12n
0574
(K12n
0574
)
A knot diagram
1
Linearized knot diagam
3 7 9 10 11 2 12 3 4 5 7 8
Solving Sequence
3,9
4 10 5
8,12
1 7 2 6 11
c
3
c
9
c
4
c
8
c
12
c
7
c
2
c
6
c
11
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
6
+ u
5
− 2u
4
+ u
3
+ 3u
2
+ b − 3u − 1, u
6
+ u
5
− 2u
4
+ 3u
2
+ 2a − u − 2,
u
7
+ 3u
6
− 4u
4
+ 3u
3
+ 3u
2
− 6u − 2i
I
u
2
= hb − u + 1, 3a − 2u + 3, u
2
− 3i
I
u
3
= hb, a + 1, u + 1i
I
u
4
= hb + 2, a + 1, u − 1i
I
u
5
= hb + 1, a, u − 1i
I
u
6
= hb + 1, a + 1, u − 1i
I
v
1
= ha, b + 1, v + 1i
* 7 irreducible components of dim
C
= 0, with total 14 representations.
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1