12n
0573
(K12n
0573
)
A knot diagram
1
Linearized knot diagam
3 7 10 9 8 2 12 3 4 5 1 8
Solving Sequence
3,10 4,7
2 1 6 9 5 11 8 12
c
3
c
2
c
1
c
6
c
9
c
4
c
10
c
8
c
12
c
5
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
16
u
15
+ ··· + b + 1, u
18
+ 3u
17
+ ··· + 2a 6, u
19
3u
18
+ ··· + 6u 2i
I
u
2
= h24u
8
a + 207u
8
+ ··· + 31a 237,
2u
8
a + u
8
+ 6u
6
a + 5u
6
+ 6u
4
a u
5
+ 8u
4
2u
2
a 2u
3
+ a
2
+ au + 2u
2
4a 3,
u
9
+ u
8
+ 4u
7
+ 3u
6
+ 5u
5
+ 3u
4
3u 1i
I
u
3
= hb 1, 2u
3
3u
2
+ 3a 3u 3, u
4
+ 3u
2
+ 3i
I
u
4
= hb + 1, u
2
+ a u 1, u
4
+ u
2
1i
I
v
1
= ha, b 1, v + 1i
* 5 irreducible components of dim
C
= 0, with total 46 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
16
u
15
+· · ·+b+1, u
18
+3u
17
+· · ·+2a6, u
19
3u
18
+· · ·+6u2i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
1
2
u
18
3
2
u
17
+ ···
7
2
u + 3
u
16
+ u
15
+ ··· + u 1
a
2
=
3
2
u
18
+
5
2
u
17
+ ··· +
7
2
u 1
u
18
2u
17
+ ··· 2u + 1
a
1
=
1
2
u
18
+
1
2
u
17
+ ···
5
2
u
2
+
3
2
u
u
18
2u
17
+ ··· 2u + 1
a
6
=
u
10
5u
8
8u
6
3u
4
+ 3u
2
+ 1
u
10
+ 4u
8
+ 5u
6
3u
2
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
11
=
u
5
+ 2u
3
+ u
u
7
3u
5
2u
3
+ u
a
8
=
u
3
2u
u
3
+ u
a
12
=
3
2
u
18
5
2
u
17
+ ···
5
2
u + 2
u
18
+ 2u
17
+ ··· + 3u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
17
+ 6u
16
22u
15
+ 44u
14
88u
13
+ 124u
12
164u
11
+
158u
10
134u
9
+ 68u
8
10u
7
26u
6
+ 42u
5
14u
4
+ 2u
3
+ 18u
2
20u + 8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
19
+ 3u
18
+ ··· + 7u + 1
c
2
, c
6
, c
7
c
12
u
19
u
18
+ ··· u 1
c
3
, c
4
, c
9
u
19
3u
18
+ ··· + 6u 2
c
5
u
19
+ 21u
18
+ ··· + 2406u + 562
c
8
, c
10
u
19
+ 3u
18
+ ··· + 14u 10
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
19
+ 37y
18
+ ··· + 7y 1
c
2
, c
6
, c
7
c
12
y
19
3y
18
+ ··· + 7y 1
c
3
, c
4
, c
9
y
19
+ 15y
18
+ ··· 16y 4
c
5
y
19
45y
18
+ ··· 2597328y 315844
c
8
, c
10
y
19
21y
18
+ ··· 384y 100
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.304317 + 0.981930I
a = 0.73640 + 1.23198I
b = 0.534624 0.866654I
0.619243 + 0.825287I 1.58746 1.31207I
u = 0.304317 0.981930I
a = 0.73640 1.23198I
b = 0.534624 + 0.866654I
0.619243 0.825287I 1.58746 + 1.31207I
u = 0.929404 + 0.054061I
a = 1.85707 + 2.86205I
b = 1.16834 0.97470I
11.9496 + 7.7615I 2.99197 4.29762I
u = 0.929404 0.054061I
a = 1.85707 2.86205I
b = 1.16834 + 0.97470I
11.9496 7.7615I 2.99197 + 4.29762I
u = 0.744027
a = 0.660757
b = 0.577590
2.21133 4.57840
u = 0.689684 + 0.229296I
a = 0.50396 + 2.44275I
b = 0.768036 0.810356I
2.79530 4.62119I 3.18170 + 6.56238I
u = 0.689684 0.229296I
a = 0.50396 2.44275I
b = 0.768036 + 0.810356I
2.79530 + 4.62119I 3.18170 6.56238I
u = 0.315935 + 1.282700I
a = 0.038879 + 0.454563I
b = 0.606078 + 0.079526I
1.79110 + 3.82280I 0.01419 2.05902I
u = 0.315935 1.282700I
a = 0.038879 0.454563I
b = 0.606078 0.079526I
1.79110 3.82280I 0.01419 + 2.05902I
u = 0.473566 + 1.246700I
a = 1.69399 + 1.30200I
b = 1.12434 1.01004I
8.26951 2.76755I 0.165642 + 1.152780I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.473566 1.246700I
a = 1.69399 1.30200I
b = 1.12434 + 1.01004I
8.26951 + 2.76755I 0.165642 1.152780I
u = 0.000906 + 1.344200I
a = 0.628189 0.110568I
b = 0.631711 + 0.410114I
5.42437 + 1.46948I 4.90135 4.71907I
u = 0.000906 1.344200I
a = 0.628189 + 0.110568I
b = 0.631711 0.410114I
5.42437 1.46948I 4.90135 + 4.71907I
u = 0.250312 + 1.349130I
a = 0.61482 1.58026I
b = 0.876351 + 0.702623I
2.18836 7.94720I 2.76731 + 8.17106I
u = 0.250312 1.349130I
a = 0.61482 + 1.58026I
b = 0.876351 0.702623I
2.18836 + 7.94720I 2.76731 8.17106I
u = 0.435648 + 1.328780I
a = 0.25932 2.69648I
b = 1.19156 + 0.93252I
7.6280 + 12.6384I 0.71689 6.92034I
u = 0.435648 1.328780I
a = 0.25932 + 2.69648I
b = 1.19156 0.93252I
7.6280 12.6384I 0.71689 + 6.92034I
u = 0.218652 + 0.470395I
a = 0.358071 + 0.971620I
b = 0.319050 0.558488I
0.065587 + 1.130710I 1.18374 5.82659I
u = 0.218652 0.470395I
a = 0.358071 0.971620I
b = 0.319050 + 0.558488I
0.065587 1.130710I 1.18374 + 5.82659I
6
II. I
u
2
= h24u
8
a + 207u
8
+ · · · + 31a 237, 2u
8
a + u
8
+ · · · 4a 3, u
9
+
u
8
+ 4u
7
+ 3u
6
+ 5u
5
+ 3u
4
3u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
a
0.0892193au
8
0.769517u
8
+ ··· 0.115242a + 0.881041
a
2
=
0.769517au
8
0.762082u
8
+ ··· + 0.881041a + 1.97398
0.163569au
8
0.0892193u
8
+ ··· + 0.0446097a 1.11524
a
1
=
0.605948au
8
0.851301u
8
+ ··· + 0.925651a + 0.858736
0.163569au
8
0.0892193u
8
+ ··· + 0.0446097a 1.11524
a
6
=
2u
8
u
7
6u
6
2u
5
6u
4
+ 2u + 2
u
8
+ u
7
+ 3u
6
+ 2u
5
+ 3u
4
2u 1
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
11
=
u
5
+ 2u
3
+ u
u
7
3u
5
2u
3
+ u
a
8
=
u
3
2u
u
3
+ u
a
12
=
0.769517au
8
0.762082u
8
+ ··· + 0.881041a 0.0260223
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
8
4u
7
12u
6
8u
5
8u
4
4u
3
+ 8u
2
+ 4u + 6
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
18
+ 5u
17
+ ··· + 4u + 1
c
2
, c
6
, c
7
c
12
u
18
u
17
+ ··· + 2u 1
c
3
, c
4
, c
9
(u
9
+ u
8
+ 4u
7
+ 3u
6
+ 5u
5
+ 3u
4
3u 1)
2
c
5
(u
9
7u
8
+ 6u
7
+ 37u
6
21u
5
89u
4
66u
3
54u
2
39u 7)
2
c
8
, c
10
(u
9
u
8
6u
7
+ 5u
6
+ 11u
5
7u
4
6u
3
+ 4u
2
u 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
18
+ 15y
17
+ ··· 52y + 1
c
2
, c
6
, c
7
c
12
y
18
5y
17
+ ··· 4y + 1
c
3
, c
4
, c
9
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ y
5
31y
4
24y
3
+ 6y
2
+ 9y 1)
2
c
5
(y
9
37y
8
+ ··· + 765y 49)
2
c
8
, c
10
(y
9
13y
8
+ 68y
7
183y
6
+ 269y
5
211y
4
+ 80y
3
18y
2
+ 9y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.940385
a = 1.67785 + 2.94580I
b = 0.88600 1.16403I
12.9028 4.12280
u = 0.940385
a = 1.67785 2.94580I
b = 0.88600 + 1.16403I
12.9028 4.12280
u = 0.105528 + 1.193370I
a = 0.612327 0.108328I
b = 1.214940 + 0.117733I
6.13776 1.55423I 5.05960 + 4.30527I
u = 0.105528 + 1.193370I
a = 0.85424 2.40749I
b = 0.870781 + 0.348555I
6.13776 1.55423I 5.05960 + 4.30527I
u = 0.105528 1.193370I
a = 0.612327 + 0.108328I
b = 1.214940 0.117733I
6.13776 + 1.55423I 5.05960 4.30527I
u = 0.105528 1.193370I
a = 0.85424 + 2.40749I
b = 0.870781 0.348555I
6.13776 + 1.55423I 5.05960 4.30527I
u = 0.743788
a = 0.661558 + 0.082738I
b = 0.577633 0.031295I
2.21133 4.57530
u = 0.743788
a = 0.661558 0.082738I
b = 0.577633 + 0.031295I
2.21133 4.57530
u = 0.328404 + 1.225450I
a = 0.279234 0.828501I
b = 0.067133 + 0.481523I
1.53180 + 3.86354I 0.03791 4.00946I
u = 0.328404 + 1.225450I
a = 0.455774 + 1.279350I
b = 1.048570 0.263166I
1.53180 + 3.86354I 0.03791 4.00946I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.328404 1.225450I
a = 0.279234 + 0.828501I
b = 0.067133 0.481523I
1.53180 3.86354I 0.03791 + 4.00946I
u = 0.328404 1.225450I
a = 0.455774 1.279350I
b = 1.048570 + 0.263166I
1.53180 3.86354I 0.03791 + 4.00946I
u = 0.460882 + 1.295330I
a = 1.69755 1.44384I
b = 0.82021 + 1.17863I
8.87899 4.99486I 0.86627 + 2.90812I
u = 0.460882 + 1.295330I
a = 0.22926 + 2.59994I
b = 0.94094 1.12597I
8.87899 4.99486I 0.86627 + 2.90812I
u = 0.460882 1.295330I
a = 1.69755 + 1.44384I
b = 0.82021 1.17863I
8.87899 + 4.99486I 0.86627 2.90812I
u = 0.460882 1.295330I
a = 0.22926 2.59994I
b = 0.94094 + 1.12597I
8.87899 + 4.99486I 0.86627 2.90812I
u = 0.327390
a = 0.523848
b = 1.13069
2.72863 5.61280
u = 0.327390
a = 4.98902
b = 0.768210
2.72863 5.61280
11
III. I
u
3
= hb 1, 2u
3
3u
2
+ 3a 3u 3, u
4
+ 3u
2
+ 3i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
2
3
u
3
+ u
2
+ u + 1
1
a
2
=
2
3
u
3
u
2
u
1
a
1
=
2
3
u
3
u
2
u 1
1
a
6
=
1
0
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
2
+ 3
a
11
=
u
3
2u
u
3
+ u
a
8
=
u
3
2u
u
3
+ u
a
12
=
5
3
u
3
u
2
3u 1
u
3
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
12
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
(u 1)
4
c
3
, c
4
, c
9
u
4
+ 3u
2
+ 3
c
5
, c
8
, c
10
u
4
3u
2
+ 3
c
6
, c
12
(u + 1)
4
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
9
(y
2
+ 3y + 3)
2
c
5
, c
8
, c
10
(y
2
3y + 3)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.340625 + 1.271230I
a = 1.23394 + 1.06269I
b = 1.00000
3.28987 + 4.05977I 6.00000 3.46410I
u = 0.340625 1.271230I
a = 1.23394 1.06269I
b = 1.00000
3.28987 4.05977I 6.00000 + 3.46410I
u = 0.340625 + 1.271230I
a = 0.233945 0.669365I
b = 1.00000
3.28987 4.05977I 6.00000 + 3.46410I
u = 0.340625 1.271230I
a = 0.233945 + 0.669365I
b = 1.00000
3.28987 + 4.05977I 6.00000 3.46410I
15
IV. I
u
4
= hb + 1, u
2
+ a u 1, u
4
+ u
2
1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
u
2
+ u + 1
1
a
2
=
u
2
+ u + 2
1
a
1
=
u
2
+ u + 1
1
a
6
=
1
0
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
2
1
a
11
=
u
3
+ 2u
u
3
u
a
8
=
u
3
2u
u
3
+ u
a
12
=
u
3
+ u
2
+ 3u + 1
u
3
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
11
c
12
(u 1)
4
c
2
, c
7
(u + 1)
4
c
3
, c
4
, c
9
u
4
+ u
2
1
c
5
, c
8
, c
10
u
4
u
2
1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
9
(y
2
+ y 1)
2
c
5
, c
8
, c
10
(y
2
y 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.786151
a = 2.40419
b = 1.00000
0.657974 1.52790
u = 0.786151
a = 0.831883
b = 1.00000
0.657974 1.52790
u = 1.272020I
a = 0.618030 + 1.272020I
b = 1.00000
7.23771 10.4720
u = 1.272020I
a = 0.618030 1.272020I
b = 1.00000
7.23771 10.4720
19
V. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
1
0
a
4
=
1
0
a
7
=
0
1
a
2
=
1
1
a
1
=
0
1
a
6
=
1
0
a
9
=
1
0
a
5
=
1
0
a
11
=
1
0
a
8
=
1
0
a
12
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
12
u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
23
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
((u 1)
9
)(u
18
+ 5u
17
+ ··· + 4u + 1)(u
19
+ 3u
18
+ ··· + 7u + 1)
c
2
, c
7
((u 1)
5
)(u + 1)
4
(u
18
u
17
+ ··· + 2u 1)(u
19
u
18
+ ··· u 1)
c
3
, c
4
, c
9
u(u
4
+ u
2
1)(u
4
+ 3u
2
+ 3)(u
9
+ u
8
+ ··· 3u 1)
2
· (u
19
3u
18
+ ··· + 6u 2)
c
5
u(u
4
3u
2
+ 3)(u
4
u
2
1)
· (u
9
7u
8
+ 6u
7
+ 37u
6
21u
5
89u
4
66u
3
54u
2
39u 7)
2
· (u
19
+ 21u
18
+ ··· + 2406u + 562)
c
6
, c
12
((u 1)
4
)(u + 1)
5
(u
18
u
17
+ ··· + 2u 1)(u
19
u
18
+ ··· u 1)
c
8
, c
10
u(u
4
3u
2
+ 3)(u
4
u
2
1)
· (u
9
u
8
6u
7
+ 5u
6
+ 11u
5
7u
4
6u
3
+ 4u
2
u 1)
2
· (u
19
+ 3u
18
+ ··· + 14u 10)
24
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
((y 1)
9
)(y
18
+ 15y
17
+ ··· 52y + 1)(y
19
+ 37y
18
+ ··· + 7y 1)
c
2
, c
6
, c
7
c
12
((y 1)
9
)(y
18
5y
17
+ ··· 4y + 1)(y
19
3y
18
+ ··· + 7y 1)
c
3
, c
4
, c
9
y(y
2
+ y 1)
2
(y
2
+ 3y + 3)
2
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ y
5
31y
4
24y
3
+ 6y
2
+ 9y 1)
2
· (y
19
+ 15y
18
+ ··· 16y 4)
c
5
y(y
2
3y + 3)
2
(y
2
y 1)
2
(y
9
37y
8
+ ··· + 765y 49)
2
· (y
19
45y
18
+ ··· 2597328y 315844)
c
8
, c
10
y(y
2
3y + 3)
2
(y
2
y 1)
2
· (y
9
13y
8
+ 68y
7
183y
6
+ 269y
5
211y
4
+ 80y
3
18y
2
+ 9y 1)
2
· (y
19
21y
18
+ ··· 384y 100)
25