12n
0571
(K12n
0571
)
A knot diagram
1
Linearized knot diagam
3 7 9 10 8 2 12 3 4 5 1 8
Solving Sequence
3,9
4 10 5 8
6,12
1 7 2 11
c
3
c
9
c
4
c
8
c
5
c
12
c
7
c
2
c
11
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
9
u
8
+ 6u
7
+ 4u
6
12u
5
5u
4
+ 7u
3
+ 2u
2
+ b u + 1,
3u
9
+ 3u
8
17u
7
12u
6
+ 30u
5
+ 15u
4
11u
3
6u
2
+ 2a u 4,
u
10
+ 3u
9
3u
8
14u
7
+ 21u
5
+ 7u
4
8u
3
3u
2
2i
I
u
2
= hb + 1, a
2
+ 3u
2
3a u 6, u
3
3u 1i
I
u
3
= hb u + 1, 3a + 4u 3, u
2
3i
I
u
4
= hb + 1, a 2, u 1i
I
u
5
= hb + 1, a 1, u 1i
I
u
6
= hb, a + 1, u + 1i
I
u
7
= hb + 2, a 3, u 1i
I
v
1
= ha, b + 1, v + 1i
* 8 irreducible components of dim
C
= 0, with total 23 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
9
u
8
+· · · +b + 1, 3u
9
+3u
8
+· · · +2a 4, u
10
+3u
9
+· · · 3u
2
2i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
10
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
8
=
u
u
a
6
=
u
6
3u
4
+ 1
u
6
+ 4u
4
3u
2
a
12
=
3
2
u
9
3
2
u
8
+ ··· +
1
2
u + 2
u
9
+ u
8
6u
7
4u
6
+ 12u
5
+ 5u
4
7u
3
2u
2
+ u 1
a
1
=
1
2
u
9
+
1
2
u
8
+ ··· u
2
+
3
2
u
u
9
u
8
+ 5u
7
+ 4u
6
7u
5
5u
4
+ u
3
+ 2u
2
+ 1
a
7
=
3
2
u
9
3
2
u
8
+ ···
3
2
u + 1
u
9
+ u
8
5u
7
3u
6
+ 8u
5
+ 2u
4
3u
3
+ u 1
a
2
=
3
2
u
9
+
3
2
u
8
+ ··· +
3
2
u 1
u
9
u
8
+ 5u
7
+ 4u
6
7u
5
5u
4
+ u
3
+ 2u
2
+ 1
a
11
=
u
3
+ 2u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
7
12u
5
+ 20u
3
8u + 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
10
+ u
9
+ 12u
8
+ 5u
7
+ 41u
6
+ 7u
5
+ 39u
4
+ 15u
3
+ 2u
2
+ 4u + 1
c
2
, c
6
, c
7
c
12
u
10
u
9
+ u
7
+ 5u
6
3u
5
+ u
4
+ 3u
3
+ 2u
2
1
c
3
, c
4
, c
8
c
9
, c
10
u
10
+ 3u
9
3u
8
14u
7
+ 21u
5
+ 7u
4
8u
3
3u
2
2
c
5
u
10
+ 15u
9
+ ··· + 340u + 142
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
10
+ 23y
9
+ ··· 12y + 1
c
2
, c
6
, c
7
c
12
y
10
y
9
+ 12y
8
5y
7
+ 41y
6
7y
5
+ 39y
4
15y
3
+ 2y
2
4y + 1
c
3
, c
4
, c
8
c
9
, c
10
y
10
15y
9
+ ··· + 12y + 4
c
5
y
10
39y
9
+ ··· 13076y + 20164
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.785856 + 0.428779I
a = 1.37380 0.39872I
b = 1.149750 0.803732I
2.82913 4.20392I 4.59667 + 6.41727I
u = 0.785856 0.428779I
a = 1.37380 + 0.39872I
b = 1.149750 + 0.803732I
2.82913 + 4.20392I 4.59667 6.41727I
u = 0.884247
a = 1.30093
b = 0.719291
1.75072 5.11200
u = 1.42487 + 0.24108I
a = 2.18633 0.04391I
b = 1.60933 + 0.82750I
10.16070 + 6.73545I 5.08933 4.78933I
u = 1.42487 0.24108I
a = 2.18633 + 0.04391I
b = 1.60933 0.82750I
10.16070 6.73545I 5.08933 + 4.78933I
u = 0.129165 + 0.461050I
a = 0.444664 + 0.542292I
b = 0.527577 + 0.512570I
0.055292 + 1.193090I 1.05588 5.24459I
u = 0.129165 0.461050I
a = 0.444664 0.542292I
b = 0.527577 0.512570I
0.055292 1.193090I 1.05588 + 5.24459I
u = 1.71307
a = 1.96680
b = 1.57906
11.1577 7.60720
u = 1.85377 + 0.06834I
a = 2.51839 + 0.18104I
b = 1.86251 0.75572I
17.0320 8.3664I 4.89852 + 3.81014I
u = 1.85377 0.06834I
a = 2.51839 0.18104I
b = 1.86251 + 0.75572I
17.0320 + 8.3664I 4.89852 3.81014I
5
II. I
u
2
= hb + 1, a
2
+ 3u
2
3a u 6, u
3
3u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
10
=
u
2u 1
a
5
=
u
2
+ 1
u
2
+ u
a
8
=
u
u
a
6
=
3u + 2
2u 1
a
12
=
a
1
a
1
=
u
2
a + u
2
+ a
u
2
a u
2
1
a
7
=
2au + u
2
4u 3
au + 2u
a
2
=
2u
2
a + 2u
2
+ a + 1
u
2
a u
2
1
a
11
=
u 1
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
6
+ 6u
4
+ 10u
3
+ 9u
2
+ 18u + 9
c
2
, c
6
, c
7
c
12
u
6
+ 2u
3
+ 3u
2
3
c
3
, c
4
, c
8
c
9
, c
10
(u
3
3u 1)
2
c
5
(u
3
6u
2
+ 3u + 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
6
+ 12y
5
+ 54y
4
+ 26y
3
171y
2
162y + 81
c
2
, c
6
, c
7
c
12
y
6
+ 6y
4
10y
3
+ 9y
2
18y + 9
c
3
, c
4
, c
8
c
9
, c
10
(y
3
6y
2
+ 9y 1)
2
c
5
(y
3
30y
2
+ 21y 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.53209
a = 1.50000 + 0.56919I
b = 1.00000
10.4179 6.00000
u = 1.53209
a = 1.50000 0.56919I
b = 1.00000
10.4179 6.00000
u = 0.347296
a = 1.24606
b = 1.00000
2.74156 6.00000
u = 0.347296
a = 4.24606
b = 1.00000
2.74156 6.00000
u = 1.87939
a = 1.50000 + 0.68329I
b = 1.00000
15.9010 6.00000
u = 1.87939
a = 1.50000 0.68329I
b = 1.00000
15.9010 6.00000
9
III. I
u
3
= hb u + 1, 3a + 4u 3, u
2
3i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
3
a
10
=
u
2u
a
5
=
2
3
a
8
=
u
u
a
6
=
1
0
a
12
=
4
3
u + 1
u 1
a
1
=
1
3
u + 1
1
a
7
=
1
3
u 1
1
a
2
=
1
3
u + 2
1
a
11
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
(u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
3
c
6
, c
12
(u + 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y 3)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.73205
a = 1.30940
b = 0.732051
9.86960 0
u = 1.73205
a = 3.30940
b = 2.73205
9.86960 0
13
IV. I
u
4
= hb + 1, a 2, u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
10
=
1
0
a
5
=
0
1
a
8
=
1
1
a
6
=
1
0
a
12
=
2
1
a
1
=
1
0
a
7
=
1
0
a
2
=
1
0
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
c
3
, c
4
, c
7
c
8
, c
9
, c
10
c
12
u 1
c
5
, c
11
u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
y
c
3
, c
4
, c
5
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 2.00000
b = 1.00000
1.64493 6.00000
17
V. I
u
5
= hb + 1, a 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
10
=
1
0
a
5
=
0
1
a
8
=
1
1
a
6
=
1
0
a
12
=
1
1
a
1
=
1
1
a
7
=
1
1
a
2
=
2
1
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u + 1
c
2
, c
3
, c
4
c
6
, c
8
, c
9
c
10
u 1
c
7
, c
11
, c
12
u
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
8
, c
9
, c
10
y 1
c
7
, c
11
, c
12
y
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
1.64493 6.00000
21
VI. I
u
6
= hb, a + 1, u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
10
=
1
0
a
5
=
0
1
a
8
=
1
1
a
6
=
1
0
a
12
=
1
0
a
1
=
0
1
a
7
=
0
1
a
2
=
1
1
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
8
, c
9
, c
10
c
11
, c
12
u 1
c
2
, c
3
, c
4
c
7
u + 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
0 0
25
VII. I
u
7
= hb + 2, a 3, u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
10
=
1
0
a
5
=
0
1
a
8
=
1
1
a
6
=
1
0
a
12
=
3
2
a
1
=
2
1
a
7
=
2
1
a
2
=
3
1
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
11
, c
12
u 1
c
2
, c
5
, c
7
c
8
, c
9
, c
10
u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 3.00000
b = 2.00000
0 0
29
VIII. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
1
0
a
4
=
1
0
a
10
=
1
0
a
5
=
1
0
a
8
=
1
0
a
6
=
1
0
a
12
=
0
1
a
1
=
1
1
a
7
=
1
1
a
2
=
2
1
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
12
u + 1
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
33
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
u(u 1)
5
(u + 1)(u
6
+ 6u
4
+ 10u
3
+ 9u
2
+ 18u + 9)
· (u
10
+ u
9
+ 12u
8
+ 5u
7
+ 41u
6
+ 7u
5
+ 39u
4
+ 15u
3
+ 2u
2
+ 4u + 1)
c
2
, c
7
u(u 1)
4
(u + 1)
2
(u
6
+ 2u
3
+ 3u
2
3)
· (u
10
u
9
+ u
7
+ 5u
6
3u
5
+ u
4
+ 3u
3
+ 2u
2
1)
c
3
, c
4
, c
8
c
9
, c
10
u(u 1)
3
(u + 1)(u
2
3)(u
3
3u 1)
2
· (u
10
+ 3u
9
3u
8
14u
7
+ 21u
5
+ 7u
4
8u
3
3u
2
2)
c
5
u(u 1)(u + 1)
3
(u
2
3)(u
3
6u
2
+ 3u + 1)
2
· (u
10
+ 15u
9
+ ··· + 340u + 142)
c
6
, c
12
u(u 1)
3
(u + 1)
3
(u
6
+ 2u
3
+ 3u
2
3)
· (u
10
u
9
+ u
7
+ 5u
6
3u
5
+ u
4
+ 3u
3
+ 2u
2
1)
34
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
y(y 1)
6
(y
6
+ 12y
5
+ 54y
4
+ 26y
3
171y
2
162y + 81)
· (y
10
+ 23y
9
+ ··· 12y + 1)
c
2
, c
6
, c
7
c
12
y(y 1)
6
(y
6
+ 6y
4
10y
3
+ 9y
2
18y + 9)
· (y
10
y
9
+ 12y
8
5y
7
+ 41y
6
7y
5
+ 39y
4
15y
3
+ 2y
2
4y + 1)
c
3
, c
4
, c
8
c
9
, c
10
y(y 3)
2
(y 1)
4
(y
3
6y
2
+ 9y 1)
2
(y
10
15y
9
+ ··· + 12y + 4)
c
5
y(y 3)
2
(y 1)
4
(y
3
30y
2
+ 21y 1)
2
· (y
10
39y
9
+ ··· 13076y + 20164)
35