12n
0572
(K12n
0572
)
A knot diagram
1
Linearized knot diagam
3 7 10 9 8 2 12 3 4 5 7 11
Solving Sequence
3,10 4,7
2 1 6 9 5 11 8 12
c
3
c
2
c
1
c
6
c
9
c
4
c
10
c
8
c
12
c
5
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h2u
30
+ 2u
29
+ ··· + 4b + 2, 2u
30
u
29
+ ··· + 4a 6, u
31
+ 2u
30
+ ··· + 2u + 2i
I
u
2
= hb 1, 2u
3
3u
2
+ 3a + 3u 3, u
4
+ 3u
2
+ 3i
I
u
3
= h−a
2
u
2
+ u
2
a 2au + b + 2a 2u, 2a
2
u
2
+ a
3
+ 2u
2
a 2a
2
3au + 5a u + 1, u
3
u
2
+ 2u 1i
I
u
4
= hb + 1, u
2
+ a + u 1, u
4
+ u
2
1i
I
v
1
= ha, b 1, v 1i
* 5 irreducible components of dim
C
= 0, with total 49 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2u
30
+2u
29
+· · ·+4b+2, 2u
30
u
29
+· · ·+4a6, u
31
+2u
30
+· · ·+2u+2i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
1
2
u
30
+
1
4
u
29
+ ··· + 2u +
3
2
1
2
u
30
1
2
u
29
+ ··· u
1
2
a
2
=
1
4
u
27
3u
25
+ ··· +
1
2
u + 1
1
4
u
27
+
11
4
u
25
+ ···
1
2
u
2
+
1
2
u
a
1
=
1
4
u
25
5
2
u
23
+ ··· + u + 1
1
4
u
27
+
11
4
u
25
+ ···
1
2
u
2
+
1
2
u
a
6
=
u
10
5u
8
8u
6
3u
4
+ 3u
2
+ 1
u
10
+ 4u
8
+ 5u
6
3u
2
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
11
=
u
5
+ 2u
3
+ u
u
7
3u
5
2u
3
+ u
a
8
=
u
3
2u
u
3
+ u
a
12
=
1
2
u
30
+ u
29
+ ··· +
3
2
u +
5
2
1
4
u
28
1
4
u
27
+ ··· +
3
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
30
+ 4u
29
+ 30u
28
+ 48u
27
+ 192u
26
+ 248u
25
+ 682u
24
+ 702u
23
+ 1432u
22
+ 1112u
21
+
1656u
20
+ 764u
19
+ 556u
18
384u
17
1002u
16
1040u
15
1088u
14
344u
13
+ 216u
12
+
568u
11
+ 830u
10
+ 454u
9
+ 206u
8
108u
7
284u
6
180u
5
122u
4
6u
3
+ 30u
2
+ 4u + 12
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
31
+ 44u
30
+ ··· + 119u + 1
c
2
, c
6
u
31
2u
30
+ ··· + 3u 1
c
3
, c
4
, c
9
u
31
+ 2u
30
+ ··· + 2u + 2
c
5
u
31
+ 7u
30
+ ··· 88514u + 28438
c
7
, c
11
u
31
+ 2u
30
+ ··· u 1
c
8
, c
10
u
31
2u
30
+ ··· 88u + 16
c
12
u
31
4u
30
+ ··· + 39u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
31
104y
30
+ ··· + 10991y 1
c
2
, c
6
y
31
44y
30
+ ··· + 119y 1
c
3
, c
4
, c
9
y
31
+ 26y
30
+ ··· + 8y 4
c
5
y
31
+ 55y
30
+ ··· + 4648364048y 808719844
c
7
, c
11
y
31
4y
30
+ ··· + 39y 1
c
8
, c
10
y
31
14y
30
+ ··· + 448y 256
c
12
y
31
+ 56y
30
+ ··· + 479y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.422005 + 0.970388I
a = 0.780023 0.122330I
b = 1.63363 0.20014I
8.77509 4.02062I 3.17327 + 1.29124I
u = 0.422005 0.970388I
a = 0.780023 + 0.122330I
b = 1.63363 + 0.20014I
8.77509 + 4.02062I 3.17327 1.29124I
u = 0.438452 + 0.819465I
a = 0.612911 + 0.875111I
b = 1.66514 0.05832I
9.30026 3.06037I 2.53545 + 3.57264I
u = 0.438452 0.819465I
a = 0.612911 0.875111I
b = 1.66514 + 0.05832I
9.30026 + 3.06037I 2.53545 3.57264I
u = 0.151148 + 1.120390I
a = 0.774438 + 0.936580I
b = 0.430006 0.577254I
1.40117 + 1.17674I 6.48562 3.33148I
u = 0.151148 1.120390I
a = 0.774438 0.936580I
b = 0.430006 + 0.577254I
1.40117 1.17674I 6.48562 + 3.33148I
u = 0.822269 + 0.212623I
a = 1.60479 + 1.78111I
b = 1.64313 0.27195I
6.42043 + 8.50954I 6.05681 5.42341I
u = 0.822269 0.212623I
a = 1.60479 1.78111I
b = 1.64313 + 0.27195I
6.42043 8.50954I 6.05681 + 5.42341I
u = 0.769464 + 0.275211I
a = 1.58833 1.20476I
b = 1.68783 + 0.04109I
7.55262 1.26507I 4.68154 + 1.47900I
u = 0.769464 0.275211I
a = 1.58833 + 1.20476I
b = 1.68783 0.04109I
7.55262 + 1.26507I 4.68154 1.47900I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.801134
a = 1.76838
b = 1.08175
2.34779 4.38740
u = 0.777905
a = 0.722824
b = 0.0906547
5.57117 16.4750
u = 0.709050 + 0.173396I
a = 0.38023 + 2.22913I
b = 0.614830 0.764424I
1.18939 4.50976I 8.37255 + 6.79420I
u = 0.709050 0.173396I
a = 0.38023 2.22913I
b = 0.614830 + 0.764424I
1.18939 + 4.50976I 8.37255 6.79420I
u = 0.332218 + 1.265660I
a = 0.704768 + 0.124425I
b = 0.095778 0.113924I
1.64712 4.00353I 11.89002 + 3.58978I
u = 0.332218 1.265660I
a = 0.704768 0.124425I
b = 0.095778 + 0.113924I
1.64712 + 4.00353I 11.89002 3.58978I
u = 0.355714 + 1.276500I
a = 0.665256 + 0.850651I
b = 1.105160 + 0.056084I
1.62439 + 4.16232I 0.18076 3.51312I
u = 0.355714 1.276500I
a = 0.665256 0.850651I
b = 1.105160 0.056084I
1.62439 4.16232I 0.18076 + 3.51312I
u = 0.054498 + 1.374780I
a = 0.492915 0.029751I
b = 0.992043 + 0.551725I
6.79962 + 0.91660I 1.89239 1.83526I
u = 0.054498 1.374780I
a = 0.492915 + 0.029751I
b = 0.992043 0.551725I
6.79962 0.91660I 1.89239 + 1.83526I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.292248 + 1.364020I
a = 0.75119 1.48738I
b = 0.689770 + 0.858986I
3.67517 8.15180I 3.05070 + 7.43504I
u = 0.292248 1.364020I
a = 0.75119 + 1.48738I
b = 0.689770 0.858986I
3.67517 + 8.15180I 3.05070 7.43504I
u = 0.34385 + 1.39505I
a = 0.22148 2.07364I
b = 1.66852 + 0.31356I
11.5166 + 12.7194I 2.07160 6.66192I
u = 0.34385 1.39505I
a = 0.22148 + 2.07364I
b = 1.66852 0.31356I
11.5166 12.7194I 2.07160 + 6.66192I
u = 0.30540 + 1.41307I
a = 0.24753 + 1.59262I
b = 1.74843 0.08810I
12.92960 5.15155I 0.52455 + 2.55322I
u = 0.30540 1.41307I
a = 0.24753 1.59262I
b = 1.74843 + 0.08810I
12.92960 + 5.15155I 0.52455 2.55322I
u = 0.047932 + 0.529217I
a = 0.316164 + 0.652908I
b = 0.693120 0.435687I
1.07809 + 1.45065I 1.68946 3.85910I
u = 0.047932 0.529217I
a = 0.316164 0.652908I
b = 0.693120 + 0.435687I
1.07809 1.45065I 1.68946 + 3.85910I
u = 0.02824 + 1.47075I
a = 1.096690 0.319605I
b = 1.77899 + 0.14272I
16.7493 3.9918I 1.06457 + 2.30903I
u = 0.02824 1.47075I
a = 1.096690 + 0.319605I
b = 1.77899 0.14272I
16.7493 + 3.9918I 1.06457 2.30903I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.346395
a = 2.12463
b = 0.429962
0.849256 13.6270
8
II. I
u
2
= hb 1, 2u
3
3u
2
+ 3a + 3u 3, u
4
+ 3u
2
+ 3i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
2
3
u
3
+ u
2
u + 1
1
a
2
=
2
3
u
3
u
2
+ u
1
a
1
=
2
3
u
3
u
2
+ u 1
1
a
6
=
1
0
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
2
+ 3
a
11
=
u
3
2u
u
3
+ u
a
8
=
u
3
2u
u
3
+ u
a
12
=
1
3
u
3
u
2
u 1
u
3
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
c
12
(u 1)
4
c
3
, c
4
, c
9
u
4
+ 3u
2
+ 3
c
5
, c
8
, c
10
u
4
3u
2
+ 3
c
6
, c
7
(u + 1)
4
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
9
(y
2
+ 3y + 3)
2
c
5
, c
8
, c
10
(y
2
3y + 3)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.340625 + 1.271230I
a = 0.233945 + 0.669365I
b = 1.00000
4.05977I 6.00000 3.46410I
u = 0.340625 1.271230I
a = 0.233945 0.669365I
b = 1.00000
4.05977I 6.00000 + 3.46410I
u = 0.340625 + 1.271230I
a = 1.23394 1.06269I
b = 1.00000
4.05977I 6.00000 + 3.46410I
u = 0.340625 1.271230I
a = 1.23394 + 1.06269I
b = 1.00000
4.05977I 6.00000 3.46410I
12
III. I
u
3
=
h−a
2
u
2
+u
2
a2au+b+2a2u, 2a
2
u
2
+2u
2
a+· · ·+5a+1, u
3
u
2
+2u1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
a
a
2
u
2
u
2
a + 2au 2a + 2u
a
2
=
a
2
u
2
+ 2au a + 2u
a
2
u u
2
a a
2
+ 2au 2u
2
+ 2u 2
a
1
=
a
2
u
2
+ a
2
u u
2
a a
2
+ 4au 2u
2
a + 4u 2
a
2
u u
2
a a
2
+ 2au 2u
2
+ 2u 2
a
6
=
u
2
+ 1
u
2
+ u 1
a
9
=
u
u
2
u + 1
a
5
=
u
2
+ 1
u
2
+ u 1
a
11
=
1
0
a
8
=
u
2
1
u
2
u + 1
a
12
=
a
2
u
2
+ 2au a + 2u
a
2
u u
2
a a
2
+ 2au 2u
2
+ 2u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4u + 10
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
+ 6u
8
+ 15u
7
+ 21u
6
+ 19u
5
+ 12u
4
+ 7u
3
+ 5u
2
+ 2u + 1
c
2
, c
6
, c
7
c
11
u
9
3u
7
u
6
+ 3u
5
+ 2u
4
u
3
u
2
+ 1
c
3
, c
4
, c
9
(u
3
u
2
+ 2u 1)
3
c
5
u
9
c
8
, c
10
(u
3
+ u
2
1)
3
c
12
u
9
6u
8
+ 15u
7
21u
6
+ 19u
5
12u
4
+ 7u
3
5u
2
+ 2u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
12
y
9
6y
8
+ 11y
7
y
6
+ 11y
5
40y
4
37y
3
21y
2
6y 1
c
2
, c
6
, c
7
c
11
y
9
6y
8
+ 15y
7
21y
6
+ 19y
5
12y
4
+ 7y
3
5y
2
+ 2y 1
c
3
, c
4
, c
9
(y
3
+ 3y
2
+ 2y 1)
3
c
5
y
9
c
8
, c
10
(y
3
y
2
+ 2y 1)
3
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.110710 0.304480I
b = 1.324820 0.175904I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 + 1.307140I
a = 0.633796 0.350292I
b = 0.376870 + 0.700062I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 + 1.307140I
a = 0.41979 + 1.77933I
b = 0.947946 0.524157I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 1.307140I
a = 1.110710 + 0.304480I
b = 1.324820 + 0.175904I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 1.307140I
a = 0.633796 + 0.350292I
b = 0.376870 0.700062I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 1.307140I
a = 0.41979 1.77933I
b = 0.947946 + 0.524157I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.569840
a = 0.101925
b = 1.26384
1.11345 9.01950
u = 0.569840
a = 1.37568 + 1.52573I
b = 0.631920 0.444935I
1.11345 9.01950
u = 0.569840
a = 1.37568 1.52573I
b = 0.631920 + 0.444935I
1.11345 9.01950
16
IV. I
u
4
= hb + 1, u
2
+ a + u 1, u
4
+ u
2
1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
u
2
u + 1
1
a
2
=
u
2
u + 2
1
a
1
=
u
2
u + 1
1
a
6
=
1
0
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
2
1
a
11
=
u
3
+ 2u
u
3
u
a
8
=
u
3
2u
u
3
+ u
a
12
=
u
3
+ u
2
+ u + 1
u
3
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 8
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
c
12
(u 1)
4
c
2
, c
11
(u + 1)
4
c
3
, c
4
, c
9
u
4
+ u
2
1
c
5
, c
8
, c
10
u
4
u
2
1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
9
(y
2
+ y 1)
2
c
5
, c
8
, c
10
(y
2
y 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.786151
a = 0.831883
b = 1.00000
3.94784 10.4720
u = 0.786151
a = 2.40419
b = 1.00000
3.94784 10.4720
u = 1.272020I
a = 0.618030 1.272020I
b = 1.00000
3.94784 1.52790
u = 1.272020I
a = 0.618030 + 1.272020I
b = 1.00000
3.94784 1.52790
20
V. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
1
0
a
4
=
1
0
a
7
=
0
1
a
2
=
1
1
a
1
=
0
1
a
6
=
1
0
a
9
=
1
0
a
5
=
1
0
a
11
=
1
0
a
8
=
1
0
a
12
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
c
12
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
7
u + 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
24
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
9
+ 6u
8
+ ··· + 2u + 1)
· (u
31
+ 44u
30
+ ··· + 119u + 1)
c
2
(u 1)
5
(u + 1)
4
(u
9
3u
7
u
6
+ 3u
5
+ 2u
4
u
3
u
2
+ 1)
· (u
31
2u
30
+ ··· + 3u 1)
c
3
, c
4
, c
9
u(u
3
u
2
+ 2u 1)
3
(u
4
+ u
2
1)(u
4
+ 3u
2
+ 3)(u
31
+ 2u
30
+ ··· + 2u + 2)
c
5
u
10
(u
4
3u
2
+ 3)(u
4
u
2
1)(u
31
+ 7u
30
+ ··· 88514u + 28438)
c
6
(u 1)
4
(u + 1)
5
(u
9
3u
7
u
6
+ 3u
5
+ 2u
4
u
3
u
2
+ 1)
· (u
31
2u
30
+ ··· + 3u 1)
c
7
(u 1)
4
(u + 1)
5
(u
9
3u
7
u
6
+ 3u
5
+ 2u
4
u
3
u
2
+ 1)
· (u
31
+ 2u
30
+ ··· u 1)
c
8
, c
10
u(u
3
+ u
2
1)
3
(u
4
3u
2
+ 3)(u
4
u
2
1)(u
31
2u
30
+ ··· 88u + 16)
c
11
(u 1)
5
(u + 1)
4
(u
9
3u
7
u
6
+ 3u
5
+ 2u
4
u
3
u
2
+ 1)
· (u
31
+ 2u
30
+ ··· u 1)
c
12
((u 1)
9
)(u
9
6u
8
+ ··· + 2u 1)
· (u
31
4u
30
+ ··· + 39u 1)
25
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
9
6y
8
+ ··· 6y 1)
· (y
31
104y
30
+ ··· + 10991y 1)
c
2
, c
6
((y 1)
9
)(y
9
6y
8
+ ··· + 2y 1)
· (y
31
44y
30
+ ··· + 119y 1)
c
3
, c
4
, c
9
y(y
2
+ y 1)
2
(y
2
+ 3y + 3)
2
(y
3
+ 3y
2
+ 2y 1)
3
· (y
31
+ 26y
30
+ ··· + 8y 4)
c
5
y
10
(y
2
3y + 3)
2
(y
2
y 1)
2
· (y
31
+ 55y
30
+ ··· + 4648364048y 808719844)
c
7
, c
11
((y 1)
9
)(y
9
6y
8
+ ··· + 2y 1)
· (y
31
4y
30
+ ··· + 39y 1)
c
8
, c
10
y(y
2
3y + 3)
2
(y
2
y 1)
2
(y
3
y
2
+ 2y 1)
3
· (y
31
14y
30
+ ··· + 448y 256)
c
12
((y 1)
9
)(y
9
6y
8
+ ··· 6y 1)
· (y
31
+ 56y
30
+ ··· + 479y 1)
26