12n
0568
(K12n
0568
)
A knot diagram
1
Linearized knot diagam
3 7 12 10 11 2 5 12 3 8 6 10
Solving Sequence
5,11 2,6
7 3 8 12 1 10 4 9
c
5
c
6
c
2
c
7
c
11
c
1
c
10
c
4
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h3.56196 × 10
180
u
75
6.92402 × 10
180
u
74
+ ··· + 4.56975 × 10
180
b 7.18244 × 10
182
,
3.11091 × 10
181
u
75
7.34911 × 10
181
u
74
+ ··· + 1.32523 × 10
182
a 3.27637 × 10
183
,
u
76
3u
75
+ ··· + 936u + 232i
I
u
2
= h248830399u
22
+ 208402801u
21
+ ··· + 79543084b 1349697652,
410409361u
22
+ 348035792u
21
+ ··· + 79543084a 2188204696, u
23
+ 2u
22
+ ··· 8u 8i
* 2 irreducible components of dim
C
= 0, with total 99 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3.56 × 10
180
u
75
6.92 × 10
180
u
74
+ · · · + 4.57 × 10
180
b 7.18 ×
10
182
, 3.11 × 10
181
u
75
7.35 × 10
181
u
74
+ · · · + 1.33 × 10
182
a 3.28 ×
10
183
, u
76
3u
75
+ · · · + 936u + 232i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
2
=
0.234745u
75
+ 0.554555u
74
+ ··· + 169.599u + 24.7231
0.779466u
75
+ 1.51519u
74
+ ··· + 787.398u + 157.174
a
6
=
1
u
2
a
7
=
0.498809u
75
0.947197u
74
+ ··· 460.943u 87.1424
1.15577u
75
2.09127u
74
+ ··· 1178.23u 242.449
a
3
=
0.913618u
75
1.62170u
74
+ ··· 954.260u 197.783
0.641894u
75
1.15647u
74
+ ··· 655.502u 136.716
a
8
=
0.656963u
75
+ 1.14407u
74
+ ··· + 717.288u + 155.306
1.15577u
75
2.09127u
74
+ ··· 1178.23u 242.449
a
12
=
u
u
3
+ u
a
1
=
0.631741u
75
1.27025u
74
+ ··· 563.644u 116.446
0.404533u
75
0.758262u
74
+ ··· 382.358u 76.2189
a
10
=
0.234311u
75
+ 0.585458u
74
+ ··· + 97.6788u + 10.2271
1.16020u
75
2.19526u
74
+ ··· 1139.10u 227.223
a
4
=
0.458281u
75
0.798480u
74
+ ··· 499.398u 103.931
0.480346u
75
0.857747u
74
+ ··· 496.673u 104.640
a
9
=
1.15033u
75
+ 2.16962u
74
+ ··· + 1108.09u + 217.684
1.71904u
75
+ 3.13616u
74
+ ··· + 1745.42u + 358.560
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.983457u
75
+ 1.79316u
74
+ ··· + 1053.18u + 204.030
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
4(4u
76
+ 181u
75
+ ··· + 50u + 1)
c
2
, c
6
2(2u
76
u
75
+ ··· 2u + 1)
c
3
u
76
7u
75
+ ··· + 842u + 773
c
4
u
76
+ u
75
+ ··· + 137983u + 158846
c
5
, c
11
u
76
3u
75
+ ··· + 936u + 232
c
7
u
76
5u
75
+ ··· 19313u + 1532
c
8
u
76
4u
75
+ ··· + 20080608u + 2598032
c
9
2(2u
76
+ u
75
+ ··· + 296u + 712)
c
10
4(4u
76
+ 27u
75
+ ··· + 3218u + 419)
c
12
2(2u
76
+ 7u
75
+ ··· + 11068u + 1009)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
16(16y
76
+ 15y
75
+ ··· 166y + 1)
c
2
, c
6
4(4y
76
181y
75
+ ··· 50y + 1)
c
3
y
76
107y
75
+ ··· 13723192y + 597529
c
4
y
76
+ 33y
75
+ ··· + 325811545407y + 25232051716
c
5
, c
11
y
76
51y
75
+ ··· 1128512y + 53824
c
7
y
76
11y
75
+ ··· 47423585y + 2347024
c
8
y
76
+ 62y
75
+ ··· + 198572181119104y + 6749770273024
c
9
4(4y
76
+ 367y
75
+ ··· + 3.78022 × 10
7
y + 506944)
c
10
16(16y
76
+ 487y
75
+ ··· + 8708976y + 175561)
c
12
4(4y
76
+ 331y
75
+ ··· + 2.10845 × 10
8
y + 1018081)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.005098 + 1.009090I
a = 0.393251 + 0.810515I
b = 0.705606 + 0.017434I
4.16391 4.94670I 0. + 3.45130I
u = 0.005098 1.009090I
a = 0.393251 0.810515I
b = 0.705606 0.017434I
4.16391 + 4.94670I 0. 3.45130I
u = 0.933682 + 0.297571I
a = 0.108605 0.446950I
b = 0.636825 + 0.264630I
0.08245 4.80485I 0
u = 0.933682 0.297571I
a = 0.108605 + 0.446950I
b = 0.636825 0.264630I
0.08245 + 4.80485I 0
u = 0.176764 + 1.009050I
a = 0.361751 0.893889I
b = 1.61810 + 0.10958I
1.70045 + 2.91637I 0
u = 0.176764 1.009050I
a = 0.361751 + 0.893889I
b = 1.61810 0.10958I
1.70045 2.91637I 0
u = 1.018160 + 0.180797I
a = 3.61763 + 0.47037I
b = 2.95467 0.94404I
6.55599 2.35969I 0
u = 1.018160 0.180797I
a = 3.61763 0.47037I
b = 2.95467 + 0.94404I
6.55599 + 2.35969I 0
u = 1.037780 + 0.050306I
a = 2.18608 0.36963I
b = 1.068720 0.752547I
2.48276 + 0.74819I 0
u = 1.037780 0.050306I
a = 2.18608 + 0.36963I
b = 1.068720 + 0.752547I
2.48276 0.74819I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.279819 + 0.894406I
a = 0.240842 0.954939I
b = 0.473947 + 0.149110I
2.20675 + 2.15189I 2.00000 6.97084I
u = 0.279819 0.894406I
a = 0.240842 + 0.954939I
b = 0.473947 0.149110I
2.20675 2.15189I 2.00000 + 6.97084I
u = 0.931439 + 0.093793I
a = 0.353517 0.205717I
b = 0.228533 + 0.380605I
1.57052 + 0.52011I 4.24531 + 0.I
u = 0.931439 0.093793I
a = 0.353517 + 0.205717I
b = 0.228533 0.380605I
1.57052 0.52011I 4.24531 + 0.I
u = 1.077730 + 0.076763I
a = 1.84215 + 0.42920I
b = 0.682352 0.497417I
3.02707 0.18143I 0
u = 1.077730 0.076763I
a = 1.84215 0.42920I
b = 0.682352 + 0.497417I
3.02707 + 0.18143I 0
u = 1.109660 + 0.203084I
a = 1.61262 + 1.92333I
b = 1.65697 + 2.09432I
9.86665 + 5.91796I 0
u = 1.109660 0.203084I
a = 1.61262 1.92333I
b = 1.65697 2.09432I
9.86665 5.91796I 0
u = 1.136350 + 0.003599I
a = 1.064320 0.075553I
b = 1.72518 0.75050I
7.54536 + 1.24468I 0
u = 1.136350 0.003599I
a = 1.064320 + 0.075553I
b = 1.72518 + 0.75050I
7.54536 1.24468I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.544396 + 1.000180I
a = 0.095435 + 0.415036I
b = 1.69336 + 0.10370I
8.85105 + 1.75177I 0
u = 0.544396 1.000180I
a = 0.095435 0.415036I
b = 1.69336 0.10370I
8.85105 1.75177I 0
u = 1.167580 + 0.149402I
a = 1.72845 0.61424I
b = 1.52072 0.86765I
2.82519 4.47594I 0
u = 1.167580 0.149402I
a = 1.72845 + 0.61424I
b = 1.52072 + 0.86765I
2.82519 + 4.47594I 0
u = 1.141340 + 0.356267I
a = 1.97705 + 0.57022I
b = 1.379620 0.269089I
8.60220 8.16498I 0
u = 1.141340 0.356267I
a = 1.97705 0.57022I
b = 1.379620 + 0.269089I
8.60220 + 8.16498I 0
u = 1.100400 + 0.514009I
a = 0.182278 0.554378I
b = 0.476968 0.410769I
0.63838 5.02004I 0
u = 1.100400 0.514009I
a = 0.182278 + 0.554378I
b = 0.476968 + 0.410769I
0.63838 + 5.02004I 0
u = 1.111630 + 0.510249I
a = 0.303809 0.263324I
b = 0.425849 0.400376I
0.68506 5.04397I 0
u = 1.111630 0.510249I
a = 0.303809 + 0.263324I
b = 0.425849 + 0.400376I
0.68506 + 5.04397I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.741491 + 0.975965I
a = 0.627850 0.813152I
b = 0.160474 + 1.091760I
0.664828 + 0.016710I 0
u = 0.741491 0.975965I
a = 0.627850 + 0.813152I
b = 0.160474 1.091760I
0.664828 0.016710I 0
u = 0.002030 + 1.272340I
a = 0.513090 + 0.516566I
b = 2.01029 0.25360I
6.77946 + 10.25100I 0
u = 0.002030 1.272340I
a = 0.513090 0.516566I
b = 2.01029 + 0.25360I
6.77946 10.25100I 0
u = 0.290112 + 1.251830I
a = 0.721546 0.371631I
b = 2.33695 0.28961I
0.46245 2.32653I 0
u = 0.290112 1.251830I
a = 0.721546 + 0.371631I
b = 2.33695 + 0.28961I
0.46245 + 2.32653I 0
u = 0.319419 + 0.638323I
a = 0.266507 + 0.149010I
b = 0.429896 + 0.399818I
1.58623 + 0.62032I 1.131389 0.019601I
u = 0.319419 0.638323I
a = 0.266507 0.149010I
b = 0.429896 0.399818I
1.58623 0.62032I 1.131389 + 0.019601I
u = 0.385520 + 0.578821I
a = 0.497687 0.253565I
b = 0.308115 + 0.179903I
1.44081 + 0.61682I 4.83546 + 0.93463I
u = 0.385520 0.578821I
a = 0.497687 + 0.253565I
b = 0.308115 0.179903I
1.44081 0.61682I 4.83546 0.93463I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.214200 + 0.479278I
a = 0.030527 + 0.386320I
b = 0.171089 0.244683I
0.85536 + 2.82110I 0
u = 1.214200 0.479278I
a = 0.030527 0.386320I
b = 0.171089 + 0.244683I
0.85536 2.82110I 0
u = 1.274540 + 0.287916I
a = 2.15458 + 0.40448I
b = 2.52672 0.90327I
6.55815 1.94136I 0
u = 1.274540 0.287916I
a = 2.15458 0.40448I
b = 2.52672 + 0.90327I
6.55815 + 1.94136I 0
u = 0.194290 + 0.652674I
a = 0.004037 0.292078I
b = 1.108940 + 0.699571I
5.77638 + 4.37759I 3.04054 1.90544I
u = 0.194290 0.652674I
a = 0.004037 + 0.292078I
b = 1.108940 0.699571I
5.77638 4.37759I 3.04054 + 1.90544I
u = 1.316740 + 0.342524I
a = 2.22467 + 0.45472I
b = 2.84462 0.86702I
3.74572 + 7.98813I 0
u = 1.316740 0.342524I
a = 2.22467 0.45472I
b = 2.84462 + 0.86702I
3.74572 7.98813I 0
u = 0.540950 + 0.287850I
a = 1.59281 1.42860I
b = 1.005260 0.506933I
8.08495 3.80008I 6.48316 + 2.78169I
u = 0.540950 0.287850I
a = 1.59281 + 1.42860I
b = 1.005260 + 0.506933I
8.08495 + 3.80008I 6.48316 2.78169I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.280390 + 0.542150I
a = 0.405570 + 0.444554I
b = 1.39952 + 0.78269I
8.14535 0.29592I 0
u = 1.280390 0.542150I
a = 0.405570 0.444554I
b = 1.39952 0.78269I
8.14535 + 0.29592I 0
u = 1.369510 + 0.269960I
a = 1.75943 0.21348I
b = 1.79429 + 1.07646I
15.0106 5.5218I 0
u = 1.369510 0.269960I
a = 1.75943 + 0.21348I
b = 1.79429 1.07646I
15.0106 + 5.5218I 0
u = 1.390460 + 0.141716I
a = 1.70864 0.95421I
b = 2.53555 0.75803I
10.89910 1.69454I 0
u = 1.390460 0.141716I
a = 1.70864 + 0.95421I
b = 2.53555 + 0.75803I
10.89910 + 1.69454I 0
u = 1.329630 + 0.472866I
a = 1.82348 0.90583I
b = 2.91957 + 0.23245I
2.19507 8.22505I 0
u = 1.329630 0.472866I
a = 1.82348 + 0.90583I
b = 2.91957 0.23245I
2.19507 + 8.22505I 0
u = 1.33351 + 0.50009I
a = 0.205326 0.345072I
b = 0.181642 + 0.317254I
8.32222 + 10.32410I 0
u = 1.33351 0.50009I
a = 0.205326 + 0.345072I
b = 0.181642 0.317254I
8.32222 10.32410I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.097023 + 0.516748I
a = 1.53614 + 0.33142I
b = 1.267050 + 0.268926I
0.63412 4.46156I 3.76825 + 6.77202I
u = 0.097023 0.516748I
a = 1.53614 0.33142I
b = 1.267050 0.268926I
0.63412 + 4.46156I 3.76825 6.77202I
u = 1.34581 + 0.61160I
a = 1.62036 0.84261I
b = 2.53126 + 1.02229I
4.08423 + 8.86167I 0
u = 1.34581 0.61160I
a = 1.62036 + 0.84261I
b = 2.53126 1.02229I
4.08423 8.86167I 0
u = 1.48533 + 0.07762I
a = 1.79656 + 0.60283I
b = 3.47474 + 0.80956I
8.62358 + 1.01784I 0
u = 1.48533 0.07762I
a = 1.79656 0.60283I
b = 3.47474 0.80956I
8.62358 1.01784I 0
u = 1.41487 + 0.58489I
a = 1.63665 + 0.81194I
b = 2.79765 0.68796I
11.2576 16.6985I 0
u = 1.41487 0.58489I
a = 1.63665 0.81194I
b = 2.79765 + 0.68796I
11.2576 + 16.6985I 0
u = 0.386897 + 0.249171I
a = 2.06957 0.41148I
b = 0.267376 + 0.524327I
3.14659 + 1.15669I 0.68364 1.66386I
u = 0.386897 0.249171I
a = 2.06957 + 0.41148I
b = 0.267376 0.524327I
3.14659 1.15669I 0.68364 + 1.66386I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.30406 + 0.82899I
a = 1.05664 + 1.05525I
b = 2.16979 0.68015I
10.94130 + 5.20376I 0
u = 1.30406 0.82899I
a = 1.05664 1.05525I
b = 2.16979 + 0.68015I
10.94130 5.20376I 0
u = 0.420966 + 0.043691I
a = 1.177750 0.720907I
b = 0.633678 + 0.044005I
1.261910 + 0.263190I 8.70761 + 0.23744I
u = 0.420966 0.043691I
a = 1.177750 + 0.720907I
b = 0.633678 0.044005I
1.261910 0.263190I 8.70761 0.23744I
u = 1.65030 + 0.51603I
a = 1.148450 0.155755I
b = 1.90968 + 1.96171I
12.01700 3.30289I 0
u = 1.65030 0.51603I
a = 1.148450 + 0.155755I
b = 1.90968 1.96171I
12.01700 + 3.30289I 0
12
II. I
u
2
= h2.49 × 10
8
u
22
+ 2.08 × 10
8
u
21
+ · · · + 7.95 × 10
7
b 1.35 × 10
9
, 4.10 ×
10
8
u
22
+3.48×10
8
u
21
+· · · +7.95×10
7
a2.19×10
9
, u
23
+2u
22
+· · · 8u 8i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
2
=
5.15959u
22
4.37544u
21
+ ··· + 13.1329u + 27.5097
3.12825u
22
2.62000u
21
+ ··· + 7.89685u + 16.9681
a
6
=
1
u
2
a
7
=
5.96267u
22
+ 5.49417u
21
+ ··· 13.9666u 37.3530
3.71013u
22
+ 4.51949u
21
+ ··· 2.41295u 30.8696
a
3
=
0.180806u
22
+ 1.09306u
21
+ ··· + 4.41132u 6.09049
2.40989u
22
+ 2.40623u
21
+ ··· 5.49037u 16.5146
a
8
=
2.25254u
22
+ 0.974685u
21
+ ··· 11.5536u 6.48339
3.71013u
22
+ 4.51949u
21
+ ··· 2.41295u 30.8696
a
12
=
u
u
3
+ u
a
1
=
4.92777u
22
6.66663u
21
+ ··· 3.35723u + 31.9947
3.71013u
22
4.51949u
21
+ ··· + 2.41295u + 30.8696
a
10
=
3.86653u
22
5.39577u
21
+ ··· 1.15260u + 30.2425
1.89779u
22
+ 2.79821u
21
+ ··· + 0.830807u 20.7597
a
4
=
2.71997u
22
3.16714u
21
+ ··· + 3.22271u + 23.5905
5.45629u
22
+ 4.93488u
21
+ ··· 15.1772u 33.8649
a
9
=
4.16367u
22
+ 3.18690u
21
+ ··· 13.2821u 21.7105
2.88236u
22
+ 4.09623u
21
+ ··· + 1.72423u 28.5228
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5516374159
636344672
u
22
+
9107813537
636344672
u
21
+ ··· +
301737269
39771542
u
9773924821
79543084
13
(iv) u-Polynomials at the component
14
Crossings u-Polynomials at each crossing
c
1
4(4u
23
65u
22
+ ··· + 15u 1)
c
2
2(2u
23
+ u
22
+ ··· 3u + 1)
c
3
u
23
+ 6u
22
+ ··· + 17u + 1
c
4
u
23
+ 3u
21
+ ··· + 33u + 14
c
5
u
23
+ 2u
22
+ ··· 8u 8
c
6
2(2u
23
u
22
+ ··· 3u 1)
c
7
u
23
+ 2u
22
+ ··· u 4
c
8
u
23
3u
22
+ ··· + 40u 16
c
9
2(2u
23
3u
22
+ ··· 8u 8)
c
10
4(4u
23
41u
22
+ ··· + 5u 1)
c
11
u
23
2u
22
+ ··· 8u + 8
c
12
2(2u
23
+ u
22
+ ··· u + 1)
15
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
16(16y
23
321y
22
+ ··· 13y 1)
c
2
, c
6
4(4y
23
65y
22
+ ··· + 15y 1)
c
3
y
23
22y
22
+ ··· 11y 1
c
4
y
23
+ 6y
22
+ ··· + 1061y 196
c
5
, c
11
y
23
14y
22
+ ··· + 256y 64
c
7
y
23
+ 2y
22
+ ··· + 73y 16
c
8
y
23
+ 23y
22
+ ··· + 6080y 256
c
9
4(4y
23
+ 51y
22
+ ··· + 384y 64)
c
10
16(16y
23
297y
22
+ ··· 3y 1)
c
12
4(4y
23
+ 31y
22
+ ··· + 13y 1)
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.356302 + 0.921246I
a = 0.426449 0.898055I
b = 1.81269 0.26418I
2.07565 + 3.56521I 0.83283 7.40934I
u = 0.356302 0.921246I
a = 0.426449 + 0.898055I
b = 1.81269 + 0.26418I
2.07565 3.56521I 0.83283 + 7.40934I
u = 0.659298 + 0.709797I
a = 0.183477 + 0.380951I
b = 0.351559 0.549190I
0.91405 1.41548I 1.11361 + 5.21408I
u = 0.659298 0.709797I
a = 0.183477 0.380951I
b = 0.351559 + 0.549190I
0.91405 + 1.41548I 1.11361 5.21408I
u = 1.04960
a = 2.61659
b = 0.614702
3.12449 70.7810
u = 0.974176 + 0.395630I
a = 1.57498 + 1.75261I
b = 1.40615 + 0.67428I
8.68718 + 5.83308I 5.34407 4.88575I
u = 0.974176 0.395630I
a = 1.57498 1.75261I
b = 1.40615 0.67428I
8.68718 5.83308I 5.34407 + 4.88575I
u = 0.969026 + 0.417007I
a = 0.357355 0.102308I
b = 0.217924 0.434540I
0.08939 + 5.69307I 0.41476 11.59398I
u = 0.969026 0.417007I
a = 0.357355 + 0.102308I
b = 0.217924 + 0.434540I
0.08939 5.69307I 0.41476 + 11.59398I
u = 0.446659 + 0.962675I
a = 0.182179 0.915290I
b = 0.156899 + 0.194953I
2.40763 + 1.37050I 0.171489 + 1.394959I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.446659 0.962675I
a = 0.182179 + 0.915290I
b = 0.156899 0.194953I
2.40763 1.37050I 0.171489 1.394959I
u = 0.235891 + 0.795309I
a = 0.720914 0.951185I
b = 0.991580 + 0.519972I
0.059835 1.122220I 4.89482 + 1.47895I
u = 0.235891 0.795309I
a = 0.720914 + 0.951185I
b = 0.991580 0.519972I
0.059835 + 1.122220I 4.89482 1.47895I
u = 0.728014 + 0.278875I
a = 2.47522 + 1.35985I
b = 2.16573 0.15001I
5.70885 2.28203I 0.70922 + 2.28852I
u = 0.728014 0.278875I
a = 2.47522 1.35985I
b = 2.16573 + 0.15001I
5.70885 + 2.28203I 0.70922 2.28852I
u = 1.184950 + 0.568415I
a = 0.040381 + 0.403877I
b = 0.070996 0.158742I
0.10085 + 4.15383I 1.76815 1.34475I
u = 1.184950 0.568415I
a = 0.040381 0.403877I
b = 0.070996 + 0.158742I
0.10085 4.15383I 1.76815 + 1.34475I
u = 1.319470 + 0.481768I
a = 1.90814 0.84640I
b = 2.92161 + 0.56057I
1.35982 8.75350I 1.07603 + 8.75787I
u = 1.319470 0.481768I
a = 1.90814 + 0.84640I
b = 2.92161 0.56057I
1.35982 + 8.75350I 1.07603 8.75787I
u = 1.383620 + 0.262159I
a = 1.090950 0.766666I
b = 1.47323 0.28646I
10.42060 2.61211I 7.27563 + 4.52171I
19
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.383620 0.262159I
a = 1.090950 + 0.766666I
b = 1.47323 + 0.28646I
10.42060 + 2.61211I 7.27563 4.52171I
u = 1.45325 + 0.11507I
a = 2.33744 0.07338I
b = 4.15483 0.72662I
8.84112 + 0.24124I 10.76982 + 2.03355I
u = 1.45325 0.11507I
a = 2.33744 + 0.07338I
b = 4.15483 + 0.72662I
8.84112 0.24124I 10.76982 2.03355I
20
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
16(4u
23
65u
22
+ ··· + 15u 1)(4u
76
+ 181u
75
+ ··· + 50u + 1)
c
2
4(2u
23
+ u
22
+ ··· 3u + 1)(2u
76
u
75
+ ··· 2u + 1)
c
3
(u
23
+ 6u
22
+ ··· + 17u + 1)(u
76
7u
75
+ ··· + 842u + 773)
c
4
(u
23
+ 3u
21
+ ··· + 33u + 14)(u
76
+ u
75
+ ··· + 137983u + 158846)
c
5
(u
23
+ 2u
22
+ ··· 8u 8)(u
76
3u
75
+ ··· + 936u + 232)
c
6
4(2u
23
u
22
+ ··· 3u 1)(2u
76
u
75
+ ··· 2u + 1)
c
7
(u
23
+ 2u
22
+ ··· u 4)(u
76
5u
75
+ ··· 19313u + 1532)
c
8
(u
23
3u
22
+ ··· + 40u 16)
· (u
76
4u
75
+ ··· + 20080608u + 2598032)
c
9
4(2u
23
3u
22
+ ··· 8u 8)(2u
76
+ u
75
+ ··· + 296u + 712)
c
10
16(4u
23
41u
22
+ ··· + 5u 1)(4u
76
+ 27u
75
+ ··· + 3218u + 419)
c
11
(u
23
2u
22
+ ··· 8u + 8)(u
76
3u
75
+ ··· + 936u + 232)
c
12
4(2u
23
+ u
22
+ ··· u + 1)(2u
76
+ 7u
75
+ ··· + 11068u + 1009)
21
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
256(16y
23
321y
22
+ ··· 13y 1)(16y
76
+ 15y
75
+ ··· 166y + 1)
c
2
, c
6
16(4y
23
65y
22
+ ··· + 15y 1)(4y
76
181y
75
+ ··· 50y + 1)
c
3
(y
23
22y
22
+ ··· 11y 1)
· (y
76
107y
75
+ ··· 13723192y + 597529)
c
4
(y
23
+ 6y
22
+ ··· + 1061y 196)
· (y
76
+ 33y
75
+ ··· + 325811545407y + 25232051716)
c
5
, c
11
(y
23
14y
22
+ ··· + 256y 64)
· (y
76
51y
75
+ ··· 1128512y + 53824)
c
7
(y
23
+ 2y
22
+ ··· + 73y 16)
· (y
76
11y
75
+ ··· 47423585y + 2347024)
c
8
(y
23
+ 23y
22
+ ··· + 6080y 256)
· (y
76
+ 62y
75
+ ··· + 198572181119104y + 6749770273024)
c
9
16(4y
23
+ 51y
22
+ ··· + 384y 64)
· (4y
76
+ 367y
75
+ ··· + 37802176y + 506944)
c
10
256(16y
23
297y
22
+ ··· 3y 1)
· (16y
76
+ 487y
75
+ ··· + 8708976y + 175561)
c
12
16(4y
23
+ 31y
22
+ ··· + 13y 1)
· (4y
76
+ 331y
75
+ ··· + 210844724y + 1018081)
22