12n
0571
(K12n
0571
)
A knot diagram
1
Linearized knot diagam
3 7 9 10 8 2 12 3 4 5 1 8
Solving Sequence
3,9
4 10 5 8
6,12
1 7 2 11
c
3
c
9
c
4
c
8
c
5
c
12
c
7
c
2
c
11
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
9
− u
8
+ 6u
7
+ 4u
6
− 12u
5
− 5u
4
+ 7u
3
+ 2u
2
+ b − u + 1,
3u
9
+ 3u
8
− 17u
7
− 12u
6
+ 30u
5
+ 15u
4
− 11u
3
− 6u
2
+ 2a − u − 4,
u
10
+ 3u
9
− 3u
8
− 14u
7
+ 21u
5
+ 7u
4
− 8u
3
− 3u
2
− 2i
I
u
2
= hb + 1, a
2
+ 3u
2
− 3a − u − 6, u
3
− 3u − 1i
I
u
3
= hb − u + 1, 3a + 4u − 3, u
2
− 3i
I
u
4
= hb + 1, a − 2, u − 1i
I
u
5
= hb + 1, a − 1, u − 1i
I
u
6
= hb, a + 1, u + 1i
I
u
7
= hb + 2, a − 3, u − 1i
I
v
1
= ha, b + 1, v + 1i
* 8 irreducible components of dim
C
= 0, with total 23 representations.
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1