12n
0574
(K12n
0574
)
A knot diagram
1
Linearized knot diagam
3 7 9 10 11 2 12 3 4 5 7 8
Solving Sequence
3,9
4 10 5
8,12
1 7 2 6 11
c
3
c
9
c
4
c
8
c
12
c
7
c
2
c
6
c
11
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
6
+ u
5
2u
4
+ u
3
+ 3u
2
+ b 3u 1, u
6
+ u
5
2u
4
+ 3u
2
+ 2a u 2,
u
7
+ 3u
6
4u
4
+ 3u
3
+ 3u
2
6u 2i
I
u
2
= hb u + 1, 3a 2u + 3, u
2
3i
I
u
3
= hb, a + 1, u + 1i
I
u
4
= hb + 2, a + 1, u 1i
I
u
5
= hb + 1, a, u 1i
I
u
6
= hb + 1, a + 1, u 1i
I
v
1
= ha, b + 1, v + 1i
* 7 irreducible components of dim
C
= 0, with total 14 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
6
+ u
5
2u
4
+ u
3
+ 3u
2
+ b 3u 1, u
6
+ u
5
2u
4
+ 3u
2
+ 2a
u 2, u
7
+ 3u
6
4u
4
+ 3u
3
+ 3u
2
6u 2i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
10
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
u
u
a
12
=
1
2
u
6
1
2
u
5
+ ··· +
1
2
u + 1
u
6
u
5
+ 2u
4
u
3
3u
2
+ 3u + 1
a
1
=
3
2
u
6
+
5
2
u
5
+ ···
9
2
u 1
u
6
+ 2u
5
2u
4
2u
3
+ 3u
2
2u 1
a
7
=
1
2
u
6
1
2
u
5
+ ···
1
2
u
2
+
3
2
u
u
6
u
5
+ 3u
4
4u
2
+ 3u + 1
a
2
=
1
2
u
6
+
1
2
u
5
+ ··· +
3
2
u
2
5
2
u
u
6
+ 2u
5
2u
4
2u
3
+ 3u
2
2u 1
a
6
=
u
4
+ 3u
2
1
u
6
+ 4u
4
3u
2
a
11
=
u
3
2u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
3
+ 4u 20
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
7
5u
6
+ 17u
5
37u
4
+ 59u
3
+ 73u
2
+ 19u + 1
c
2
, c
6
, c
7
c
11
, c
12
u
7
u
6
+ 3u
5
3u
4
+ 7u
3
+ 5u
2
3u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
7
+ 3u
6
4u
4
+ 3u
3
+ 3u
2
6u 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
7
+ 9y
6
+ 37y
5
+ 1405y
4
+ 9539y
3
3013y
2
+ 215y 1
c
2
, c
6
, c
7
c
11
, c
12
y
7
+ 5y
6
+ 17y
5
+ 37y
4
+ 59y
3
73y
2
+ 19y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
7
9y
6
+ 30y
5
46y
4
+ 45y
3
61y
2
+ 48y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.08587
a = 0.409925
b = 0.928471
4.90710 18.2170
u = 0.650401 + 0.883152I
a = 0.010004 0.769994I
b = 1.56753 0.20564I
4.08163 2.95233I 14.9050 + 2.6687I
u = 0.650401 0.883152I
a = 0.010004 + 0.769994I
b = 1.56753 + 0.20564I
4.08163 + 2.95233I 14.9050 2.6687I
u = 1.66573 + 0.28903I
a = 0.95395 + 1.19109I
b = 1.78081 + 0.57849I
3.67990 + 7.39754I 18.2542 3.6074I
u = 1.66573 0.28903I
a = 0.95395 1.19109I
b = 1.78081 0.57849I
3.67990 7.39754I 18.2542 + 3.6074I
u = 0.306290
a = 0.715870
b = 0.152106
0.466669 21.1680
u = 1.74892
a = 1.23386
b = 1.61611
15.1689 16.2970
5
II. I
u
2
= hb u + 1, 3a 2u + 3, u
2
3i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
3
a
10
=
u
2u
a
5
=
2
3
a
8
=
u
u
a
12
=
2
3
u 1
u 1
a
1
=
1
3
u 1
1
a
7
=
1
3
u + 1
1
a
2
=
1
3
u
1
a
6
=
1
0
a
11
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
(u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
3
c
6
, c
11
, c
12
(u + 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y 3)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.73205
a = 0.154701
b = 0.732051
16.4493 24.0000
u = 1.73205
a = 2.15470
b = 2.73205
16.4493 24.0000
9
III. I
u
3
= hb, a + 1, u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
10
=
1
0
a
5
=
0
1
a
8
=
1
1
a
12
=
1
0
a
1
=
2
1
a
7
=
2
1
a
2
=
1
1
a
6
=
1
0
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
c
9
, c
10
, c
11
c
12
u 1
c
2
, c
3
, c
4
c
5
, c
7
u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
6.57974 24.0000
13
IV. I
u
4
= hb + 2, a + 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
10
=
1
0
a
5
=
0
1
a
8
=
1
1
a
12
=
1
2
a
1
=
0
1
a
7
=
0
1
a
2
=
1
1
a
6
=
1
0
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
11
c
12
u 1
c
2
, c
7
, c
8
c
9
, c
10
u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 2.00000
6.57974 24.0000
17
V. I
u
5
= hb + 1, a, u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
10
=
1
0
a
5
=
0
1
a
8
=
1
1
a
12
=
0
1
a
1
=
1
0
a
7
=
1
0
a
2
=
1
0
a
6
=
1
0
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
c
3
, c
4
, c
5
c
7
, c
8
, c
9
c
10
, c
11
, c
12
u 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
y
c
3
, c
4
, c
5
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
4.93480 18.0000
21
VI. I
u
6
= hb + 1, a + 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
10
=
1
0
a
5
=
0
1
a
8
=
1
1
a
12
=
1
1
a
1
=
1
1
a
7
=
1
1
a
2
=
0
1
a
6
=
1
0
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u + 1
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
9
, c
10
u 1
c
7
, c
11
, c
12
u
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
8
, c
9
, c
10
y 1
c
7
, c
11
, c
12
y
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
4.93480 18.0000
25
VII. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
1
0
a
4
=
1
0
a
10
=
1
0
a
5
=
1
0
a
8
=
1
0
a
12
=
0
1
a
1
=
1
1
a
7
=
1
1
a
2
=
2
1
a
6
=
1
0
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
11
, c
12
u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
29
VIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u 1)
5
(u + 1)(u
7
5u
6
+ ··· + 19u + 1)
c
2
, c
7
u(u 1)
4
(u + 1)
2
(u
7
u
6
+ 3u
5
3u
4
+ 7u
3
+ 5u
2
3u 1)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u(u 1)
3
(u + 1)(u
2
3)(u
7
+ 3u
6
4u
4
+ 3u
3
+ 3u
2
6u 2)
c
6
, c
11
, c
12
u(u 1)
3
(u + 1)
3
(u
7
u
6
+ 3u
5
3u
4
+ 7u
3
+ 5u
2
3u 1)
30
IX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y 1)
6
(y
7
+ 9y
6
+ ··· + 215y 1)
c
2
, c
6
, c
7
c
11
, c
12
y(y 1)
6
(y
7
+ 5y
6
+ 17y
5
+ 37y
4
+ 59y
3
73y
2
+ 19y 1)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y(y 3)
2
(y 1)
4
(y
7
9y
6
+ ··· + 48y 4)
31