12n
0570
(K12n
0570
)
A knot diagram
1
Linearized knot diagam
3 7 9 10 8 2 12 3 4 5 7 11
Solving Sequence
4,9
10 5
7,11
12 3 2 1 6 8
c
9
c
4
c
10
c
11
c
3
c
2
c
1
c
6
c
8
c
5
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h6u
18
3u
17
+ ··· + 4b 8, 5u
18
+ 3u
17
+ ··· + 4a + 2, u
19
2u
18
+ ··· 2u + 2i
I
u
2
= hb + u 1, 3a 2u + 3, u
2
3i
I
u
3
= ha
2
u + 2a
2
+ 2au + b + 5a 2u 2, a
3
+ 2a
2
3au u + 1, u
2
+ u 1i
I
u
4
= hb 1, a + 1, u + 1i
I
u
5
= hb, a + 1, u + 1i
I
u
6
= hb 2, a + 1, u 1i
I
u
7
= hb 1, a, u 1i
I
v
1
= ha, b 1, v 1i
* 8 irreducible components of dim
C
= 0, with total 32 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h6u
18
3u
17
+· · ·+4b8, 5u
18
+3u
17
+· · ·+4a+2, u
19
2u
18
+· · ·2u+2i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
7
=
5
4
u
18
3
4
u
17
+ ··· + 2u
1
2
3
2
u
18
+
3
4
u
17
+ ··· + 2u
2
+ 2
a
11
=
u
2
+ 1
u
4
2u
2
a
12
=
5
4
u
18
3
4
u
17
+ ··· + 2u
1
2
5
4
u
18
+
1
4
u
17
+ ··· u +
3
2
a
3
=
u
u
a
2
=
1
4
u
18
+
11
4
u
16
+ ···
1
2
u
1
2
1
4
u
18
5
2
u
16
+ ··· + u
2
+ u
a
1
=
1
4
u
16
5
2
u
14
+ ···
1
2
u
1
2
1
2
u
11
7
2
u
9
+ ··· +
3
2
u
2
+ u
a
6
=
u
7
+ 4u
5
4u
3
+ 2u
u
7
3u
5
+ u
a
8
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
18
20u
16
4u
15
+ 74u
14
+ 38u
13
118u
12
130u
11
+ 54u
10
+
186u
9
+ 68u
8
90u
7
112u
6
20u
5
+ 38u
4
+ 62u
3
+ 30u
2
+ 4u + 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
+ 27u
18
+ ··· + 3437u + 121
c
2
, c
6
u
19
u
18
+ ··· 37u 11
c
3
, c
4
, c
8
c
9
, c
10
u
19
2u
18
+ ··· 2u + 2
c
5
u
19
+ 5u
18
+ ··· 2958u + 842
c
7
, c
11
u
19
+ u
18
+ ··· + 11u 5
c
12
u
19
3u
18
+ ··· + 261u 25
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
63y
18
+ ··· + 5592117y 14641
c
2
, c
6
y
19
27y
18
+ ··· + 3437y 121
c
3
, c
4
, c
8
c
9
, c
10
y
19
24y
18
+ ··· + 195y
2
4
c
5
y
19
+ 39y
18
+ ··· + 8404544y 708964
c
7
, c
11
y
19
3y
18
+ ··· + 261y 25
c
12
y
19
+ 33y
18
+ ··· + 24021y 625
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.794152 + 0.543465I
a = 0.482447 + 0.204059I
b = 0.924151 + 0.772270I
7.34662 0.67943I 5.65616 + 1.50255I
u = 0.794152 0.543465I
a = 0.482447 0.204059I
b = 0.924151 0.772270I
7.34662 + 0.67943I 5.65616 1.50255I
u = 0.935136 + 0.498632I
a = 0.009698 0.441743I
b = 1.24024 + 1.35546I
6.45737 + 7.68487I 7.03505 5.77603I
u = 0.935136 0.498632I
a = 0.009698 + 0.441743I
b = 1.24024 1.35546I
6.45737 7.68487I 7.03505 + 5.77603I
u = 0.787128 + 0.325506I
a = 0.150228 + 0.339895I
b = 0.48300 1.36935I
1.07697 4.13087I 9.45859 + 7.55506I
u = 0.787128 0.325506I
a = 0.150228 0.339895I
b = 0.48300 + 1.36935I
1.07697 + 4.13087I 9.45859 7.55506I
u = 0.071777 + 0.733673I
a = 0.15515 1.56739I
b = 0.214541 0.685780I
9.51900 3.56143I 3.03301 + 2.71216I
u = 0.071777 0.733673I
a = 0.15515 + 1.56739I
b = 0.214541 + 0.685780I
9.51900 + 3.56143I 3.03301 2.71216I
u = 0.039838 + 0.447508I
a = 1.21035 + 1.34300I
b = 0.102434 + 0.177489I
1.13039 + 1.43084I 1.52232 3.59827I
u = 0.039838 0.447508I
a = 1.21035 1.34300I
b = 0.102434 0.177489I
1.13039 1.43084I 1.52232 + 3.59827I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.382837
a = 0.501969
b = 0.660647
0.831777 13.6610
u = 1.62442 + 0.15410I
a = 0.86935 + 1.16752I
b = 1.85650 1.36466I
0.84264 + 3.32574I 7.36493 0.96716I
u = 1.62442 0.15410I
a = 0.86935 1.16752I
b = 1.85650 + 1.36466I
0.84264 3.32574I 7.36493 + 0.96716I
u = 1.64903 + 0.08490I
a = 0.26722 2.31947I
b = 0.55282 + 2.88445I
9.55424 + 5.66378I 11.29825 4.88655I
u = 1.64903 0.08490I
a = 0.26722 + 2.31947I
b = 0.55282 2.88445I
9.55424 5.66378I 11.29825 + 4.88655I
u = 1.69418 + 0.14515I
a = 1.07205 + 2.00699I
b = 1.98554 2.27964I
2.65549 10.25360I 8.99721 + 4.95875I
u = 1.69418 0.14515I
a = 1.07205 2.00699I
b = 1.98554 + 2.27964I
2.65549 + 10.25360I 8.99721 4.95875I
u = 1.72122
a = 0.936889
b = 0.803538
14.6839 18.0050
u = 1.74710
a = 1.48185
b = 2.13166
11.7122 5.60290
6
II. I
u
2
= hb + u 1, 3a 2u + 3, u
2
3i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
3
a
5
=
u
2u
a
7
=
2
3
u 1
u + 1
a
11
=
2
3
a
12
=
2
3
u 1
u + 2
a
3
=
u
u
a
2
=
5
3
u + 1
2u 1
a
1
=
2
3
u + 1
u 1
a
6
=
u
u
a
8
=
2
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
c
12
(u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
3
c
6
, c
7
(u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y 3)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.73205
a = 0.154701
b = 0.732051
13.1595 12.0000
u = 1.73205
a = 2.15470
b = 2.73205
13.1595 12.0000
10
III.
I
u
3
= ha
2
u + 2a
2
+ 2au + b + 5a 2u 2, a
3
+ 2a
2
3au u + 1, u
2
+ u 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u 1
a
5
=
u
u + 1
a
7
=
a
a
2
u 2a
2
2au 5a + 2u + 2
a
11
=
u
u
a
12
=
a
a
2
u + 2a
2
+ 3au + 4a 2u 2
a
3
=
u
u
a
2
=
a
a
2
u 2a
2
3au 4a + 2u + 2
a
1
=
a
2
au 3a + 2u
a
2
u a
2
2au 2a + 2
a
6
=
u
u + 1
a
8
=
u
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 4u
5
+ 6u
4
+ 7u
3
+ 7u
2
+ 3u + 1
c
2
, c
6
, c
7
c
11
u
6
2u
4
u
3
+ u
2
+ u 1
c
3
, c
4
, c
8
c
9
, c
10
(u
2
+ u 1)
3
c
5
u
6
c
12
u
6
4u
5
+ 6u
4
7u
3
+ 7u
2
3u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
12
y
6
4y
5
6y
4
+ 13y
3
+ 19y
2
+ 5y + 1
c
2
, c
6
, c
7
c
11
y
6
4y
5
+ 6y
4
7y
3
+ 7y
2
3y + 1
c
3
, c
4
, c
8
c
9
, c
10
(y
2
3y + 1)
3
c
5
y
6
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.365159 + 0.080975I
b = 0.626987 0.659789I
0.986960 10.0000
u = 0.618034
a = 0.365159 0.080975I
b = 0.626987 + 0.659789I
0.986960 10.0000
u = 0.618034
a = 2.73032
b = 0.746026
0.986960 10.0000
u = 1.61803
a = 0.659441
b = 0.238962
8.88264 10.0000
u = 1.61803
a = 0.67028 + 1.87638I
b = 1.11948 2.34901I
8.88264 10.0000
u = 1.61803
a = 0.67028 1.87638I
b = 1.11948 + 2.34901I
8.88264 10.0000
14
IV. I
u
4
= hb 1, a + 1, u + 1i
(i) Arc colorings
a
4
=
0
1
a
9
=
1
0
a
10
=
1
1
a
5
=
1
0
a
7
=
1
1
a
11
=
0
1
a
12
=
1
0
a
3
=
1
1
a
2
=
1
1
a
1
=
1
1
a
6
=
1
1
a
8
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
c
3
, c
4
, c
7
c
8
, c
9
, c
10
c
11
u + 1
c
5
, c
12
u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
y
c
3
, c
4
, c
5
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
4.93480 18.0000
18
V. I
u
5
= hb, a + 1, u + 1i
(i) Arc colorings
a
4
=
0
1
a
9
=
1
0
a
10
=
1
1
a
5
=
1
0
a
7
=
1
0
a
11
=
0
1
a
12
=
1
1
a
3
=
1
1
a
2
=
0
1
a
1
=
1
0
a
6
=
1
1
a
8
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
12
u 1
c
2
, c
5
, c
8
c
9
, c
10
, c
11
u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
3.28987 12.0000
22
VI. I
u
6
= hb 2, a + 1, u 1i
(i) Arc colorings
a
4
=
0
1
a
9
=
1
0
a
10
=
1
1
a
5
=
1
0
a
7
=
1
2
a
11
=
0
1
a
12
=
1
1
a
3
=
1
1
a
2
=
2
3
a
1
=
1
2
a
6
=
1
1
a
8
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
12
u 1
c
2
, c
3
, c
4
c
11
u + 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 2.00000
3.28987 12.0000
26
VII. I
u
7
= hb 1, a, u 1i
(i) Arc colorings
a
4
=
0
1
a
9
=
1
0
a
10
=
1
1
a
5
=
1
0
a
7
=
0
1
a
11
=
0
1
a
12
=
0
1
a
3
=
1
1
a
2
=
1
2
a
1
=
0
1
a
6
=
1
1
a
8
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u + 1
c
2
, c
3
, c
4
c
6
, c
8
, c
9
c
10
u 1
c
7
, c
11
, c
12
u
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
8
, c
9
, c
10
y 1
c
7
, c
11
, c
12
y
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
30
VIII. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
1
0
a
10
=
1
0
a
5
=
1
0
a
7
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
1
0
a
2
=
1
1
a
1
=
0
1
a
6
=
1
0
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
c
12
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
7
u + 1
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
34
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u 1)
5
(u + 1)(u
6
+ 4u
5
+ 6u
4
+ 7u
3
+ 7u
2
+ 3u + 1)
· (u
19
+ 27u
18
+ ··· + 3437u + 121)
c
2
u(u 1)
4
(u + 1)
2
(u
6
2u
4
u
3
+ u
2
+ u 1)
· (u
19
u
18
+ ··· 37u 11)
c
3
, c
4
, c
8
c
9
, c
10
u(u 1)
2
(u + 1)
2
(u
2
3)(u
2
+ u 1)
3
(u
19
2u
18
+ ··· 2u + 2)
c
5
u
7
(u 1)
2
(u + 1)
2
(u
2
3)(u
19
+ 5u
18
+ ··· 2958u + 842)
c
6
u(u 1)
3
(u + 1)
3
(u
6
2u
4
u
3
+ u
2
+ u 1)
· (u
19
u
18
+ ··· 37u 11)
c
7
u(u 1)
2
(u + 1)
4
(u
6
2u
4
u
3
+ u
2
+ u 1)
· (u
19
+ u
18
+ ··· + 11u 5)
c
11
u(u 1)
3
(u + 1)
3
(u
6
2u
4
u
3
+ u
2
+ u 1)
· (u
19
+ u
18
+ ··· + 11u 5)
c
12
u(u 1)
6
(u
6
4u
5
+ 6u
4
7u
3
+ 7u
2
3u + 1)
· (u
19
3u
18
+ ··· + 261u 25)
35
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y 1)
6
(y
6
4y
5
6y
4
+ 13y
3
+ 19y
2
+ 5y + 1)
· (y
19
63y
18
+ ··· + 5592117y 14641)
c
2
, c
6
y(y 1)
6
(y
6
4y
5
+ 6y
4
7y
3
+ 7y
2
3y + 1)
· (y
19
27y
18
+ ··· + 3437y 121)
c
3
, c
4
, c
8
c
9
, c
10
y(y 3)
2
(y 1)
4
(y
2
3y + 1)
3
(y
19
24y
18
+ ··· + 195y
2
4)
c
5
y
7
(y 3)
2
(y 1)
4
(y
19
+ 39y
18
+ ··· + 8404544y 708964)
c
7
, c
11
y(y 1)
6
(y
6
4y
5
+ 6y
4
7y
3
+ 7y
2
3y + 1)
· (y
19
3y
18
+ ··· + 261y 25)
c
12
y(y 1)
6
(y
6
4y
5
6y
4
+ 13y
3
+ 19y
2
+ 5y + 1)
· (y
19
+ 33y
18
+ ··· + 24021y 625)
36