12n
0575
(K12n
0575
)
A knot diagram
1
Linearized knot diagam
3 7 9 11 10 2 12 3 4 5 7 8
Solving Sequence
4,11 5,7
12 10 9 3 2 1 6 8
c
4
c
11
c
10
c
9
c
3
c
2
c
1
c
6
c
8
c
5
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 16u
4
+ 11u
3
+ 4u
2
+ b 1,
u
9
+ 2u
8
+ 6u
7
+ 8u
6
+ 11u
5
+ 10u
4
+ 6u
3
+ 2u
2
+ 2a u 2,
u
10
+ 4u
9
+ 12u
8
+ 24u
7
+ 37u
6
+ 44u
5
+ 40u
4
+ 26u
3
+ 11u
2
2i
I
u
2
= hu
3
+ u
2
+ b + u + 2, u
3
+ 3a + 3u, u
4
+ 3u
2
+ 3i
I
u
3
= hu
3
u
2
+ b + u, u
3
+ a + u, u
4
+ u
2
1i
I
v
1
= ha, b 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 19 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
9
+ 3u
8
+ · · · + b 1, u
9
+ 2u
8
+ · · · + 2a 2, u
10
+ 4u
9
+ · · · + 11u
2
2i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
1
2
u
9
u
8
+ ··· +
1
2
u + 1
u
9
3u
8
8u
7
13u
6
17u
5
16u
4
11u
3
4u
2
+ 1
a
12
=
1
2
u
9
+ 2u
8
+ ··· +
3
2
u 2
u
7
+ 3u
6
+ 5u
5
+ 8u
4
+ 6u
3
+ 5u
2
+ 2u 1
a
10
=
u
u
3
+ u
a
9
=
u
3
+ 2u
u
3
+ u
a
3
=
u
6
3u
4
2u
2
+ 1
u
6
2u
4
u
2
a
2
=
1
2
u
9
+ 2u
8
+ ··· +
3
2
u 1
u
7
+ 2u
6
+ 5u
5
+ 6u
4
+ 6u
3
+ 4u
2
+ u 1
a
1
=
27
2
u
9
46u
8
+ ···
25
2
u + 24
8u
9
32u
8
+ ··· 11u + 19
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
u
9
4u
7
5u
5
+ 3u
u
9
3u
7
3u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
9
+ 8u
8
+ 22u
7
+ 40u
6
+ 52u
5
+ 48u
4
+ 28u
3
+ 4u
2
8u 20
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
10u
9
+ ··· + 22u + 1
c
2
, c
6
, c
7
c
11
, c
12
u
10
2u
9
+ 7u
8
16u
7
+ 54u
6
+ 20u
5
38u
4
+ 9u
2
2u 1
c
3
, c
8
, c
9
u
10
+ 4u
9
+ 4u
8
+ 6u
7
+ 47u
6
+ 34u
5
96u
4
96u
3
9u
2
28u 10
c
4
, c
5
, c
10
u
10
4u
9
+ 12u
8
24u
7
+ 37u
6
44u
5
+ 40u
4
26u
3
+ 11u
2
2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
+ 86y
9
+ ··· 170y + 1
c
2
, c
6
, c
7
c
11
, c
12
y
10
+ 10y
9
+ ··· 22y + 1
c
3
, c
8
, c
9
y
10
8y
9
+ ··· 604y + 100
c
4
, c
5
, c
10
y
10
+ 8y
9
+ ··· 44y + 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.011370 + 0.549500I
a = 1.84526 + 1.65245I
b = 1.36179 + 0.92941I
5.53688 + 3.23949I 14.4970 2.0733I
u = 1.011370 0.549500I
a = 1.84526 1.65245I
b = 1.36179 0.92941I
5.53688 3.23949I 14.4970 + 2.0733I
u = 0.815135
a = 0.753180
b = 1.02757
5.74502 15.7930
u = 0.055441 + 1.195260I
a = 0.294506 + 0.301650I
b = 0.641589 0.278823I
2.90689 1.22324I 8.89978 + 5.47255I
u = 0.055441 1.195260I
a = 0.294506 0.301650I
b = 0.641589 + 0.278823I
2.90689 + 1.22324I 8.89978 5.47255I
u = 0.362503 + 1.267330I
a = 0.160758 0.440175I
b = 0.898467 + 0.647980I
1.81239 + 4.23636I 11.64407 4.22306I
u = 0.362503 1.267330I
a = 0.160758 + 0.440175I
b = 0.898467 0.647980I
1.81239 4.23636I 11.64407 + 4.22306I
u = 0.42007 + 1.54013I
a = 1.45657 + 0.91885I
b = 3.27708 0.06119I
12.1053 + 8.5018I 12.65841 3.21110I
u = 0.42007 1.54013I
a = 1.45657 0.91885I
b = 3.27708 + 0.06119I
12.1053 8.5018I 12.65841 + 3.21110I
u = 0.292134
a = 0.934719
b = 0.221971
0.474672 20.8080
5
II. I
u
2
= hu
3
+ u
2
+ b + u + 2, u
3
+ 3a + 3u, u
4
+ 3u
2
+ 3i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
1
3
u
3
u
u
3
u
2
u 2
a
12
=
1
3
u
3
+ u
u
3
+ u
2
+ 2u + 2
a
10
=
u
u
3
+ u
a
9
=
u
3
+ 2u
u
3
+ u
a
3
=
u
2
+ 1
u
2
3
a
2
=
1
3
u
3
+ u
2
+ u + 1
u
3
+ u 1
a
1
=
1
3
u
3
+ u
u
3
+ u
2
+ u + 2
a
6
=
u
2
+ 1
u
2
3
a
8
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
12
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
(u 1)
4
c
3
, c
8
, c
9
u
4
3u
2
+ 3
c
4
, c
5
, c
10
u
4
+ 3u
2
+ 3
c
6
, c
11
, c
12
(u + 1)
4
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
4
c
3
, c
8
, c
9
(y
2
3y + 3)
2
c
4
, c
5
, c
10
(y
2
+ 3y + 3)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.340625 + 1.271230I
a = 0.196660 0.733945I
b = 0.771230 0.525400I
3.28987 4.05977I 18.0000 + 3.4641I
u = 0.340625 1.271230I
a = 0.196660 + 0.733945I
b = 0.771230 + 0.525400I
3.28987 + 4.05977I 18.0000 3.4641I
u = 0.340625 + 1.271230I
a = 0.196660 0.733945I
b = 1.77123 + 1.20665I
3.28987 + 4.05977I 18.0000 3.4641I
u = 0.340625 1.271230I
a = 0.196660 + 0.733945I
b = 1.77123 1.20665I
3.28987 4.05977I 18.0000 + 3.4641I
9
III. I
u
3
= hu
3
u
2
+ b + u, u
3
+ a + u, u
4
+ u
2
1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
u
3
u
u
3
+ u
2
u
a
12
=
u
3
u
u
3
+ u
2
a
10
=
u
u
3
+ u
a
9
=
u
3
+ 2u
u
3
+ u
a
3
=
u
2
1
u
2
1
a
2
=
u
3
u
2
u 1
u
3
u 1
a
1
=
u
3
u
u
3
+ u
2
u
a
6
=
u
2
+ 1
u
2
+ 1
a
8
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
20
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
11
c
12
(u 1)
4
c
2
, c
7
(u + 1)
4
c
3
, c
8
, c
9
u
4
u
2
1
c
4
, c
5
, c
10
u
4
+ u
2
1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
4
c
3
, c
8
, c
9
(y
2
y 1)
2
c
4
, c
5
, c
10
(y
2
+ y 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.786151
a = 1.27202
b = 0.653986
7.23771 22.4720
u = 0.786151
a = 1.27202
b = 1.89005
7.23771 22.4720
u = 1.272020I
a = 0.786151I
b = 1.61803 + 0.78615I
0.657974 13.5280
u = 1.272020I
a = 0.786151I
b = 1.61803 0.78615I
0.657974 13.5280
13
IV. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
11
=
1
0
a
5
=
1
0
a
7
=
0
1
a
12
=
1
1
a
10
=
1
0
a
9
=
1
0
a
3
=
1
0
a
2
=
1
1
a
1
=
0
1
a
6
=
1
0
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
11
, c
12
u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
17
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
10
10u
9
+ ··· + 22u + 1)
c
2
, c
7
(u 1)
5
(u + 1)
4
· (u
10
2u
9
+ 7u
8
16u
7
+ 54u
6
+ 20u
5
38u
4
+ 9u
2
2u 1)
c
3
, c
8
, c
9
u(u
4
3u
2
+ 3)(u
4
u
2
1)
· (u
10
+ 4u
9
+ 4u
8
+ 6u
7
+ 47u
6
+ 34u
5
96u
4
96u
3
9u
2
28u 10)
c
4
, c
5
, c
10
u(u
4
+ u
2
1)(u
4
+ 3u
2
+ 3)
· (u
10
4u
9
+ 12u
8
24u
7
+ 37u
6
44u
5
+ 40u
4
26u
3
+ 11u
2
2)
c
6
, c
11
, c
12
(u 1)
4
(u + 1)
5
· (u
10
2u
9
+ 7u
8
16u
7
+ 54u
6
+ 20u
5
38u
4
+ 9u
2
2u 1)
18
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
10
+ 86y
9
+ ··· 170y + 1)
c
2
, c
6
, c
7
c
11
, c
12
((y 1)
9
)(y
10
+ 10y
9
+ ··· 22y + 1)
c
3
, c
8
, c
9
y(y
2
3y + 3)
2
(y
2
y 1)
2
(y
10
8y
9
+ ··· 604y + 100)
c
4
, c
5
, c
10
y(y
2
+ y 1)
2
(y
2
+ 3y + 3)
2
(y
10
+ 8y
9
+ ··· 44y + 4)
19