
b = 0.508292 + 0.207982I
2.36147 3.64249I 0.927282 + 0.923820I
u = 0.868438 0.594278I
a = 1.37249 0.76619I
b = 0.508292 0.207982I
2.36147 + 3.64249I 0.927282 0.923820I
u = 0.450765 + 0.719635I
a = 0.004566 0.975016I
b = 0.802503 0.300039I
1.20238 2.12854I 1.92738 0.50157I
u = 0.450765 0.719635I
a = 0.004566 + 0.975016I
b = 0.802503 + 0.300039I
1.20238 + 2.12854I 1.92738 + 0.50157I
u = 0.339304 + 1.103900I
a = 0.472119 + 0.708930I
b = 0.487202 0.541584I
5.32946 + 4.52303I 7.8508 12.4062I
u = 0.339304 1.103900I
a = 0.472119 0.708930I
b = 0.487202 + 0.541584I
5.32946 4.52303I 7.8508 + 12.4062I
u = 0.207309 + 0.757040I
a = 2.32124 + 0.86023I
b = 0.857226 0.701147I
3.69847 + 1.13168I 12.69939 + 4.46196I
u = 0.207309 0.757040I
a = 2.32124 0.86023I
b = 0.857226 + 0.701147I
3.69847 1.13168I 12.69939 4.46196I
u = 0.275777 + 0.631762I
a = 0.71336 3.50085I
b = 0.895803 + 0.700990I
3.57593 4.25665I 14.6360 + 6.2434I
u = 0.275777 0.631762I
a = 0.71336 + 3.50085I
b = 0.895803 0.700990I
3.57593 + 4.25665I 14.6360 6.2434I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.682459
a = 0.629458
b = 1.60199
1.37157 24.7530
u = 1.44377 + 0.06593I
a = 0.196282 0.456604I
b = 1.193570 + 0.485737I
5.37558 + 6.98207I 0.36022 4.86270I
u = 1.44377 0.06593I
a = 0.196282 + 0.456604I
b = 1.193570 0.485737I
5.37558 6.98207I 0.36022 + 4.86270I
u = 0.65206 + 1.38390I
a = 0.646197 + 0.837522I
b = 0.633171 0.632803I
5.77602 + 3.37066I 6.81116 + 0.28145I
u = 0.65206 1.38390I
a = 0.646197 0.837522I
b = 0.633171 + 0.632803I
5.77602 3.37066I 6.81116 0.28145I
u = 0.38474 + 1.54379I
a = 0.43414 + 1.55487I
b = 0.685386 0.269781I
5.07638 + 1.44838I 7.70492 3.87687I
u = 0.38474 1.54379I
a = 0.43414 1.55487I
b = 0.685386 + 0.269781I
5.07638 1.44838I 7.70492 + 3.87687I
u = 0.92599 + 1.40618I
a = 0.09974 1.54439I
b = 1.044280 + 0.642940I
4.47722 + 8.44438I 4.75673 6.97687I
u = 0.92599 1.40618I
a = 0.09974 + 1.54439I
b = 1.044280 0.642940I
4.47722 8.44438I 4.75673 + 6.97687I
u = 0.138208
a = 2.10215
b = 2.28799
0.467985 313.180
19
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.36790 + 1.93453I
a = 0.456168 1.012410I
b = 1.099200 + 0.373608I
6.76305 1.34428I 7.76685 + 2.36036I
u = 0.36790 1.93453I
a = 0.456168 + 1.012410I
b = 1.099200 0.373608I
6.76305 + 1.34428I 7.76685 2.36036I
20
III. I
u
3
= hb 1, a, u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
1
a
3
=
0
1
a
8
=
1
1
a
2
=
1
1
a
6
=
0
1
a
12
=
0
1
a
5
=
1
0
a
10
=
1
1
a
1
=
1
0
a
4
=
0
1
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u + 1
c
2
, c
4
, c
6
c
7
, c
8
, c
9
c
10
, c
12
u 1
c
3
, c
11
u
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
12
y 1
c
3
, c
11
y
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
24
IV. I
u
4
= hb + 1, a + 1, u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
1
a
3
=
1
1
a
8
=
1
1
a
2
=
2
1
a
6
=
1
1
a
12
=
1
0
a
5
=
1
1
a
10
=
1
0
a
1
=
1
0
a
4
=
0
1
a
9
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
9
c
10
, c
11
u + 1
c
5
, c
12
u
c
7
, c
8
u 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
9
, c
10
c
11
y 1
c
5
, c
12
y
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
1.64493 6.00000
28
V. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
1
0
a
3
=
0
1
a
8
=
1
0
a
2
=
1
1
a
6
=
0
1
a
12
=
1
1
a
5
=
1
1
a
10
=
0
1
a
1
=
1
0
a
4
=
1
0
a
9
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
10
, c
11
, c
12
u 1
c
3
, c
4
, c
6
c
8
u + 1
c
7
, c
9
u
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
8
, c
10
, c
11
c
12
y 1
c
7
, c
9
y
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
32
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u + 1)
2
(u
22
17u
21
+ ··· 13u + 1)
· (u
79
+ 43u
78
+ ··· + 457u + 36)
c
2
((u 1)
2
)(u + 1)(u
22
u
21
+ ··· + u 1)(u
79
+ u
78
+ ··· 19u + 6)
c
3
u(u + 1)
2
(u
22
+ 5u
21
+ ··· 6u + 1)(u
79
6u
78
+ ··· + 3288u 3153)
c
4
(u 1)(u + 1)
2
(u
22
u
21
+ ··· 18u + 13)
· (u
79
+ 3u
78
+ ··· + 39517u + 6618)
c
5
u(u 1)(u + 1)(u
22
5u
21
+ ··· + 2u + 1)(u
79
+ 12u
78
+ ··· + 14u + 11)
c
6
(u 1)(u + 1)
2
(u
22
+ u
21
+ ··· u 1)(u
79
+ u
78
+ ··· 19u + 6)
c
7
u(u 1)
2
(u
22
+ 8u
20
+ ··· + 28u + 4)(u
79
+ 9u
78
+ ··· + 734u 106)
c
8
((u 1)
2
)(u + 1)(u
22
5u
21
+ ··· + 43u 13)(u
79
+ 3u
78
+ ··· + 61u 6)
c
9
u(u 1)(u + 1)(u
22
+ 2u
21
+ ··· 12u 4)
· (u
79
+ u
78
+ ··· + 18402u + 6638)
c
10
((u 1)
2
)(u + 1)(u
22
+ u
21
+ ··· + 18u + 13)
· (u
79
+ 3u
78
+ ··· + 39517u + 6618)
c
11
u(u 1)(u + 1)(u
22
+ u
20
+ ··· + 11u 1)(u
79
u
78
+ ··· 21u 3)
c
12
u(u 1)
2
(u
22
5u
21
+ ··· 5u 1)
· (u
79
2u
78
+ ··· + 124853u + 21439)
33
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
3
)(y
22
25y
21
+ ··· + 11y + 1)
· (y
79
15y
78
+ ··· + 33889y 1296)
c
2
, c
6
((y 1)
3
)(y
22
17y
21
+ ··· 13y + 1)(y
79
43y
78
+ ··· + 457y 36)
c
3
y(y 1)
2
(y
22
17y
21
+ ··· 104y + 1)
· (y
79
92y
78
+ ··· + 324175002y 9941409)
c
4
, c
10
((y 1)
3
)(y
22
17y
21
+ ··· 1546y + 169)
· (y
79
43y
78
+ ··· + 1161720493y 43797924)
c
5
y(y 1)
2
(y
22
33y
21
+ ··· 14y + 1)
· (y
79
36y
78
+ ··· + 2748y 121)
c
7
y(y 1)
2
(y
22
+ 16y
21
+ ··· 736y + 16)
· (y
79
+ 27y
78
+ ··· 45092y 11236)
c
8
((y 1)
3
)(y
22
+ 17y
21
+ ··· 7543y + 169)
· (y
79
+ 27y
78
+ ··· + 27889y 36)
c
9
y(y 1)
2
(y
22
+ 8y
21
+ ··· 224y + 16)
· (y
79
+ 91y
78
+ ··· 1887671940y 44063044)
c
11
y(y 1)
2
(y
22
+ 2y
21
+ ··· 163y + 1)(y
79
y
78
+ ··· + 1149y 9)
c
12
y(y 1)
2
(y
22
+ 3y
21
+ ··· 15y + 1)
· (y
79
+ 72y
78
+ ··· + 5381678245y 459630721)
34